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Perfect fluids - Euler system

prefect = inviscid, non(heat) conducting

O e mass density
M= QU momentum
D pressure
E o energy

Euler system of gas dynamics

atg + divxm =0

dem + div, <m®m) +V.p=0

| . m
Leonhard Paul O:E + divy [(E + P)*] =0
Euler e
1707-1783

1 |mf? .
E = 5 + pe, e internal energy
o

(Incomplete) equation of state (gases)

p = (v —1)oe, v - adiabatic coefficient



Josiah Willard
Gibbs

1839-1903

Perfect fluids—entropy

(absolute) temperature
internal energy

Gibbs’ relation

¥Ds = De + pD (%)

Entropy equation

O:(0s) + dive(sm) =0

“Nobody is perfect”

Entropy inequality -
Second law of
thermodynamics

O:(0s) + dive(sm) >0

] = =




(Mathematical) troubles with the Euler system

Well posedness
m Solution exists for any (physically)
admissible data (initial, boundary)

- m Solution is unique and depends
continuously on the data

Known facts concerning well-posedness of the Euler system

m Local well posedness. Smooth solutions emenating from smooth data
exist on a maximal time interval Tmax > 0. They are unique and depend
continuously on the data

m Finite time blow up. There is a “generic” class of data for which
Tmax < 00. Solutions blow up in a finite time. Typically they become
discontinuous shock waves

m Weak solutions. Shock waves represent weak solutions of the Euler
system. Differential operators are understood in the distributional sense.
Differential equations replaced by families of integral identities.




Weak solutions to Euler system

QCRY, d=1,2,3 ...

fluid domain

Mass conservation

-
/ / [Q@tap+m-vxcp] dx =0
0o Ja

Momentum balance

-
/ / [m - 0p + lg>0% : Ve + pdivxgo} dxdt =0
0 Ja

Energy balance

/ / |:E8ttp+ E+p) chp} dxdt =0

p € Ccl((O7 T)xQ), g€ Ccl((O, T) x T Rd)

Entropy admissibility condition

-
/ / [osOrp + sm - V] dxdt <0, ¢ >0
o Ja



lll-posedness of Euler system

Theorem:

Let Q C RY be a bounded domain d = 2,3. Let go > 0, ¥ > 0 be piecewise
constant, arbitrary functions. Then there exists ug € L* such that the Euler
system admits infinitely many admissible weak solutions in (0, T) x © with
the initial data [go, Yo, uo] satisfying the impermeability boundary condition

m~n|BQ:O

Remarks:

m There are examples of Lipschitz (and even C°°) initial data for which the
Euler system admits infinitely many admissible weak solutions

m The result can be extended to the Euler system driven by stochastic forcing



Numerics — consistent approximation

Mass conservation

-
/ / [gnatap +my - ngo} dx = Ex(¢)
0 Q

Momentum balance
T
/ / {mn - 0p + @ Ve + p,,divxcp] dxdt = E,?(Lp)
o Ja n

Energy balance

.
/ / {Enaﬁw (En + pn) r; -nga] dxdt = E}(p)
0 Q

n

Entropy admissibility condition

-
/ / (00500 + Sy - Vo] dxdt < En(p), ¢ >0
o Ja

Consistency errors
Ex(9), EZ(@), Ei(#), En(p)



Lax equivalence principle

Approximate solutions in conservative entropy variables
............................................................. mass density
.............................................................. momentum

total entropy
Formulation for | LINEAR | problems

e Stability - uniform bounds on the sequence of approximate
solutions (gn, My, Sy)

e Consistency - vanishing approximation error

E)(¢) = 0asn— oo fori=1,...,4 and any (smooth) ¢
Peter D. Lax

—

e Convergence - approximate solutions converge to
an exact solution of the Euler system




Lax equivalence principle - nonlinear version ?

Thermodynamics stability

Total energy.
1|m|®

Hypothesis of thermodynamics stability.

(0,m,S) — E(p,m,S) (strictly) convex

Stability estimates for the Euler system

/ E(0n, mn, Su)(t,-) dx < E uniformly in nand t € [0, T]
Q




Consistency — vanishing “viscosity”

(Artificial) viscosity approximation

ath + dimen = EnAxl_)n

8tmn + diVx (M) + prn = 5nA><mn

On

atEn + diVx |:(En + pn) r;n

] = e, AxE,

n

Zero viscosity — turbulent limit

€n \(0




Weak convergence
m Pointwise (ideal) values of functions are replaced by their integral

averages. This idea is close to the physical concept of measurement

U= |:Lp — / U(p]
m Weak convergence

U, — U weakly & /U,,<p—>/U<p
for any smooth ¢

Example

Dirac distribution: do : ¢ — ¢(0)

Paul Adrien Maurice Dirac
[1902-1984]

40> «F»r «=)>»
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Troubles with weak convergence

Oscillatory solutions - velocity

U(x) = sin(nx), U — 0 in the sense of avarages (weakly)
Oscillatory solutions - kinetic energy

1 . 1 ,1,.
§|U|2(x) ~ 5 sin®(nx) — 7 #* 502 in the sense of avarages (weakly)

«4Or «Fr «=>»

o>




Measure—valued solutions — limits of consistent approximations

(£ = U= (em, ) ~ (Vo (&.,5))

Vix = du(e,x) — Dirac measure concentrated on Uy «

Young measures

U(t, x) = Vi x

V is a probability measure on the phase space
related to the state variables (o, m, S) Laurence Chisholm Young
[1905-2000]

U, — U weakly, /B(U,,)np — /B(U)ap

B(U)(t.x) = (Vi B(U) )



Lax equivalence principle — nonlinear version

Step 1 - stability.
(Un)i2; a stable approximation. Up to a subsequence, U, converge
(generate) a parametrized (Young) measure V; .

Step 2 - consistency. (U,);2; a stable and consistent approximation.
Then V is a measure—valued solution of the Euler system

Step 3 - weak—strong uniqueness principle.
A measure valued and the strong solution emanating from the same
data coincide on the life span of the latter. Here coincide means

Viex = 0u(t,x)

Step 4 - strong convergence
As the limit is a Dirac mass, the sequence does not oscillate and the
convergence is (a.a.) pointwise




Convergence beyond the life span of strong solution

U, =(0n,mn,Sp) ... stable consistent approximation of the Euler system

Convergence to a weak solution

U, — U pointwise (a.a.) = the limit U = (g, m, S) is a weak solution

the weak limit U = (¢, m, S) is a weak solution

= U, — U pointwise (a.a.)

Conclusion:

U, — U (genuinely) weakly = the limit is not a weak solution of the Euler system



Towards (compressible) turbulence

Scenario |. The viscous approximation (g», m,,S,) converges weakly and
generates a non-trivial (non monoatomic) Young measure. The weak limit —
the barycenter of the Young measure — is not a weak solution of the Euler
system

Scenario Il - via Kolmogorov hypothesis

The viscous approximation (g, m,, S,) is
precompact in the strong Lebesgue type
topology, in particular contains strongly
convergent subsequence. The limit, however, is
not unique.

Andrey
Nikolaevich
Kolmogorov
1903-1987




Visualizing (computing) the limit object

Scenario |
Un(t,X) ~ 5Un(t,x)
Young measure <Vt,x; b(0)> = b(U)(t,x)

b(U) — weak limit of b(U,)

S—convergence

N

1 R

N E b(U,) — b(U) strongly
n=1

Scenario Il - statistical limit
U, € C([0, T]; X), X a suitable Hilbert space

S—convergence
N

1
N Zéun — U strongly

n=1
The limit is a statistical solution of the Euler system — a probability measure
on the trajectory space




Leonhard Paul
Euler
1707-1783

Obstacle problem

Isentropic Euler system driven by temporal white noise
do + divemdt =0
m

dm + div, (%) dt + Vap(o)dt = odW, p(o) = a0

W = W(t) cylindrical Wiener process

Q=R? \ B, B compact convex obstacle

Far field conditions

0 = 00, M — My as |x| — oo.




Statistical equivalence

(05, m1), (0%, mM2) fluid motion

(o', m") is statistically equivalent to (0%, m®)
4
m Equality of expected values
Elo'] = E[¢®], E[m'] = E[m*] in (0, T) x Q

m Equality of expected values of kinetic and internal energy
(pressure)

e [ImE] < e[ Epte) = Elptein 0.7 x 2

m Equality of expected values of angular energy

E[MEM (es o] - £[T 2™ cog) 0.7 x0

ot




Modeling turbulence by noise ?

Absence of noise in the high Reynolds (low viscosity) limit

(0, m) — statistical limit in the vanishing viscosity regime

(0, m) statistically equivalent
to a solution of the Euler system driven by the temporal white noise
=
(0, m) is a statistical solution of the deterministic Euler system
=

the noise is not active
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