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STATIONARY SOLUTIONS IN THERMODYNAMICS OF

STOCHASTICALLY FORCED FLUIDS

DOMINIC BREIT, EDUARD FEIREISL, AND MARTINA HOFMANOVÁ

Abstract. We study the full Navier–Stokes–Fourier system governing the motion of a gen-
eral viscous, heat-conducting, and compressible fluid subject to stochastic perturbation.

The system is supplemented with non-homogeneous Neumann boundary conditions for the

temperature and hence energetically open. We show that, in contrast with the energetically
closed system, there exists a stationary solution. Our approach is based on new global-

in-time estimates which rely on the non-homogeneous boundary conditions combined with

estimates for the pressure.

1. Introduction

It is a common believe that the behaviour of turbulent fluid flows can be fully characterized
by a steady state of the system (driven by a suitable stochastic forcing to substitute for possible
perturbations due to changes in the boundary data), which is approached asymptotically for
large times. Mathematically speaking this gives rise to an invariant measure of the underlying
system. This is well-understood for the 2D incompressible stochastic Navier–Stokes equations,
cf. [10, 12, 19, 16], where uniqueness is well-known.

If uniqueness is not at hand, even the definition of an invariant measure becomes ambiguous,
and one rather studies stationary solutions of the dynamics: solutions with a probability law
which does not change in time. This law serves as a substitute for an invariant measure. The
existence of stationary solutions to the 3D incompressible stochastic Navier–Stokes equations
is a nowadays classical result from [11]. More recently a counterpart for the compressible
stochastic Navier–Stokes equations has been established in [4]. It is interesting to note that in
both cases stationarity provides a certain regularising effect on the solutions (see also [13] in
connection with this).

One may think that adding further physical principles such as the possibility of heat transfer
completes the picture. The stochastic Navier–Stokes–Fourier equations haven been studied in
[1] and the existence of weak martingale solutions has been shown. They describe the motion
of a general viscous, heat-conducting, and compressible fluid subject to stochastic perturbation
based on the Second Law of Thermodynamics via an entropy balance as in [8] (see also [20]
for an alternative approach based on the internal energy balance due to [7]). Supplemented
with homogeneous Neumann boundary conditions for the temperature this is an energetically
closed system. The mechanical energy which is lost as dissipation is transfered into heat and,
different to the incompressible or the isentropic Navier–Stokes equations, weak solutions are
known to satisfy an energy equality. The latter one shows that the noise is constantly adding
energy to the system such that it can never reach a steady state and, as shown in [1, Section
7], stationary solutions do not exist. Since this is physically not acceptable we are looking for
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a physical principle which can counteract the energy creation by the noise.

Different to [1] we consider in this paper an energetically open version of the stochastic
Navier–Stokes–Fourier equations, where heat can drain through the boundary, see (1.5) below.
The time evolution of the fluid in the reference physical domain Q ⊂ R3 is governed by the
following set of equations:

d%+ div(%u) dt = 0,(1.1a)

d(%u) + [div(ρu⊗ u) +∇p(%, ϑ)] dt = div S(ϑ,∇u) dt+ %F(%, ϑ,u) dW,(1.1b)

d(%e(%, ϑ)) +
[

div(%e(%, ϑ)u) + div q(ϑ,∇ϑ)
]

dt(1.1c)

=
[
S(ϑ,∇u) : ∇u− p(%, ϑ) div u

]
dt,

where W is a cylindrical Wiener process and the diffusion coefficient F can be identified with
a sequence (Fk)k≥1 satisfying a suitable Hilbert-Schmidt assumption, see Section 2 for the
precise definitions. Here % denotes the density of the fluid, ϑ the absolute temperature and u
the velocity field. For the viscous stress tensor we suppose Newton’s rheological law

S = S(ϑ,∇u) = µ(ϑ)
(
∇u +∇uT − 2

3
div u I

)
+ η(ϑ) div u I.(1.2)

The internal energy (heat) flux is determined by Fourier’s law

q = q(ϑ,∇ϑ) = −κ(ϑ)∇ϑ = −∇K(ϑ), K(ϑ) =

∫ ϑ

0

κ(z) dz.(1.3)

The thermodynamic functions p and e are related to the (specific) entropy s = s(%, ϑ) through
Gibbs’ equation

(1.4) ϑDs(%, ϑ) = De(%, ϑ) + p(%, ϑ)D
(1

%

)
for all %, ϑ > 0,

where D denotes the total derivative with respect to (%, ϑ). We supplement (1.1)–(1.4) with
the boundary conditions (see also [9])

(1.5) u|∂Q = 0, q · n|∂Q = d(ϑ)(ϑ−Θ0), and fix the total mass

∫
Q

%dx = M0,

where Θ0 ∈ L1(∂Q) is strictly positive, M0 > 0 and we suppose that there are d, d > 0 such
that

dϑ ≤ d(x, ϑ) ≤ dϑ for all (x, ϑ) ∈ ∂Q× [0,∞).(1.6)

In view of Gibb’s relation (1.4), the internal energy equation (1.1c) can be rewritten in the
form of the entropy balance

d(%s) +
[

div(%su) + div
(q

ϑ

)]
dt = σ dt(1.7)

with the entropy production rate

σ =
1

ϑ

(
S : ∇u− q · ∇ϑ

ϑ

)
.(1.8)

In view of possible singularities, it is convenient to relax the equality sign in (1.8) to the
inequality

σ ≥ 1

ϑ

(
S : ∇u− q · ∇ϑ

ϑ

)
.(1.9)

The system is augmented by the total energy balance

(1.10) d

∫
Q

[
1

2
%|u|2 + %e

]
dx =

∫
Q

%F·u dW+
∑
k≥1

∫
Q

1

2
%|Fk|2 dx dt−

∫
∂Q

d(ϑ)(ϑ−Θ0) dH2 dt,
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cf. [8, Chapter 2]. In case of a stationary solution applying expectations to (1.10) clearly yields∑
k≥1

E
∫
Q

1

2
%|Fk|2 dx dt = E

∫
∂Q

d(ϑ)(ϑ−Θ0) dH2 dt,

meaning energy created by the stochastic forcing can leave through the boundary. The exis-
tence theory from [1], which leans on the analysis of the isentropic stochastic Navier–Stokes
equations from [5] and the deterministic Navier–Stokes–Fourier equations from [8], can be ap-
plied to (1.1)–(1.5) without essential differences. In case of the initial value problem an energy
estimate can be derived in terms of the initial data. Looking for stationary solutions, the
initial data is not known and one has to use stationarity instead. In [4] stationarity is used
in combination with pressure estimates to obtain a corresponding estimate for the isentropic
problem. When applying the same strategy to the non-isentropic problem (1.1)–(1.4), sup-
plemented with homogeneous boundary conditions for the temperature flux, the temperature
is deemed to grow unboundedly due to the irreversible transfer of the mechanical energy into
heat.

Assuming the non-homogeneous boundary conditions (1.5) instead we are able to derive new
global-in-time energy estimates, see (4.4). The main task is to control the radiation energy
given by aϑ4 without an information on the initial data. In the case of homogeneous boundary
conditions one can only obtain informations on the temperature gradient which is not enough
to even get estimates for ϑ in L1. For the non-homogeneous problem we benefit from the
boundary term in the energy balance (1.10). A suitable application of Itô’s formula combined
with Sobolev’s embedding and an interpolation argument allows to control a higher power of
the temperature in terms of the energy, see (4.4). Finally, we derive some pressure estimate
by means of the Bogovskii operator in (4.6) and (4.16) to close the argument and to obtain
uniform-in-time estimates for the total energy. This leads to our main result which is the
existence of stationary martingale solutions to (1.1)–(1.5), see Theorem 2.1 for the precise
statement.

In order to make the ideas just explained rigorous one has to regularise the system by
adding artificial viscosity to the continuity equation (1.1a) (ε-layer) and add a high power of
the pressure in the momentum equation (1.1b) (δ-layer). The resulting system has been solved
in [1] by adding three additional layers. The same tedious strategy has been applied [4] in the
construction of stationary solutions to the isentropic system. Here, we follow a different strategy
with a much simpler proof. Namely, inspired by the approach due to Itô-Nisio [17] which we
recently also applied to the isentropic system with hard sphere pressure [3], we construct
stationary solutions directly on the ε-level. The first step is to show uniform-in-time estimates
for martingale solutions to the initial value problem. In a second step stationary solutions
can be constructed by the Krylov-Bogoliubov method as the narrow limit of time-averages. A
striking feature of this approach is that stationary solutions are sitting on the trajectory space
and are approached asymptotically in time by any solution starting with bounded initial data of
certain moments. With a stationary solution to the approximate system at hand one can prove
estimate (4.4) which is uniform in time, ε and δ. It has to be combined with pressure estimates
which differ on both levels, see (4.6) and (4.16), before one can pass to the limit (both limits
have to be done independently). The limit passage can be performed as in previous papers
and stationarity is preserved in the limit.

2. Mathematical framework and the main result

2.1. Stochastic forcing. The process W is a cylindrical Wiener process on a separable Hilbert
space U, that is, W (t) =

∑
k≥1 βk(t)ek with (βk)k≥1 being mutually independent real-valued

standard Wiener processes relative to (Ft)t≥0. Here (ek)k≥1 denotes a complete orthonormal
system in U. In addition, we introduce an auxiliary space U0 ⊃ U via

U0 =

{
v =

∑
k≥1

αkek;
∑
k≥1

α2
k

k2
<∞

}
,
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endowed with the norm

‖v‖2U0
=
∑
k≥1

α2
k

k2
, v =

∑
k≥1

αkek.

Note that the embedding U ↪→ U0 is Hilbert-Schmidt. Moreover, trajectories of W are P-a.s.
in C([0, T ];U0) (see [6]).

Choosing U = `2 we may identify the diffusion coefficients (Fek)k≥1 with a sequence of real
functions (Fk)k≥1,

%F(%, ϑ,u)dW =
∞∑
k=1

%Fk(x, %, ϑ,u)dβk.

We suppose that Fk are smooth in their arguments, specifically,

Fk ∈ C1(Q× [0,∞)2 ×R3;R3),

where

(2.1) ‖Fk‖L∞ + ‖∇x,%,ϑ,uFk‖L∞ ≤ fk,
∞∑
k=1

f2
k <∞.

We easily deduce from (2.1) the following bound

‖%Fk(%, ϑ,u)‖W−k,2(Q;R3)
<∼ ‖%Fk(%, ϑ,u)‖L1(Q;R3)

<∼ fk‖%‖L1(Q)

whenever k > 3
2 . Accordingly, the stochastic integral∫ τ

0

%FdW =
∞∑
k=1

∫ τ

0

%Fk(%, ϑ,u) dβk

can be identified with an element of the Banach space space C([0, T ];W−k,2(Q)),∫
Q

(∫ τ

0

%F(%, ϑ,u)dW ·ϕ
)

dx

=
∞∑
k=1

∫ τ

0

(∫
Q

%Fk(x, %, ϑ,u) · ϕ dx

)
dβk, ϕ ∈W k,2(Q;R3), k >

3

2
.

2.2. Structural and constitutive assumptions. Besides Gibbs’ equation (1.4), we impose
several restrictions on the specific shape of the thermodynamic functions p = p(%, ϑ), e = e(%, ϑ)
and s = s(%, ϑ). They are borrowed from [8, Chapter 1], to which we refer for the physical
background and the relevant discussion.

We consider the pressure p in the form

(2.2) p(%, ϑ) = pM (%, ϑ) +
a

3
ϑ4, a > 0, pM (%, ϑ) = ϑ5/2P

( %

ϑ3/2

)
,

(2.3) e(%, ϑ) = eM (%, ϑ) + a
ϑ4

%
, eM (%, ϑ) =

3

2

pM (%, ϑ)

%
=

3

2

ϑ5/2

%
P
( %

ϑ3/2

)
,

(2.4) s(%, ϑ) = sM (%, ϑ) +
4a

3

ϑ3

%
, sM (%, ϑ) = S

( %

ϑ3/2

)
,

(2.5) S = S(Z), S′(Z) = −3

2

5
3P (Z)− ZP ′(Z)

Z2
< 0, lim

Z→∞
S(Z) = 0,

where

(2.6) P ∈ C1[0,∞) ∩ C2(0,∞), P (0) = 0, P ′(Z) > 0, for all Z ≥ 0,

(2.7) 0 <
3

2

5
3P (Z)− ZP ′(Z)

Z
< c, for all Z > 0,
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and

(2.8) lim
Z→∞

P (Z)

Z5/3
= p∞ > 0.

As shown in [8, Section 3.2] the assumptions above imply that there is c > 0 such that

c−1%5/3 ≤ pM (%, ϑ) ≤ c(%5/3 + %ϑ),(2.9)

3p∞
2
%5/3 + aϑ4 ≤ %e(%, ϑ),(2.10)

0 ≤ eM (%, ϑ) ≤ c(%2/3 + ϑ),(2.11)

for all ϑ, % > 0. Moreover, there is s∞ > 0 such that

0 ≤ sM (%, ϑ) ≤ s∞(1 + | log(%)|+ [log(ϑ)]+).(2.12)

Finally, for ϑ > 0 we introduce ballistic free energy given by

Hϑ(%, ϑ) = %
(
e(%, ϑ)− ϑs(%, ϑ)

)
,

which satisfies

−c(%+ 1) +
1

4

(
%e(%, ϑ) + ϑ|s(%, ϑ)|

)
≤ Hϑ(%, ϑ) ≤ c

(
%5/3 + ϑ4 + 1

)
(2.13)

on account of (2.11), (2.12) and [8, Prop. 3.2]. The viscosity coefficients µ, η are continu-
ously differentiable functions of the absolute temperature ϑ, more precisely µ, λ ∈ C1[0,∞),
satisfying

(2.14) 0 < µ(1 + ϑ) ≤ µ(ϑ) ≤ µ(1 + ϑ),

(2.15) sup
ϑ∈[0,∞)

(
|µ′(ϑ)|+ |λ′(ϑ)|

)
≤ m,

(2.16) 0 ≤ λ(ϑ) ≤ λ(1 + ϑ).

The heat conductivity coefficient κ ∈ C1[0,∞) satisfies

(2.17) 0 < κ(1 + ϑ3) ≤ κ(ϑ) ≤ κ(1 + ϑ3).

Finally, we introduce certain regularised versions of p, e, s and κ for fixed δ > 0:

pδ(%, ϑ) = p(%, ϑ) + δ(%2 + %Γ),

eM,δ(%, ϑ) = eM (%, ϑ) + δϑ, eδ(%, ϑ) = e(%, ϑ) + δϑ,

sM,δ(ϑ, %) = sM (ϑ, %) + δ log ϑ, sδ(%, ϑ) = s(%, ϑ) + δ log(ϑ),

κδ(ϑ) = κ(ϑ) + δ
(
ϑΓ +

1

ϑ

)
, Kδ(ϑ) =

∫ ϑ

0

κδ(z) dz.

(2.18)

2.3. Martingale & stationary solutions. We start with a rigorous definition of (weak)
martingale solution to problem (1.1)–(1.5) as given in [1], where also the existence of a solution
to the corresponding initial value problem is proved.

Definition 2.1 (Martingale solution). Let Q ⊂ R3 be a bounded domain of class C2+ν , ν > 0.
Then (

(Ω,F, (Ft),P), %, ϑ,u,W )

is called (weak) martingale solution to problem (1.1)–(1.5) provided the following holds.

(a) (Ω,F, (Ft),P) is a stochastic basis with a complete right-continuous filtration;
(b) W is an (Ft)-cylindrical Wiener process;
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(c) the random variables

% ∈ L1
loc([0,∞);L1(Q)), ϑ ∈ L1

loc([0,∞);L1(Q)), u ∈ L2
loc([0,∞);W 1,2

0 (Q;R3))

are (Ft)-progressively measurable1, % ≥ 0, ϑ > 0 P-a.s.;
(d) the equation of continuity∫ ∞

0

∫
Q

[%∂tψ + %u · ∇ψ] dx dt = 0;(2.19)

holds for all ψ ∈ C∞c ((0,∞)×R3) P-a.s.;
(e) the momentum equation∫ ∞

0

∂tψ

∫
Q

%u ·ϕ dx dt

+

∫ ∞
0

ψ

∫
Q

%u⊗ u : ∇ϕ dxdt−
∫ T

0

ψ

∫
Q

S(ϑ,∇u) : ∇ϕ dxdt

+

∫ ∞
0

ψ

∫
Q

p(%, ϑ) divϕ dxdt+

∫ ∞
0

ψ

∫
Q

%F(%, ϑ,u) ·ϕ dxdW = 0;

(2.20)

holds for all ψ ∈ C∞c (0,∞), ϕ ∈ C∞c (Q;R3) P-a.s.
(f) the entropy balance

−
∫ ∞

0

∫
Q

[%s(%, ϑ)∂tψ + %s(%, ϑ)u · ∇ψ] dxdt

≥
∫ ∞

0

∫
Q

1

ϑ

[
S(ϑ,∇u) : ∇u +

κ(ϑ)

ϑ
|∇ϑ|2

]
ψ dxdt

−
∫ ∞

0

∫
Q

κ(ϑ)∇ϑ
ϑ

· ∇ψ dxdt−
∫ ∞

0

∫
∂Q

ψ
d(ϑ)

ϑ
(ϑ−Θ0) dH2 dt

(2.21)

holds for all ψ ∈ C∞c ((0,∞)×R3), ψ ≥ 0 P-a.s.;
(g) the total energy balance

−
∫ ∞

0

∂tψ

(∫
Q

E(%, ϑ,u) dx

)
dt = −

∫ ∞
0

ψ

∫
∂Q

d(ϑ−Θ0) dH2 dt

+

∫ ∞
0

ψ

∫
Q

%F(%, ϑ,u) · u dxdW dx+
1

2

∫ ∞
0

ψ

(∫
Q

∑
k≥1

%|Fk(%, ϑ,u)|2 dx

)
dt

(2.22)

holds for any ψ ∈ C∞c (0,∞) P-a.s. Here, we abbreviated

E(%, ϑ,u) =
1

2
%|u|2 + %e(%, ϑ).

In the following we are going to introduce the concept of stationary martingale solutions. We
start with a standard definition of stationarity for stochastic processes with values in Sobolev
spaces.

Definition 2.1 (Classical stationarity). Let ũ = {ũ(t); t ∈ [0,∞)} be an W k,p(Q)-valued
measurable stochastic process, where k ∈ N0 and p ∈ [1,∞). We say that ũ is stationary on
W k,p(Q) provided the joint laws

L(ũ(t1 + τ), . . . , ũ(tn + τ)), L(ũ(t1), . . . , ũ(tn))

on [W k,p(Q)]n coincide for all τ ≥ 0, for all t1, . . . , tn ∈ [0,∞).

As can be seen from Definition 2.1, the velocity u and the temperature ϑ are not stationary
in the sense of Definition 2.1 as they are only equivalence classes in time. Therefore we use
the following definition of stationarity which has been introduced in [4], and applies to random
variables ranging in the space Lqloc([0,∞);W k,p(Q)).

1The progressive measurability is understood in the sense of random distributions as introduced in [2, Section

2.2].
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Definition 2.2 (Weak stationarity). Let ũ be an Lqloc([0,∞);W k,p(Q))-valued random vari-
able, where Let k ∈ N0 and p, q ∈ [1,∞). Let Sτ be the time shift on the space of trajectories
given by Sτ ũ(t) = ũ(t+ τ). We say that ũ is stationary on Lqloc([0,∞);W k,p(Q)) provided the

laws L(Sτ ũ), L(ũ) on Lqloc([0,∞);W k,p(Q)) coincide for all τ ≥ 0.

Definition 2.1 and Definition 2.2 are equivalent as soon as the stochastic process in question
is continuous in time; or alternatively, if it is weakly continuous and satisfies a suitable uniform
bound, cf. [4, Lemma A.2 and Corollary A.3]. Furthermore, it can be shown that both notions
of stationarity are stable under weak convergence as can be seen from the following two lemmas
(the proofs of which can be found in [4, Appendix]).

Lemma 2.1. Let k ∈ N0, p, q ∈ [1,∞) and let (ũm) be a sequence of random variables taking
values in Lqloc([0,∞);W k,p(Q))). If, for all m ∈ N, ũm is stationary on Lqloc([0,∞);W k,p(Q))
in the sense of Definition 2.2 and

ũm ⇀ ũ in Lqloc([0,∞);W k,p(Q)) P-a.s.,

then ũ is stationary on Lqloc([0,∞);W k,p(Q)).

Lemma 2.2. Let k ∈ N0, p ∈ [1,∞) and let (ũm) be a sequence of W k,p(Q)-valued stochastic
processes which are stationary on W k,p(Q) in the sense of Definition 2.1. If for all T > 0

(2.23) sup
m∈N

E

[
sup
t∈[0,T ]

‖ũm‖Wk,p(Q)

]
<∞

and

ũm → ũ in Cloc([0,∞); (W k,p(Q), w)) P-a.s.,

then ũ is stationary on W k,p(Q).

In the following we define a stationary martingale solution to (1.1)–(1.5).

Definition 2.3. A weak martingale solution [%, ϑ,u,W ] to (1.1)–(1.5) is called stationary
provided the joint law of the time shift [Sτ%,Sτϑ,Sτu,SτW −W (τ)] on

L1
loc([0,∞);Lγ(T3))× L1

loc([0,∞);W 1,2(Q))× L1
loc([0,∞);W 1,2(Q;R3))× C([0,∞);U0)

is independent of τ ≥ 0.

We now state our main result concerning the existence of a stationary martingale solution
to (1.1)–(1.5).

Theorem 2.1. Let M0 ∈ (0,∞) be given. Suppose that the structural assumptions (2.2)–
(2.17) are in force and that the diffusion coefficient satisfies F satisfies (2.1). Then problem
(1.1)–(1.5) admits a stationary martingale solution in the sense of Definition 2.3.

The proof of Theorem 2.1 is split into several parts. In the next section we study the
approximate system with regularisation parameters ε and δ. The proof will be completed in
Section 4 after passing to the limit in ε and δ.

3. The viscous approximation

In this section we study the viscous approximation to (1.1)–(1.5), where the continuity
equation contains an artificial diffusion (ε-layer) and the pressure is stabilised by an artificial
high power to the density (δ-layer). In addition to the common terms we add additional
stabilising quantities in the continuity equations as in [4], see (3.1) below.



8 DOMINIC BREIT, EDUARD FEIREISL, AND MARTINA HOFMANOVÁ

3.1. Martingale solutions. In this subsection we give a precise formulation of the approxi-
mated problem. For this purpose we introduce a cut-off function

χ ∈ C∞(R), χ(z) =

 1 for z ≤ 0,
χ′(z) ≤ 0 for 0 < z < 1,
χ(z) = 0 for z ≥ 1.

We denote by Mε the unique solution to the equation 2εz = χ(z/M0) which obviously satisfies
Mε ≤M0. Finally, the diffusion coefficients are regularised by replacing F by Fε,

Fε = (Fk,ε)k≥1 , Fk,ε(x, %, ϑ,u) = χ

(
ε

%
− 1

)
χ

(
|u| − 1

ε

)
Fk(x, %, ϑ,u).

Let us start with a precise formulation of the problem.

• Regularized equation of continuity.∫ ∞
0

∫
Q

[%∂tϕ+ %u · ∇ϕ] dx dt

= ε

∫ ∞
0

∫
Q

[∇% · ∇ϕ− 2%ϕ] dx dt− 2ε

∫ ∞
0

∫
Q

Mεϕ dxdt

(3.1)

for any ϕ ∈ C∞c ((0,∞)×Q) P-a.s.
• Regularized momentum equation.∫ ∞

0

∂tψ

∫
Q

%u · ϕdxdt+

∫ ∞
0

ψ

∫
Q

%u⊗ u : ∇ϕ dx dt+

∫ ∞
0

ψ

∫
Q

pδ(ϑ, %) divϕ dxdt

−
∫ ∞

0

ψ

∫
Q

Sδ(ϑ,∇u) : ∇ϕ dxdt− ε
∫ ∞

0

ψ

∫
Q

%u ·∆ϕ dxdt

− 2ε

∫ ∞
0

ψ

∫
Q

%u · ϕ dx dt = −
∫ ∞

0

ψ

∫
Q

%Fε(%, ϑ,u) · ϕ dx dW

(3.2)

for any ψ ∈ C∞c ((0,∞)), ϕ ∈ C∞(Q;R3) P-a.s.
• Regularized entropy balance.

(3.3)

−
∫ ∞

0

∫
Q

[%sδ(%, ϑ)∂tψ + %sδ(%, ϑ)u · ∇ψ] ϕ dxdt

≥
∫ ∞

0

∫
Q

1

ϑ

[
S(ϑ,∇u) : ∇u +

κδ(ϑ)

ϑ
|∇ϑ|2 + δ

1

ϑ2

]
ψ dx dt

+

∫ ∞
0

ψ

∫
Q

κδ(ϑ)∇ϑ
ϑ

· ∇ϕ dxdt−
∫ ∞

0

ψ

∫
∂Q

ϕ
d(ϑ)

ϑ
(ϑ−Θ0) dH2 dt

− ε
∫ ∞

0

ψ

∫
Q

[(
ϑsM,δ(%, ϑ)− eM,δ(%, ϑ)− pM (%, ϑ)

%

)
∇%
ϑ

]
· ∇ϕ dxdt

+

∫ ∞
0

ψ

∫
Q

[
εδ

2ϑ
(β%β−2 + 2)|∇%|2 + ε

1

%ϑ

∂pM
∂%

(%, ϑ)|∇%|2 − εϑ4

]
ϕdxdt

+

∫ ∞
0

ψ

∫
Q

(
− 2ε%+ 2εMε

) 1

ϑ

(
ϑsM,δ(%, ϑ)− eM,δ(%, ϑ)− pM (%, ϑ)

%

)
ϕdxdt

for any ψ ∈ C∞c ((0,∞)), ϕ ∈ C∞(Q;R3) P-a.s.
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• Regularized total energy balance.

−
∫ ∞

0

∂tψ

(∫
Q

Eδ(%, ϑ,u) dx

)
dt+

∫ ∞
0

ψ

∫
Q

εϑ5 dt

+ 2ε

∫ T

0

ψ

∫
Q

[
δ%2 +

δΓ

Γ− 1
%Γ +

1

2
%|u|2

]
dxdt+

∫ ∞
0

ψ

∫
∂Q

d(ϑ−Θ0) dH2 dt

=

∫ ∞
0

∫
Q

δ

ϑ2
ψ dx dt+

∫ ∞
0

ψεMε

∫
Q

(
2δ%+

δΓ

Γ− 1
%Γ−1 +

1

2
|u|2

)
dxdt

+
1

2

∫ T

0

ψ

(∫
Q

∑
k≥1

%|Fk,ε(%, ϑ,u)|2 dx

)
dt+

∫ ∞
0

ψ

∫
Q

%Fε(%, ϑ,u) · u dW dx

(3.4)

holds for any ψ ∈ C∞c (0,∞) P-a.s., where we have set

Eδ =
1

2
%|u|2 + %eδ(%, ϑ) + δ

(
%2 +

1

Γ− 1
%Γ
)
.

we have the following result.

Proposition 3.1. Let ε, δ > 0 be given. Then there exists a weak martingale solution [%ε, ϑε,uε]
to (3.1)–(3.4). In addition, for n ∈ N and every ψ ∈ C∞c ((0,∞)), ψ ≥ 0, the following gener-
alized energy inequality holds true

−
∫ ∞

0

∂tψ
[ ∫

Q

Eδ,ϑH (%, ϑ) dx
]n

dt

+ nϑ

∫ ∞
0

ψ
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
Q

σε,δ dxdt

+ n

∫ ∞
0

ψ
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
Q

εϑ5 dt

+ n

∫ ∞
0

ψ
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
∂Q

d(ϑ)

ϑ

(
ϑ− ϑ

)
(ϑ−Θ0) dH2 dt

+ 2εnϑE
∫ ∞

0

ψ
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
Q

[
δ%2 +

δΓ

Γ− 1
%Γ +

1

2
%|u|2

]
dxdt

+ 2εn

∫ ∞
0

ψ
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
Q

%
(pM (%, ϑ)

%ϑ
+
eM,δ(%, ϑ)

ϑ
− sM,δ(%, ϑ)

)
dxdt

+ nε

∫ ∞
0

ψ
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
Q

ϑ

ϑ2

(
eM,δ(%, ϑ) + %

∂eM
∂%

(%, ϑ)

)
∇% · ∇ϑ dxdt

+ n

∫ ∞
0

ψ
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
Q

%Fε(%, ϑ,u) · u dW dx

+
n

2

∫ ∞
0

ψ
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

(∫
Q

∑
k≥1

%|Fk,ε(%, ϑ,u)|2 dx

)
dt

+ nεMε

∫ ∞
0

ψ
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
Q

(
2δ%+

δΓ

Γ− 1
%Γ−1 +

1

2
|u|2

)
dxdt

+ nϑεMε

∫ ∞
0

ψ
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
Q

(
pM (%, ϑ)

%ϑ
+
eM,δ(%, ϑ)

ϑ
− sM,δ(%, ϑ)

)
dxdt

+
n(n− 1)

2

∫ ∞
0

ψ
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−2 ∞∑

k=1

∫ τ2

τ1

(∫
Q

%Fk,ε(%, ϑ,u) · u dx

)2

dt.

(3.5)

Here we abbreviated

σε,δ =
1

ϑ

[
S(ϑ,∇u) : ∇u +

κ(ϑ)

ϑ
|∇ϑ|2 +

δ

2

(
ϑΓ−1 +

1

ϑ2

)
|∇ϑ|2 + δ

1

ϑ2

]
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+
εδ

2ϑ

(
β%Γ−2 + 2

)
|∇%|2 + ε

∂pM
∂%

(%, ϑ)
|∇%|2

%ϑ
+ ε

%

ϑ
|∇u|2,

and Eδ,ϑH = 1
2%|u|

2 +Hϑ(%, ϑ) + δ
(
%2 + 1

Γ−1%
Γ
)
, where

Hδ,ϑ(%, ϑ) = %
(
eδ(%, ϑ)− ϑsδ(%, ϑ)

)
= Hϑ(%, ϑ) + δ%ϑ− ϑ% log(ϑ)(3.6)

with Hϑ(%, ϑ) introduced in (2.2).

Proof. Although there are some differences to system (4.24)–(4.27) from [1] the method still
applies (in particular, it is possible to allow an unbounded time interval by working with
spaces of the from Lqloc([0,∞);X) and Cloc([, 0,∞);X) for Banach spaces X) and we obtain
the existence of a weak martingale solution to (3.1)–(3.4). We remark, in particular, that the
solution in [1] is constructed with respect to some initial law which does not play any role in
our analysis. For simplicity we choose

%0 = 1, ϑ0 = 1, u0 = 0,

which satisfies all the required assumptions.
As far as the energy inequality is concerned, the required version can be derived on the basic

approximate level (even with equality) and it is preserved in the limit. In fact, one can argue
as in [1, Section 4.1] to derive the version for n = 1, while the case n ≥ 2 follows easily from
Itô’s formula. It is worth to point out that this procedure to test the continuity equation (3.1)
with 1

2 |u|
2 and 2δ%+ δΓ

Γ−1%
Γ gives rise to the terms

2εnϑE
∫ ∞

0

ψ
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
Q

[
δ%2 +

δΓ

Γ− 1
%Γ +

1

2
%|u|2

]
dxdt

and

nεMε

∫ ∞
0

ψ
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
Q

(
2δ%+

δΓ

Γ− 1
%Γ−1 +

1

2
|u|2

)
dxdt

in (3.5) which are new in comparison to [1]. Also, the term

nϑεMε

∫ ∞
0

ψ
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
Q

(
pM (%, ϑ)

%ϑ
+
eM,δ(%, ϑ)

ϑ
− sM,δ(%, ϑ)

)
dxdt,

which arises due to the last line in (3.3), does not appear in [1]. Finally, as in (1.10) we have
the boundary term due to non-homogeneous boundary conditions being incorporated already
in (3.3). �

3.2. Uniform-in-time estimates. The first step is now to derive estimates which are uniform
in time.

Proposition 3.2. Let (%, ϑ,u) be a weak martingale solution to (3.1)–(3.4). Assume that

(3.7) ess lim sup
t→0+

E
[ ∫

Q

Eδ,ϑH (%, ϑ)(t, ·) dx
]n
<∞

for some n ∈ N. Then for any ϑ > 0 and ε ≤ ε0 there is E∞ = E∞(n, ε, δ, ϑ) such that

E
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n
≤ E∞,(3.8)

as well as

E
∫ τ

0

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

(∫
Q

σε,δ dx+

∫
Q

εϑ5 dx

)
dt ≤ E∞(1 + τ)(3.9)

for any τ > 0.
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Proof. The energy inequality in (3.5) yields for any 0 ≤ τ1 < τ2

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ2, ·) dx
]n

+ nϑ

∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
Q

σε,δ dx

+ n

∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

(∫
Q

εϑ5 dx+

∫
∂Q

d(ϑ)

ϑ

(
ϑ− ϑ

)
(ϑ−Θ0) dH2

)
dt

+ 2εnϑE
∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
Q

[
δ%2 +

δΓ

Γ− 1
%Γ +

1

2
%|u|2

]
dxdt

+ 2εn

∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
Q

%
(pM (%, ϑ)

%ϑ
+
eM,δ(%, ϑ)

ϑ
− sM,δ(%, ϑ)

)
dxdt

=
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ1, ·) dx
]n

+ nε

∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
Q

ϑ

ϑ2

(
eM,δ(%, ϑ) + %

∂eM
∂%

(%, ϑ)

)
∇% · ∇ϑ dxdt

+ n

∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
Q

(
δ

ϑ2
+ εϑϑ4

)
dxdt

+ n

∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
Q

%Fε(%, ϑ,u) · u dW dx

+
n

2

∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

(∫
Q

∑
k≥1

%|Fk,ε(%, ϑ,u)|2 dx

)
dt

+ εMεn

∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
Q

(
2δ%+

δΓ

Γ− 1
%Γ−1 +

1

2
|u|2

)
dxdt

+ εMεnϑ

∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
Q

(
pM (%, ϑ)

%ϑ
+
eM,δ(%, ϑ)

ϑ
− sM,δ(%, ϑ)

)
dxdt

+
n(n− 1)

2

∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−2 ∞∑

k=1

(∫
Q

%Fk,ε(%, ϑ,u) · u dx

)2

dt

=: (I) + (II) + · · ·+ (V III).

(3.10)

Let us first consider the terms on the left-hand side. We have

n

∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
∂Q

d(ϑ)

ϑ

(
ϑ− ϑ

)
(ϑ−Θ0) dH2 dt

≥ n
∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
∂Q

ϑ2 dH2 dt− cn
∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

≥ n
∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
∂Q

ϑ2 dH2 dt

− κn
∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n

dt− cκ(τ2 − τ1)

for all κ > 0 as well as∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
Q

[
δ%2 +

δΓ

Γ− 1
%Γ +

1

2
%|u|2

]
dx dt

≥ c
∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n

dt− c(τ2 − τ1)

− c
∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
Q

(
ϑ4 + ϑ% log(ϑ)

)
dt
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≥ c
∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n

dt− cκ(τ2 − τ1)

− κ
∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
Q

(
εϑ5 + δ%2 + δ

1

ϑ3

)
dt

due to (2.13). Finally, due to (2.9)–(2.12),

pM (%, ϑ)

ϑ
+
%eM,δ(%, ϑ)

ϑ
− %sδ,M (%, ϑ)

is bounded from below by a negative constant, such that the corresponding term can be
bounded from below by −c(τ2 − τ1).
Using (2.1),

∫
Q
%dx = Mε ≤M0 and (2.13) the terms (V ) and (V III) can be bounded by

∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

+

∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−2

∫
Q

%|u|2 dx dt

≤ c

∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

+ c(τ2 − τ1)

+ c

∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
Q

ϑ% log(ϑ) dt

≤ κ
∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n

+ cκ(τ2 − τ1)

+ κ

∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
Q

(
εϑ5 + δ%2 + δ

1

ϑ3

)
dt,

where κ > 0 is arbitrary. Clearly, (IV ) vanishes after taking expectations. On account of
(2.9)–(2.12) we have

pM (%, ϑ)

%ϑ
+
eM,δ(%, ϑ)

ϑ
− sM,δ(%, ϑ) . 1 +

%2/3

ϑ
≤ κ%Γ + κ

1

ϑ3
+ cκ.(3.11)

Consequently, the estimate for (V II) is analogous to one for (V ) and (V III) above. We quote
from [8, equ. (3.107)]

(II) ≤ ε
∫
Q

1

ϑ2

∣∣∣eM (%, ϑ) + %
∂eM (%, ϑ)

∂%

∣∣∣|∇%||∇ϑ|dx
≤ 1

2

∫
Q

[
δ
(
ϑΓ−2 +

1

ϑ3

)
|∇ϑ|2 +

εδ

ϑ

(
Γ%Γ−2 + 2

)
|∇%|2

]
dx

(3.12)

provided we choose ε = ε(δ) > 0 small enough. Finally, we clearly have

(III) ≤ κ
∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
Q

(
εϑ5 + δ

1

ϑ3

)
dt

+ cκ

∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

dt

≤ κ
∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
Q

(
εϑ5 + δ

1

ϑ3

)
dxdt

+ κ

∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n

dt+ cκ(τ2 − τ1).
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Combing everything and choosing κ small enough and noticing that δ 1
ϑ3 ≤ σε,δ yields

E
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ2, ·) dx
]n

+DE
∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

∫
Q

σε,δ dx

+DE
∫ τ2

τ1

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

(∫
Q

εϑ5 dx+

∫
∂Q

ϑ2 dH2

)
dt

≤ E
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ1, ·) dx
]n

+ c(τ2 − τ1)

(3.13)

for all 0 ≤ τ1 < τ2 with some D > 0. We obtain in particular

E
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ2, ·) dx
]n

+D

∫ τ2

τ1

E
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n

dx

≤ E
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ1, ·) dx
]n

+ C(τ2 − τ1).

Applying the Gronwall lemma from [3, Lemma 3.1] and recalling hypothesis (3.7) we obtain

E
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n
≤ exp(−Dt)

(
E
[ ∫

Q

Eδ,ϑH (%, ϑ)(0, ·) dx
]n
− C

D

)
+
C

D

≤ E∞

uniformly in τ > 0. Using this in (3.13) shows

E
∫ τ

0

[ ∫
Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]n−1

(∫
Q

σε,δ dx+

∫
Q

εϑ5 dx+

∫
∂Q

ϑ2 dH2

)
dt ≤ E∞(1 + τ)

by possibly enlarging E∞. �

3.3. Stationary solutions. Based on Proposition 3.2 the method from [17] becomes available
and we can construct a stationary solution to (3.1)–(3.4) following the ideas from [3] to which
we refer for further details. Different to Section 2.3 we consider stationary solutions sitting on
the space of trajectories that are defined on the real line R rather than the interval [0,∞). We
will call them entire stationary solutions. This construction is clearly stronger and hence we
obtain also stationary solutions in the sense of Definitions 2.1.

Clearly, Definition 2.1 can be easily modified for solutions
(
(Ω,F, (Ft)t≥−T ,P), %, ϑ,u,W )

being defined on [−T,∞) for some T > 0. An entire solution is than an object(
(Ω,F, (Ft)t∈R,P), %, ϑ,u,W )

which is a solution on [−T,∞) for any T > 0. It takes values in the trajectory space

T = T% × Tϑ × Tu × TW ,

T% =
(
L2

loc(R;W 1,2(Q;Rd)), w
)
∩ Cweak,loc(R;LΓ(Q)),

Tϑ =
(
L2

loc(R;W 1,2(Q;Rd)), w
)
∩
(
L∞loc(R;L4(Q)), w∗

)
Tu =

(
L2

loc(R;W 1,2
0 (Q;Rd)), w

)
, TW = Cloc,0(R;U0),

where Cloc,0 denotes the space of continuous functions vanishing at 0. We denote by P(T ) the
set of Borel probability measures on T .

We say that an entire solution to (3.1)-(3.4) of the problem (3.1)–(3.4) is stationary if its
law LT [%, ϑ,u,W ] is shift invariant in the trajectory space T , meaning

LT [Sτ [%, ϑ,u,W ]] = LT [%, ϑ,u,W ] for any τ ∈ R,

with the time shift operator

Sτ [%, ϑ,u,W ](t) = [%(t+ τ), ϑ(t+ τ),u(t+ τ),W (t+ τ)−W (τ)], t ∈ R, τ ∈ R.
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Proposition 3.3. Let the assumptions of Theorem 2.1 be valid and let ε ≤ ε0 and δϑ > 0 be
given. Let (

(Ω,F, (Ft)t≥0,P), %, ϑ,u,W )

be a dissipative martingale solution of the problem (3.1)–(3.4) (in the sense of Definition 2.1
with the obvious modifications) such that

(3.14) ess lim sup
t→0+

E
[
Eδ,ϑH (t)4

]
<∞.

Then there is a sequence Tn →∞ and an entire stationary solution(
(Ω̃, F̃, (F̃t)t∈R, P̃), %̃, ϑ, ũ, W̃ )

such that

1

Tn

∫ Tn

0

LT [St [%, ϑ,u,W ]] dt→ LT
[
%̃, ũ, ϑ̃, W̃

]
narrowly as n→∞.

Proof. Let [%,u,W ] be a dissipative martingale solution on [0,∞) defined on some stochastic
basis (Ω,F, (Ft)t≥0,P) and satisfying (3.14). We define the probability measures

(3.15) νS ≡
1

S

∫ S

0

LT (St[%, ϑ,u,W ]) dt ∈ P(T ).

We tacitly regard functions defined on time intervals [−t,∞) as trajectories on R by extending
them to s ≤ −t by the value at −t. As in [3, Prop. 5.1] we can show that the family of
measures {νS ; S > 0} is tight on T . In fact, Proposition 3.2 yields

E

[
sup

s∈[−T,T ]

Emδ (s+ t)

]
+E

[∫ T

−T∨−t

∫
Q

(
|∇%|2 + |∇ϑ|2 + |∇u|2

)
(s+ t) dxds

]
. E [Em(0)]+c.

This gives the same bounds on % and u as in [3] and we control additionally

E

[
sup

s∈[−T,T ]

(∫
Q

ϑ4 dx

)m
(s+ t)

]
+ E

[∫ T

−T∨−t

∫
Q

|∇ϑ|2(s+ t) dx

]
which implies tightness of 1

S

∫ S
0
LT (St[ϑ]) dt. Note also that we have control of ∇% due to ε > 0

which is different from [3].
Due to [3, Lemma 5.2], if the narrow limit of

ντ,Sn
≡ 1

Sn

∫ Sn

0

L(St+τ [%,u,W ]) dt

in P(T ) as n→∞ exists for some τ = τ0 ∈ R then it exists for all τ ∈ R and is independent
of the choice of τ . Applying Jakubowski–Skorokhod’s theorem [18], we infer the existence of
a sequence Sn → ∞ and ν ∈ P(T ) so that ν0,Sn → ν narrowly in P(T ) as well as ντ,Sn → ν
narrowly for all τ ∈ R. Accordingly, the limit measure ν is shift invariant in the sense that
for every G ∈ BC(T ) and every τ ∈ R we have ν(G ◦ Sτ ) = ν(G). To conclude the proof of
Theorem 3.3, it remains to show that ν is a law of an entire solution to (3.1)–(3.4).

First of all, we can argue as in [3, Prop. 5.3] to show that for any S > 0

νS ≡
1

S

∫ S

0

L(St[%,u,W ]) dt ∈ P(T )

is a dissipative martingale solution on (−T,∞), provided (%, ϑ,u,W ) is a dissipative martingale
solution on (−T,∞) defined on some probability space (Ω,F ,P). The idea is to use that (3.1),
(3.2) and (3.4) can be written as measurable mappings on the paths space (see the proof of
[3, Prop. 5.3] for how to include the stochastic integral). Unfortunately, this is not true for
the quantities hidden in σε,δ appearing in(3.4) and (3.13). However, they are measurable on
a subset, where the laws L(St[%,u,W ]) are supported. Recall from (3.9) that σε,δ belongs
a.s. to L1 in space and locally in time for any solution. This is enough to arrive at the same
conclusion.
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To finish the proof we argue that the limit ν is the law of an entire solution to (3.1)–(3.4).
Now we consider the measures ντ,Sn−τ , n = 1, 2, . . . , and τ > 0. According to the previous
considerations, ντ,Sn−τ is a dissipative martingale solution to (3.1)–(3.4) on [−τ,∞) and the
narrow limit as n→∞ exists and equals to ν. Now we take a sequence τm →∞ and choose a
diagonal sequence such that

ντm,Sn(m)−τm → ν as m→∞.

Applying Jakubowski–Skorokhod’s theorem, we obtain a sequence of approximate processes
[%̃m, ũm, W̃m] converging a.s. to a process [%̃, ũ, W̃ ] in the topology of T . Moreover, the law

of [%̃m, ũm, W̃m] is ντm,Sn(m)−τm and necessarily the law of [%̃, ũ, W̃ ] is ν. By [2, Thm. 2.9.1]
it follows that equations (3.1)–(3.4) as well as (3.5) also hold on the new probability space.
The limit procedure on this level is quite easy due to the artificial viscosity: By definition of
T% the sequence %̃n is compact on LΓ. Moreover, the strong convergence of ϑ̃n can be proved
exactly as in the deterministic existence theory (see [8, Sec. 3.5.3]). This is enough to pass to
the limit in all nonlinearities in (3.1), (3.2) and (3.4). The terms in (3.3) and (3.5) which are
not compact (those related to the quantity σε,δ) are convex functions and hence can be dealt
with by lower-semicontinuity. �

4. Asymptotic limit

In this section we pass to the limit and the artificial viscosity and the artificial pressure
respectively. They crucial point is a uniform-in-time estimate, see (4.7) and (4.8) below, which
preserves stationarity in the limit. It has to be combined with pressure estimates which differ on
both levels. The key ingredient for estimates (4.7) and (4.8) is the non-homogeneous boundary
condition for the temperature, cf. (1.5).

4.1. The vanishing viscosity limit. In this section we start with a stationary solution
(%, ϑ,u) to (3.1)–(3.4) existence of which is guaranteed by Proposition 3.3. We prove uniform-
in-time estimates and pass subsequently to the limits in ε and δ.
The entropy balance (3.3) yields after taking expectations and using stationarity

E
∫
Q

1

ϑ

[
S(ϑ,∇u) : ∇u +

κδ(ϑ)

ϑ
|∇ϑ|2 + δ

1

ϑ2

]
dx

≤ E
∫
Q

(
− 2ε%+ 2εMε

) 1

ϑ

(pM (%, ϑ)

%
+ eM,δ(%, ϑ)− ϑsM,δ(%, ϑ)

)
ϕdx

+ E
∫
Q

εϑ4 dx+ E
∫
∂Q

d(ϑ)

ϑ
(ϑ−Θ0) dH2.

On account of (3.11) the first two terms can be bounded by

cE
[ ∫

Q

δ%Γ dx+ 1
]

+
1

4
E
∫
Q

δ
1

ϑ3
dx.

The estimate is independent of δ if we choose ε ≤ δ. Similarly, we obtain

E
∫
∂Q

d(ϑ)

ϑ
(ϑ−Θ0) dH2 ≤ cE

∫
∂Q

(
ϑ+ |∇ϑ|

)
+ c

≤ cE
[ ∫

Q

ϑ4 dx+ 1
]

+
1

4
E
∫
Q

κδ(ϑ)

ϑ
|∇ϑ|2 dx

using (1.6) and the trace theorem. In conclusion,

E
∫
Q

1

ϑ

[
S(ϑ,∇u) : ∇u +

κδ(ϑ)

ϑ
|∇ϑ|2 + δ

1

ϑ2

]
dx . E

[ ∫
Q

(
δ%Γ + ϑ4

)
dx
]

+ 1

. E
[ ∫

Q

Eδ,ϑH (%, ϑ) dx
]

+ 1

(4.1)
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independently of ε and δ recalling also (2.13) and
∫
Q
%dx ≤ Mε ≤ M0. By (2.13) this implies

for any ξ > 0

E
[ ∫

Q

Eδ,ϑH (%, ϑ) dx
]
≤ cE

[ ∫
Q

(
δ%Γ + %5/3 + ϑ4 + δ%| log(ϑ)|

)
dx+ 1

]
≤ cE

[ ∫
Q

(
δ%Γ + %5/3 + ϑ4

)
dx
]

+ ξ E
[ ∫

Q

δ
1

ϑ3
dx
]

+ cξ

≤ cE
[ ∫

Q

(
δ%Γ + %5/3 + ϑ4

)
dx
]

+ cξ E
[ ∫

Q

Eδ,ϑH (%, ϑ) dx
]

+ cξ

such that

E
[ ∫

Q

Eδ,ϑH (%, ϑ) dx
]
. E

[ ∫
Q

(
δ%Γ + %5/3 + ϑ4

)
dx
]

+ 1(4.2)

independently of ε and δ.
In (3.5) we choose n = 2, apply expectations and use stationarity to obtain

2ϑE
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
] ∫

Q

σε,δ dx

+ 2E
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
] ∫

Q

εϑ5 dx

+ 2E
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
] ∫

∂Q

d

ϑ

(
ϑ− ϑ

)
(ϑ−Θ0) dH2

+ 4εϑE
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
] ∫

Q

[
δ%2 +

δΓ

Γ− 1
%Γ +

1

2
%|u|2

]
dx

+ 4εE
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
] ∫

Q

%
(p(%, ϑ)

%ϑ
+
eδ(%, ϑ)

ϑ
− sδ(%, ϑ)

)
dx

≤ 2εE
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
] ∫

Q

ϑ

ϑ2

(
eM,δ(%, ϑ) + %

∂eM
∂%

(%, ϑ)

)
∇% · ∇ϑ dx

+ E
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
](∫

Q

∑
k≥1

%|Fk,ε(%, ϑ,u)|2 dx

)

+ 2εMεE
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
] ∫

Q

(
2δ%+

δΓ

Γ− 1
%Γ−1 +

1

2
|u|2

)
dx

+ 2εMεϑE
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
] ∫

Q

(
p(%, ϑ)

%ϑ
+
eδ(%, ϑ)

ϑ
− sδ(%, ϑ)

)
dx

+
∞∑
k=1

E
(∫

Q

%Fk,ε(%, ϑ,u) · u dx

)2

=: (I) + (II) + (III) + (IV ) + (V ).

(4.3)

Arguing as in the proof of Proposition 3.2 but paying attention to the ε- and δ-dependence we
have

(I) ≤ 1

4
E
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
] ∫

Q

σε,δ dx,

(II) ≤ cE
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]
,

(III) ≤ εϑE
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
] ∫

Q

[
δ%2 +

δΓ

Γ− 1
%Γ

]
dx

+ cE
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]

+
1

4
E
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
] ∫

Q

σε,δ dx,
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(IV ) ≤ εϑE
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
] ∫

Q

δΓ

Γ− 1
%Γ dx+ c

+
1

4
E
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
] ∫

Q

σε,δ dx,

(V ) ≤ cE
[ ∫

Q

Eδ,ϑH (%, ϑ)(τ, ·) dx
]
.

Again these estimates are also uniform in δ if we choose ε small enough compared to δ. Recalling
(2.13) and

∫
Q
%dx ≤Mε ≤M0 we thus obtain

‖ϑ‖L6(Q)
<∼ ‖ϑ‖W 1,2(Q)

<∼ 1 +

∫
Q

ϑ

ϑ

κ(ϑ)

ϑ
|∇ϑ|2dx+

∫
∂Q

ϑ2 dH2,

E
[∫

Q

Eδ,ϑH (%, ϑ,u) dx‖ϑ‖L6(Q)

]
>∼ E

[
‖ϑ‖4L4(Q)‖ϑ‖L6(Q)

]
− E

[
‖ϑ‖L6(Q)

]
≥ E

[
‖ϑ‖5L30/7(Q)

]
− E

[
‖ϑ‖L6(Q)

]
.

This, inserted in left-hand side of (4.3) yields

E
[
‖ϑ‖30/7

L30/7(Q)

]
+ E

[∫
Q

Eδ,ϑH (%, ϑ,u) dx

∫
Q

σε,δ dx

]
<∼ E

[ ∫
Q

Eδ,ϑH (%, ϑ) dx
]

+ 1.

(4.4)

independently of ε and δ using also (4.1).
In order to close the estimate why apply pressure estimates which now can depend on δ.

Let us introduce the so–called Bogovskii operator B enjoying the following properties:

B : Lq0(Q) ≡
{
f ∈ Lq(Q)

∣∣∣ ∫
Q

f dx = 0

}
→W 1,q

0 (Q,Rd), 1 < q <∞,

divB[f ] = f,

‖B[f ]‖Lr(Q)
<∼ ‖g‖Lr(Q;Rd) if f = div g, g · n|∂Q = 0, 1 < r <∞,

(4.5)

see [14, Chapter 3] or [15]. Arguing as in [4, Section 5] (but replacing ∇∆−1 by the Bogovskii
operator B) we obtain

E
[∫

Q

[
p(%, ϑ)%+

1

3
%2|u|2

]
dx

]
= c(M0)E

[∫
Q

(
p(%, ϑ) +

1

3
%|u|2

)
dx

]
− E

[∫
Q

(
%u⊗ u− 1

3
%|u|2I

)
: ∇B(%−Mε) dx

]
+ E

[∫
Q

(4

3
µ(ϑ) + η(ϑ)

)
div u % dx dt

]
+ E

[∫
Q

%u · B div(%u) dx

]
+ 2εE

[∫
Q

%εuε · B [%ε −Mε] dx

]
+ εE

[∫
Q

%2
ε div uε dx

]
=: (I) + (II) + (III) + (IV ) + (V ) + (V I).

The terms (II) and (IV)–(VI) can be estimated as in [4] (note that they don’t contain ϑ). In
fact, we have by (2.13) and the continuity of ∇B

(II) . E‖√%u‖L2
x
‖u‖L6

x
‖√%∇B(%−Mε)‖L3

x

. E
∫
Q

EH(%, ϑ,u) dx‖∇u‖2L2
x

+ E‖√%∇B(%−Mε)‖2L3
x
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. 1 + E
∫
Q

Eδ,ϑH (%, ϑ,u) dx

provided Γ is large enough. Furthermore, we obtain for some α ∈ (0, 1)

(IV ) . E‖%u‖2L2
x
. E‖%‖2L3

x
‖u‖2L6

x
. E‖%‖2L3

x
‖∇u‖2L2

x

. E‖%‖2αL1
x
‖%‖2(1−α)

LΓ ‖∇u‖2L2
x
. E‖%‖2(1−α)

LΓ ‖∇u‖2L2
x

. E
∫
Q

Eδ,ϑH (%, ϑ,u) dx‖∇u‖2L2
x

+ E‖∇u‖2L2
x

. 1 + E
∫
Q

Eδ,ϑH (%, ϑ,u) dx

using again (2.13),
∫
Q
%dx ≤Mε ≤M0, (4.4) as well as (4.1). We can estimate (V ) and (V I)

along the same lines. Using (2.14) and (2.16) we have for Γ large enough

(III) . E
[∫

Q

(
ϑ4 + %4 + |∇u|2

)
dx

]
. E

[
1 +

(∫
Q

Eδ,ϑH (%, ϑ,u) dx

)]
due to (2.13) (4.1). Obviously, the same estimate holds for (I) such that we can conclude

E
[∫

Q

(
%Γ+1 + ϑ4%+ %2|u|2

)
dx

]
. E

[
1 +

∫
Q

(
%Γ + ϑ4 + %|u|2

)
dx

]
,(4.6)

using also (4.2). Obviously, we have∫
Q

(
%Γ + ϑ4

)
dx ≤ ξ

∫
Q

(
%Γ+1 + ϑ30/7

)
dx+ c(ξ),

E
[∫

Q

%|u|2 dx

]
≤ ξ̃E

[∫
Q

%2|u|2 dx

]
+ c(ξ̃)E

[∫
Q

|∇u|2 dx

]
≤ ξ̃E

[∫
Q

%2|u|2 dx

]
+ c(ξ̃)

∫
Q

(
%Γ + ϑ4 + 1

)
dx

for any ξ, ξ̃ > 0 using again (4.1). Consequently, all terms can be absorbed in the left-hand
side and we end up with

(4.7) E
[∫

Q

[
%Γ+1 + ϑ4%+ ϑ30/7 + %2|u|2

]
dx

]
≤ c

as well as

E
[(∫

Q

Eδ,ϑH (%, ϑ,u) dx

)∫
Q

σε,δ dx

]
≤ c(4.8)

using (4.1).

Estimates (4.7) and (4.8) are sufficient to pass to the limit in (3.1)–(3.4) arguing as in [1,
Section 5] (in fact, one has to combine ideas from [2] and [8]). In the limit ε → 0, we obtain
the following system.

• Equation of continuity.∫ ∞
0

∫
Q

[%∂tϕ+ %u · ∇ϕ] dx dt = 0(4.9)

for any ϕ ∈ C∞c ((0,∞)×Q) P-a.s.
• Momentum equation.

∫ ∞
0

∂tψ

∫
Q

%u ·ϕ dxdt+

∫ ∞
0

ψ

∫
Q

%u⊗ u : ∇ϕ dxdt+

∫ ∞
0

ψ

∫
Q

pδ(ϑ, %) divϕ dxdt

−
∫ ∞

0

ψ

∫
Q

Sδ(ϑ,∇u) : ∇ϕ dxdt = −
∫ ∞

0

ψ

∫
Q

%F(%, ϑ,u) ·ϕ dx dW

(4.10)
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for any ψ ∈ C∞c ((0,∞)), ϕ ∈ C∞(Q;R3) P-a.s.
• Entropy balance.

(4.11)

−
∫ ∞

0

∫
Q

[%sδ(%, ϑ)∂tψ + %sδ(%, ϑ)u · ∇ψ] ϕ dxdt

≥
∫ ∞

0

∫
Q

1

ϑ

[
Sδ(ϑ,∇u) : ∇u +

κδ(ϑ)

ϑ
|∇ϑ|2 + δ

1

ϑ2

]
ψ dxdt

+

∫ ∞
0

∫
Q

κδ(ϑ)∇ϑ
ϑ

· ∇ψ dxdt−
∫ ∞

0

ψ

∫
∂Q

d

ϑ
(ϑ−Θ0) dH2 dt

for any ψ ∈ C∞c ((0,∞)), ϕ ∈ C∞(Q;R3) P-a.s.
• Total energy balance.

−
∫ T

0

∂tψ

(∫
Q

Eδ(%, ϑ,u) dx

)
dt+

∫ ∞
0

ψ

∫
∂Q

d(ϑ−Θ0) dH2 dt

=ψ(0)

∫
Q

Eδ(%0, ϑ0,u0) dx+

∫ T

0

∫
Q

δ

ϑ2
ψ dx dt

+
1

2

∫ T

0

ψ

(∫
Q

∑
k≥1

%|Fk(%, ϑ,u)|2 dx

)
dt

+

∫ T

0

ψ

∫
Q

%F(%, ϑ,u) · u dW dx

(4.12)

for any ψ ∈ C∞c (0,∞) P-a.s.

To summarize, we deduce the following.

Proposition 4.1. Let δ > 0 be given. Then there exists a stationary weak martingale solution
[%δ, ϑδ,uδ] to (4.9)–(4.12). Moreover, we have the estimates

E
[
‖ϑ‖30/7

L30/7(Q)

]
+ E

[∫
Q

Eδ,ϑH (%, ϑ,u) dx

∫
Q

σδ dx

]
(4.13)

<∼ E
[ ∫

Q

Eδ,ϑH (%, ϑ) dx
]

+ 1,

E
∫
Q

σδ dx . 1 + E
∫
Q

Eδ,ϑH (%, ϑ,u) dx,(4.14)

uniformly in δ, where

σδ =
1

ϑ

[
S(ϑ,∇u) : ∇u +

κ(ϑ)

ϑ
|∇ϑ|2 +

δ

2

(
ϑΓ−1 +

1

ϑ2

)
|∇ϑ|2 + δ

1

ϑ2

]
.

Corollary 4.1. The solution from Proposition 4.1 satisfies the equation of continuity in the
renormalised sense.

4.2. The vanishing artificial pressure limit. Though (4.13) and (4.14) are uniform in δ,
the final estimates (4.7) and (4.8) are not. Again we have to close the estimate by some pressure
bounds. Let (%, ϑ,u) be a stationary solution to (4.9)–(4.12) as obtained in Proposition 4.1.
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Arguing as in [4, Section 6] (replacing again ∇∆−1 by the Bogovskii operator B) we have

E
[∫

Q

[
pδ(%, ϑ)%α + %1+α

δ |u|2
]

dx

]
≤ c(M0)

(
E
[∫

Q

[
1

2
%|u|2 + pδ(%, ϑ)

]
dx

]
+ 1

)
+ E

[∫
Q

(
4

3
µ(ϑ) + η(ϑ)

)
div u %α dx

]
+ E

[∫
Q

(
%u⊗ u− 1

3
%|u|2I

)
: ∇B [%α] dx

]
+ E

[∫
Q

%u · B[div(%αu) + (α− 1)%α div u] dx

]
=: (I) + (II) + (III) + (IV ),

(4.15)

where α > 0 will be chosen sufficiently small. As in the proof of [4, Prop. 6.1] we obtain

(I) + (III) + (IV ) . E
[∫

Q

Eδ,ϑH (%, ϑ,u) dx

∫
Q

|∇u|2 dx

]
+ E

[∫
Q

Eδ,ϑH (%, ϑ,u) dx

]
+ 1.

Also we see that

(III) . E
[∫

Q

|∇u|2 dx

]
+ E

[∫
Q

(
%γ + ϑ4

)
dx

]
+ 1

. E
[∫

Q

|∇u|2 dx

]
+ E

[∫
Q

Eδ,ϑH (%, ϑ,u) dx

]
+ 1

choosing α small enough and using (2.14) and (2.16). Combining these estimate with (4.13)
and (4.14) we conclude

E
[ ∫

Q

(
δ%Γ+α+%γ+α + ϑ4%α + %1+α|u|2

)
dx

]
. E

[
1 +

∫
Q

(
δ%Γ + %γ + ϑ4 + %|u|2

)
dx

]
,

(4.16)

recalling also (4.2). As in the proof of (4.7) and (4.8) we deduce

E
[∫

Q

[
%γ+1 + ϑ4%+ ϑ30/7 + %2|u|2

]
dx

]
≤ c(4.17)

E
[(∫

Q

Eδ,ϑH (%, ϑ,u) dx

)∫
Q

|∇u|2 dx

]
≤ c,(4.18)

E
[(∫

Q

Eδ,ϑH (%, ϑ,u) dx

)∫
Q

σδ dx

]
≤ c,(4.19)

using (4.14). With estimates (4.17) and (4.18) at hand we can follow the lines of [1, Section 6]
to pass to the limit δ → 0 in (4.9) and (4.10). The limit in (4.9) and (4.10) can be performed
as in [1, Section 7] due to (4.17) and (4.19). This finishes the proof of Theorem 2.1.
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