The CORDEX Flagship Pilot Study in southeastern South America: a comparative study of statistical and dynamical downscaling models in simulating daily extreme precipitation events

Abstract

The aim of this work is to present preliminary results of the statistical and dynamical simulations carried out within the framework of the Flagship Pilot Study in southeastern South America (FPS-SESA) endorsed by the Coordinated Regional Climate Downscaling Experiments (CORDEX) program. The FPS-SESA initiative seeks to promote inter-institutional collaboration and further networking with focus on extreme rainfall events. The main scientific aim is to study multi-scale processes and interactions most conducive to extreme precipitation events through both statistical and dynamical downscaling techniques, including convection-permitting simulations. To this end, a targeted experiment was designed considering the season October 2009 to March 2010, a period with a record number of extreme precipitation events within SESA. Also, three individual extreme events within that season were chosen as case studies for analyzing specific regional processes and sensitivity to resolutions. Four dynamical and four statistical downscaling models (RCM and ESD respectively) from different institutions contributed to the experiment. In this work, an analysis of the capability of the set of the FPS-SESA downscaling methods in simulating daily precipitation during the selected warm season is presented together with an integrated assessment of multiple sources of observations and available CORDEX Regional Climate Model simulations. Comparisons among all simulations reveal that there is no single model that performs best in all aspects evaluated. The ability in reproducing the different features of daily precipitation depends on the model. However, the evaluation of the sequence of precipitation events, their intensity and timing suggests that FPS-SESA simulations based on both RCM and ESD yield promising results. Most models capture the extreme events selected, although with a considerable spread in accumulated values and the location of heavy precipitation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Asadieh B, Krakauer NY (2015) Global trends in extreme precipitation: climate models versus observations. Hydrol Earth Syst Sci 19:877–891. https://doi.org/10.5194/hess-19-877-2015

  2. Ashouri H, Hsu KL, Sorooshian S, Braithwaite DK, Knapp KR, Cecil LD, Prat OP (2015) PERSIANN-CDR: daily precipitation climate data record from multi-satellite observations for hydrological and climate studies. Bull Am Meteor Soc 96:69–83. https://doi.org/10.1175/BAMS-D-13-00068.1

    Article  Google Scholar 

  3. Barreiro M (2010) Influence of ENSO and the south Atlantic ocean on climate predictability over Southeastern South America. Clim Dyn 35:1493–1508. https://doi.org/10.1007/s00382-009-0666-9

    Article  Google Scholar 

  4. Barreiro M (2017) Interannual variability of extratropical transient wave activity and its influence on rainfall over Uruguay. J Climatol Int. https://doi.org/10.1002/joc.5082

    Article  Google Scholar 

  5. Barros VR, Doyle ME (2018) Low-level circulation and precipitation simulated by CMIP5 GCMS over southeastern South America. Int J Climatol 38:5476–5490. https://doi.org/10.1002/joc.5740

    Article  Google Scholar 

  6. Barros V, Clarke R, Silva Dias PL (2006) Climate change in the La Plata Basin, CIMA-CONICET, 1ra ed., Buenos Aires

  7. Beck HE, van Dijk AIJM, Levizzani V, Schellekens J, Miralles DG, Martens B, de Roo A (2017) MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol Earth Syst Sci Discuss. https://doi.org/10.5194/hess-21-589-2017

    Article  Google Scholar 

  8. Bell GD, Halpert MS, Ropelewski CF, Kousky VE, Douglas AV, Schnell RC, Gelman ME (1999) Climate assessment for 1998. BAMS. https://doi.org/10.1175/1520-0477-80.5s.S1

    Article  Google Scholar 

  9. Bettolli ML, Penalba OC (2014) Synoptic sea level pressure patterns–daily rainfall relationship over the Argentine Pampas in a multi-model simulation. Meteorol Appl 21:376–383. https://doi.org/10.1002/met.13

    Article  Google Scholar 

  10. Bettolli ML, Penalba OC (2018) Statistical downscaling of daily precipitation and temperatures in southern La Plata Basin. Int J Climatol 38:3705–3722. https://doi.org/10.1002/joc.5531

    Article  Google Scholar 

  11. Boulanger JP, Leloup J, Penalba O, Rusticucci M, Lafon F, Vargas W (2005) Observed precipitation in the Paraná-Plata hydrological basin: long-term trends, extreme conditions and ENSO teleconnections. Clim Dyn 24:393–413. https://doi.org/10.1007/s00382-004-0514-x

    Article  Google Scholar 

  12. Carril AF, Cavalcanti IFA, Menendez CG, Sörensson A, López-Franca N, Rivera JA, Robledo F, Zaninelli PG, Ambrizzi T, Penalba OC, da Rocha RP, Sánchez E, Bettolli ML, Pessacg N, Renom M, Ruscica R, Solman S, Tencer B, Grimm AM, Rusticucci M, Cherchi A, Tedeschi R, Zamboni L (2016) Extreme events in the La Plata basin: a retrospective analysis of what we have learned during CLARIS-LPB project. Clim Res 68(2–3):95–116

    Article  Google Scholar 

  13. Cavalcanti IFA (2012) Large scale and synoptic features associated with extreme precipitation over South America: a review and case studies for the first decade of the 21st century. Atmos Res 118:27–40. https://doi.org/10.1016/j.atmosres.2012.06.012

    Article  Google Scholar 

  14. Cavalcanti IFA, Carril AF, Penalba OC, Grimm AM, Menéndez CG, Sanchez E, Cherchi A, Sörensson A, Robledo F, Rivera J, Pántano V, Bettolli ML, Zaninelli P, Zamboni L, Tedeschi RG, Dominguez M, Ruscica R, Flach R (2015) Precipitation extremes over La Plata Basin—review and new results from observations and climate simulations. J Hydrol. 23:211–230. https://doi.org/10.1016/j.jhydrol.2015.01.028

    Article  Google Scholar 

  15. Casanueva A, Herrera S, Fernández J, Gutiérrez JM (2016) Towards a fair comparison of statistical and dynamical downscaling in the framework of the EURO-CORDEX initiative. Clim Change 137(3–4):411–426. https://doi.org/10.1007/s10584-016-1683-4

    Article  Google Scholar 

  16. Chandler RE, Wheater HS (2002) Analysis of rainfall variability using generalized linear models: a case study from the west of Ireland. Water Resour Res 38:1192. https://doi.org/10.1029/2001WR000906

    Article  Google Scholar 

  17. Coppola E, Sobolowski S, Pichelli E, Raffaele F, Ahrens B, Anders I, Ban N, Bastin S, Belda M, Belusic D, Caldas-Alvarez A, Cardoso RM, Davolio S, Dobler A, Fernandez J, Fita L, Fumiere Q, Giorgi F, Goergen K, Güttler I, Halenka T, Heinzeller D, Hodnebrog O, Jacob D, Kartsios S, Katragkou E, Kendon E, Khodayar S, Kunstmann H, Knist S, Lavín-Gullón A, Lind P, Lorenz T, Maraun D, Marelle L, van Meijgaard E, Milovac J, Myhre G, Panitz H-J, Piazza M, Raffa M, Raub T, Rockel B, Schär C, Sieck K, Soares PMM, Somot S, Srnec L, Stocchi P, Tölle MH, Truhetz H, Vautard R, de Vries H, Warrach-Sagi K (2019) A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Clim Dyn. https://doi.org/10.1007/s00382-018-4521-8

    Article  Google Scholar 

  18. da Rocha RP, Morales CA, Cuadra SV, Ambrizzi T (2009) Precipitation diurnal cycle and summer climatology assessment over South America: an evaluation of Regional Climate Model version 3 simulations. J Geophys Res 114:D10108. https://doi.org/10.1029/2008JD010212

    Article  Google Scholar 

  19. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  20. D’onofrio A, Boulanger JP, Segura EC (2010) CHAC: a weather pattern classification system for regional climate downscaling of daily precipitation. Clim Change 98:405–427. https://doi.org/10.1007/s10584-009-9738-4

    Article  Google Scholar 

  21. Doyle ME, Barros VR (2002) Midsummer low-level circulation and precipitation in subtropical South America and related sea surface temperature anomalies in the South Atlantic. J Clim 15:3394–3410. https://doi.org/10.1175/1520-0442(2002)015%3c3394:MLLCAP%3e2.0.CO;2

    Article  Google Scholar 

  22. Durkee JD, Mote TL, Shepherd M (2009) The contribution of mesoscale convective complexes to rainfall across subtropical South America. J Clim 22:4590–4605. https://doi.org/10.1175/2009JCLI2858.1

    Article  Google Scholar 

  23. Falco M, Carril AF, Menéndez CG, Zaninelli PG, Li LZ (2019) Assessment of CORDEX simulations over South America: added value on seasonal climatology and resolution considerations. Clim Dyn 52:4771–4786. https://doi.org/10.1007/s00382-018-4412-z

    Article  Google Scholar 

  24. Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27:1547–1578. https://doi.org/10.1002/joc.1556

    Article  Google Scholar 

  25. Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183

    Google Scholar 

  26. Giorgi F, Coppola E, Raffaele F, Tefera Diro G, Fuentes-Franco R, Giuliani G, Mamgain A, Llopart M, Mariotti L, Tormaand C (2014) Changes in extremes and hydroclimatic regimes in the CREMA ensemble projections. Clim Change 125:39–51. https://doi.org/10.1007/s10584-014-1117-0

    Article  Google Scholar 

  27. Grimm AM, Tedeschi RG (2009) ENSO and extreme rainfall events in South America. J Clim 22:1589–1609. https://doi.org/10.1175/2008jcli2429.1

    Article  Google Scholar 

  28. Gutiérrez JM, Maraun D, Widmann M, Huth R, Hertig E, Benestad R, Roessler O et al (2019) An intercomparison of a large ensemble of statistical downscaling methods over Europe: results from the VALUE perfect predictor cross-validation experiment. Int J Climatol 39(9):3750–3785. https://doi.org/10.1002/joc.5462

    Article  Google Scholar 

  29. Goodess CM, Haylock MR, Jones PD, Bardossy A, Frei C, Schmith T (2003) Statistical and Regional dynamical Downscaling of Extremes for European regions: some preliminary results from the STARDEX project 2003EGS-AGU-EUG Joint Assembly, Nice, 6–11 April Geophysical Research Abstracts, vol. 5. http://www.cosis.net/abstracts/EAE03/02934/EAE03-J02934.pdf

  30. Gutowski JW, Giorgi F, Timbal B, Frigon A, Jacob D, Kang HS, Raghavan K, Lee B, Lennard C, Nikulin G et al (2016) WCRP COordinated Regional Downscaling EXperiment (CORDEX): a diagnostic MIP for CMIP6. Geosci Model Dev 9:4087–4095. https://doi.org/10.5194/gmd-9-4087-2016

    Article  Google Scholar 

  31. Haylock MR, Cawley GC, Harpham C, Wilby RL, Goodess CM (2006) Downscaling heavy precipitation over the United Kingdom: a comparison of dynamical and statistical methods and their future scenarios. Int J Climatol 26:1397–1415. https://doi.org/10.1002/joc.1318

    Article  Google Scholar 

  32. Hertig E, Maraun D, Bartholy J, Pongracz R, Vrac M, Mares I, Gutiérrez JM, Wibig J, Casanueva A, Soares PMM (2018) Comparison of statistical downscaling methods with respect to extreme events over Europe: validation results from the perfect predictor experiment of the COST Action VALUE. Int J Climatol 39:3846–3867. https://doi.org/10.1002/joc.5469

    Article  Google Scholar 

  33. Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G et al (2007) The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeor 8:38–55. https://doi.org/10.1175/JHM560.1

    Article  Google Scholar 

  34. Huth R, Mikšovský J, Štěpánek P, Belda M, Farda A, Chládová Z, Pišoft P (2015) Comparative validation of statistical and dynamical downscaling models on a dense grid in central Europe: temperature. Theoret Appl Climatol 120(3–4):533–553. https://doi.org/10.1007/s00704-014-1190-3

    Article  Google Scholar 

  35. Iturbide M, Bedia J, Herrera S, Baño-Medina J, Fernández J, Frías MD, Manzanas R, San-Martín D, Cimadevilla E, Cofiño AS, Gutiérrez JM (2019) The R-based climate4R open framework for reproducible climate data access and post-processing. Environ Model Softw 111:42–54. https://doi.org/10.1016/j.envsoft.2018.09.009

    Article  Google Scholar 

  36. Jacob D, Elizalde A, Haensler A, Hagemann S, Kumar P, Podzun R, Rechid D, Remedio AR, Saeed F, Sieck K, Teichmann C, Wilhelm C (2012) Assessing the transferability of the regional climate model REMO to different coordinated regional climate downscaling experiment (CORDEX) regions. Atmosphere 3(4):181–199. https://doi.org/10.3390/atmos3010181

    Article  Google Scholar 

  37. Jones RG, Noguer M, Hassell DC, Hudson D, Wilson SS, Jenkins GJ, Mitchell JFB (2004) Generating high resolution climate change scenarios using PRECIS. Met Office Hadley Centre, Exeter, UK, 40 pp. ISBN: 0861803728 Available online at https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/applied-science/precis/precis_handbook.pdf

  38. Joyce RJ, Janowiak JE, Arkin PA, Xie P (2004) CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeor 5:487–503. https://doi.org/10.1175/1525-7541(2004)005%3c0487:CAMTPG%3e2.0.CO;2

    Article  Google Scholar 

  39. Kendon EJ, Roberts NM, Senior CA, Roberts MJ (2012) Realism of rainfall in a very high resolution regional climate model. J Clim 25:5791–5806. https://doi.org/10.1175/JCLI-D-11-00562.1

    Article  Google Scholar 

  40. Kupiainen M, Jansson C, Samuelsson P, Jones C, Willén U, Hansson U, Ullerstig A, Wang S, Döscher R (2014) Rossby Centre regional atmospheric model, RCA4. Rossby Center News Letter. https://www.smhi.se/en/research/research-departments/climate-research-rossby-centre2-552/rossby-centre-regional-atmospheric-model-rca4-1.16562

  41. Llopart M, Coppola E, Giorgi F, da Rocha RP, Cuadra SV (2014) Climate change impact on precipitation for the Amazon and La Plata basins. Clim change 125:111–125. https://doi.org/10.1007/s10584-014-1140-1

    Article  Google Scholar 

  42. Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themeßl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change. Recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48:1–34. https://doi.org/10.1029/2009RG000314

    Article  Google Scholar 

  43. Maraun D, Widmann M, Gutierrez JM, Kotlarski S, Chandler RE, Hertig E, Wibig J, Huth R, Wilcke RAI (2015) VALUE—a framework to validate downscaling approaches for climate change studies. Earth’s Future 3(1):1–14. https://doi.org/10.1002/2014EF000259

    Article  Google Scholar 

  44. Menéndez CG, de Castro M, Boulanger JP et al (2010) Downscaling extreme month-long anomalies in southern South America. Clim Change 98:379. https://doi.org/10.1007/s10584-009-9739-3

    Article  Google Scholar 

  45. Mesinger F, Chou SC, Gomes JL, Jovic D, Bastos P, Bustamante JF, Lazic L, Lyra A, Morelli S, Ristic I, Veljovic K (2012) An upgraded version of the Eta model. Meteorol Atmos Phys 116:63–79

    Article  Google Scholar 

  46. Mourão C, Sin Chan Chou, Marengo JA (2015) Downscaling climate projections over La Plata Basin. Atmos Clim Sci 6(01):1-12. https://doi.org/10.4236/acs.2016.61001

  47. Nesbitt S, Cifelli R, Rutledge S (2006) Storm morphology and rainfall characteristics of TRMM precipitation features. Mon Weather Rev 134:2702–2721. https://doi.org/10.1175/MWR3200.1

    Article  Google Scholar 

  48. Prein AF, Langhans W, Fosser G, Ferrone A, Ban N, Goergen K, Keller M, Tölle M, Gutjahr O, Feser F et al (2015) A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev Geophys 53:323–361. https://doi.org/10.1002/2014RG000475

    Article  Google Scholar 

  49. Rasmussen KL, Houze RA Jr (2016) Convective initiation near the Andes in subtropical South America. Mon Weather Rev 144:2351–2374

    Article  Google Scholar 

  50. Reboita MS, Dutra LMM, Dias CG (2016) Diurnal cycle of precipitation simulated by RegCM4 over South America: present and future scenarios. Clim Res 70:39–55. https://doi.org/10.3354/cr01416

    Article  Google Scholar 

  51. Remedio AR, Teichmann C, Buntemeyer L, Sieck K, Weber T, Rechid D, Hoffmann P, Nam C, Kotova L, Jacob D (2019) Evaluation of new CORDEX simulations using an updated Köeppen-Trewartha climate classification. Atmosphere 10:726. https://doi.org/10.3390/atmos10110726

    Article  Google Scholar 

  52. Rummukainen M (2010) State-of-the-art with regional climate models. WIREs Clim Change 1:82–96. https://doi.org/10.1002/wcc.8

    Article  Google Scholar 

  53. Rozante JR, Cavalcanti IFA (2008) Regional Eta model experiments: SALLJEX and MCS development. J Geophys Res 113:D17106. https://doi.org/10.1029/2007JD009566

    Article  Google Scholar 

  54. Salio P, Nicolini M, Zipser EJ (2007) Mesoscale convective systems over Southeastern South America and their relationship with the South American low level jet. Mon Weather Rev 135:1290–1309. https://doi.org/10.1175/MWR3305.1

    Article  Google Scholar 

  55. Salio P, Hobouchian MP, García Skabar Y, Vila D (2015) Evaluation of high-resolution satellite precipitation estimates over southern South America using a dense rain gauge network. Atmos Res 163:146–161

    Article  Google Scholar 

  56. San Martín D, Manzanas R, Brands S, Herrera S, Gutiérrez JM (2017) Reassessing model uncertainty for regional projections of precipitation with an ensemble of statistical downscaling methods. J Clim 30:203–223. https://doi.org/10.1175/JCLI-D-16-0366.1

    Article  Google Scholar 

  57. Saulo CA, Seluchi M, Nicolini M (2004) A case study of a Chaco low-level jet event. Mon Weather Rev 132:2669–2683. https://doi.org/10.1175/MWR2815.1

    Article  Google Scholar 

  58. Scaff L, Prein AF, Li Y, Liu C, Rasmussen R, Ikeda K (2019) Simulating the convective precipitation diurnal cycle in North America’s current and future climate. Clim Dyn. https://doi.org/10.1007/s00382-019-04754-9

    Article  Google Scholar 

  59. Seluchi ME, Marengo JA (2000) Tropical–mid latitude exchange of air masses during summer and winter in South America: climatic aspects and examples of intense events. Int J Climatol 20:1167–1190. https://doi.org/10.1002/1097-0088(200008)20:10%3c1167::AID-JOC526%3e3.0.CO;2-T

    Article  Google Scholar 

  60. Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Duda M, Wang W, Powers J (2008) A description of the advanced research WRF version 3 (No. NCAR/TN-475+STR). University Corporation for Atmospheric Research. http://dx.doi.org/https://doi.org/10.5065/D68S4MVH

  61. Solman SA, Blázquez J (2019) Multiscale precipitation variability over South America: analysis of the added value of CORDEX RCM simulations. Clim Dyn 53:1547–1565. https://doi.org/10.1007/s00382-019-04689-1

    Article  Google Scholar 

  62. Sun Q et al (2018) A review of global precipitation data sets: data sources, estimation, and intercomparisons. Rev Geophys 56:79–107

    Article  Google Scholar 

  63. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192. https://doi.org/10.1029/2000JD900719

    Article  Google Scholar 

  64. Teixeira MS, Satyamurty P (2007) Dynamical and synoptic characteristics of heavy rainfall episodes in Southern Brazil. Mon Weather Rev 135:598–617. https://doi.org/10.1175/MWR3302.1

    Article  Google Scholar 

  65. Ungerovich M, Barreiro M (2019) Dynamics of extreme rainfall events in summer in southern Uruguay. Int J Climatol 39:3655–3667. https://doi.org/10.1002/joc.6046

    Article  Google Scholar 

  66. Xie P, Chen M, Shi W (2010) CPC global unified gauge-based analysis of daily precipitation, Preprints, 24th conference on hydrology, Atlanta, GA, American Meteorological Society 2

  67. Zorita E, von Storch H (1999) The analog method as a simple statistical downscaling technique: comparison with more complicated methods. J Clim 12:2474–2489. https://doi.org/10.1175/1520-0442

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to CORDEX for endorsing the FPS-SESA. This work was supported by the University of Buenos Aires 2018-20020170100117BA grant; JMG, MLB, SAS, RPR funding from the Spanish Research Council (CSIC) I-COOP+ Program “reference COOPB20374”. JMG, JF and AL-G acknowledge support from the Spanish R&D Program through projects MULTI-SDM (CGL2015-66583-R) and INSIGNIA (CGL2016-79210-R), co-funded by the European Regional Development Fund (ERDF/FEDER). AL-G acknowledges support from the Spanish R&D Program through the predoctoral contract BES-2016-078158. Universidad de Cantabria simulations have been carried out on the Altamira Supercomputer at the Instituto de Física de Cantabria (IFCA-CSIC), member of the Spanish Supercomputing Network. MB acknowledges support from the Simons Associateship of the Abdus Salam International Centre for Theoretical Physics. RH acknowledges support from the project LTT17007 funded by the Ministry of Education, Youth, and Sports of the Czech Republic.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. L. Bettolli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bettolli, M.L., Solman, S.A., da Rocha, R.P. et al. The CORDEX Flagship Pilot Study in southeastern South America: a comparative study of statistical and dynamical downscaling models in simulating daily extreme precipitation events. Clim Dyn (2021). https://doi.org/10.1007/s00382-020-05549-z

Download citation

Keywords

  • Extreme precipitation
  • Statistical and dynamical downscaling
  • Observational uncertainty
  • Southeastern South America