Solving ill posed problems

Eduard Feireisl

feireisl@math.cas.cz

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague
Technische Universität Berlin

CRC 910 Symposium Berlin, February 2021

Perfect fluids - Euler system

prefect = inviscid, non(heat) conducting

arrhomass dens	ity
$\mathbf{m}=arrho\mathbf{u}$ momentu	ım
p pressı	
<i>E</i> ener	gy

Leonhard Paul Euler 1707–1783

Euler system of gas dynamics

$$\begin{split} \partial_t \varrho + \mathrm{div}_x \mathbf{m} &= 0 \\ \partial_t \mathbf{m} + \mathrm{div}_x \left(\frac{\mathbf{m} \otimes \mathbf{m}}{\varrho} \right) + \nabla_x p &= 0 \\ \partial_t E + \mathrm{div}_x \left[(E + p) \frac{\mathbf{m}}{\varrho} \right] &= 0 \end{split}$$

$$E = rac{1}{2} rac{|\mathbf{m}|^2}{
ho} + arrho e, \ e \ ext{internal energy}$$

(Incomplete) equation of state (gases)

$$p = (\gamma - 1) \rho e, \ \gamma$$
 - adiabatic coefficient

Perfect fluids-entropy

Josiah Willard Gibbs 1839–1903

ϑ	 (absolute) temperature
e	 internal energy

Gibbs' relation

$$\vartheta Ds = De + pD\left(\frac{1}{\varrho}\right)$$

Entropy equation

$$\partial_t(\varrho s) + \operatorname{div}_x(sm) = 0$$

"Nobody is perfect"

Entropy inequality -Second law of thermodynamics

$$\partial_t(\varrho s) + \operatorname{div}_x(sm) \geq 0$$

(Mathematical) troubles with the Euler system

Well posedness

- Solution exists for any (physically) admissible data (initial, boundary)
- Solution is unique and depends continuously on the data

Known facts concerning well-posedness of the Euler system

- Local well posedness. Smooth solutions emenating from smooth data exist on a maximal time interval $T_{\rm max}>0$. They are unique and depend continuously on the data
- Finite time blow up. There is a "generic" class of data for which $T_{\rm max} < \infty$. Solutions blow up in a finite time. Typically they become discontinuous shock waves
- Weak solutions. Shock waves represent *weak* solutions of the Euler system. Differential operators are understood in the distributional sense. Differential equations replaced by families of integral identities.

Weak solutions to Euler system

Mass conservation

$$\int_{0}^{\tau} \int_{\Omega} \left[\varrho \partial_{t} \varphi + \mathbf{m} \cdot \nabla_{x} \varphi \right] \, \mathrm{d}x = 0$$

Momentum balance

$$\int_0^T \int_\Omega \left[\mathbf{m} \cdot \partial \boldsymbol{\varphi} + \mathbf{1}_{\varrho > 0} \frac{\mathbf{m} \otimes \mathbf{m}}{\varrho} : \nabla_x \boldsymbol{\varphi} + p \mathrm{div}_x \boldsymbol{\varphi} \right] \ \mathrm{d}x \mathrm{d}t = 0$$

Energy balance

$$\begin{split} &\int_0^T \int_{\Omega} \left[E \partial_t \varphi + (E + \rho) \, \frac{\mathbf{m}}{\varrho} \cdot \nabla_x \varphi \right] \, \, \mathrm{d}x \mathrm{d}t = 0 \\ &\varphi \in C_c^1((0, T) \times \Omega), \, \, \varphi \in C_c^1((0, T) \times \mathbb{T}^d; R^d) \end{split}$$

Entropy admissibility condition

$$\int_0^T \int_{\Omega} \left[\varrho s \partial_t \varphi + s \mathbf{m} \cdot \nabla_x \varphi \right] \, dx dt \le 0, \,\, \varphi \ge 0$$

III-posedness of Euler system

Theorem:

Let $\Omega\subset R^d$ be a bounded domain d=2,3. Let $\varrho_0>0$, $\vartheta_0>0$ be piecewise constant, arbitrary functions. Then there exists $\mathbf{u}_0\in L^\infty$ such that the Euler system admits infinitely many *admissible* weak solutions in $(0,T)\times\Omega$ with the initial data $[\varrho_0,\vartheta_0,\mathbf{u}_0]$ satisfying the impermeability boundary condition

$$\mathbf{m} \cdot \mathbf{n}|_{\partial\Omega} = 0$$

Remarks:

- There are examples of Lipschitz (and even C^{∞}) initial data for which the Euler system admits infinitely many admissible weak solutions
- The result can be extended to the Euler system driven by stochastic forcing

Numerics – consistent approximation

Mass conservation

$$\int_0^T \int_{\Omega} \left[\varrho_n \partial_t \varphi + \mathbf{m}_n \cdot \nabla_x \varphi \right] \, \mathrm{d}x = E_n^1(\varphi)$$

Momentum balance

$$\int_0^T \int_{\Omega} \left[\mathbf{m}_n \cdot \partial \varphi + \frac{\mathbf{m}_n \otimes \mathbf{m}_n}{\varrho_n} : \nabla_x \varphi + p_n \mathrm{div}_x \varphi \right] \ \mathrm{d}x \mathrm{d}t = E_n^2(\varphi)$$

Energy balance

$$\int_0^T \int_\Omega \left[E_n \partial_t \varphi + \left(E_n + \rho_n \right) \frac{\mathbf{m}_n}{\varrho_n} \cdot \nabla_x \varphi \right] \; \mathrm{d}x \mathrm{d}t = E_n^3(\varphi)$$

Entropy admissibility condition

$$\int_{0}^{T} \int_{\Omega} \left[\varrho_{n} s_{n} \partial_{t} \varphi + s_{n} \mathbf{m}_{n} \cdot \nabla_{x} \varphi \right] dx dt \leq E_{n}^{4}(\varphi), \ \varphi \geq 0$$

Consistency errors

$$E_n^1(\varphi), E_n^2(\varphi), E_n^3(\varphi), E_n^4(\varphi)$$

Lax equivalence principle

Approximate solutions in conservative entropy variables

<i>Q</i>	mass density
$m \ldots \ldots \ldots \ldots \ldots$	momentum
$S = \varrho s$	total entropy

Formulation for LINEAR problems

Peter D. Lax

- Stability uniform bounds on the sequence of approximate solutions $(\rho_n, \mathbf{m}_n, S_n)$
- Consistency vanishing approximation error

$$E_n^i(\varphi) \to 0$$
 as $n \to \infty$ for $i = 1, \dots, 4$ and any (smooth) φ

 \iff

• Convergence - approximate solutions converge to an exact solution of the Euler system

Lax equivalence principle - nonlinear version ?

Thermodynamics stability

Total energy.

$$E = E(\varrho, \mathbf{m}, S) = \frac{1}{2} \frac{|\mathbf{m}|^2}{\rho} + \varrho e(\varrho, S)$$

Hypothesis of thermodynamics stability.

$$(\varrho, \mathbf{m}, S) \mapsto E(\varrho, \mathbf{m}, S)$$
 (strictly) convex

Stability estimates for the Euler system

$$\int_{\Omega} E(\varrho_n, \mathbf{m}_n, S_n)(t, \cdot) \, \mathrm{d} x \leq \overline{E} \text{ uniformly in } n \text{ and } t \in [0, T]$$

Consistency - vanishing "viscosity"

(Artificial) viscosity approximation

$$\begin{split} \partial_t \varrho_n + \mathrm{div}_x \boldsymbol{m}_n &= \varepsilon_n \Delta_x \varrho_n \\ \partial_t \boldsymbol{m}_n + \mathrm{div}_x \left(\frac{\boldsymbol{m}_n \otimes \boldsymbol{m}_n}{\varrho_n} \right) + \nabla_x \boldsymbol{p}_n &= \varepsilon_n \Delta_x \boldsymbol{m}_n \\ \partial_t \boldsymbol{E}_n + \mathrm{div}_x \left[(\boldsymbol{E}_n + \boldsymbol{p}_n) \frac{\boldsymbol{m}_n}{\varrho_n} \right] &= \varepsilon_n \Delta_x \boldsymbol{E}_n \end{split}$$

Zero viscosity - turbulent limit

$$\varepsilon_n \searrow 0$$

Weak convergence

Pointwise (ideal) values of functions are replaced by their integral averages. This idea is close to the physical concept of measurement

$$Upprox\left[arphi\mapsto\int Uarphi
ight]$$

■ Weak convergence

$$U_n
ightarrow U$$
 weakly \Leftrightarrow $\int U_n arphi
ightarrow \int U arphi$

for any smooth φ

Example

Dirac distribution: $\delta_0: \varphi \mapsto \varphi(0)$

Paul Adrien Maurice Dirac [1902-1984]

Troubles with weak convergence

Oscillatory solutions - velocity

$$U(x) \approx \sin(nx), \ U \rightarrow 0$$
 in the sense of avarages (weakly)

Oscillatory solutions - kinetic energy

$$\frac{1}{2}|U|^2(x) pprox \frac{1}{2}\sin^2(nx) o \frac{1}{4}
eq \frac{1}{2}0^2$$
 in the sense of avarages (weakly)

Measure-valued solutions - limits of consistent approximations

$$\begin{split} (t,x) \mapsto \mathbf{U} &= (\varrho,\mathbf{m},S) \; \approx \left\langle \mathcal{V}_{t,x}; (\tilde{\varrho},\widetilde{\mathbf{m}},\widetilde{S}) \right\rangle \\ \mathcal{V}_{t,x} &= \delta_{\mathbf{U}(t,x)} \; - \text{Dirac measure concentrated on } \mathbf{U}_{t,x} \end{split}$$

Young measures

$$\mathbf{U}(t,x) \approx \mathcal{V}_{t,x}$$

 $\mathcal V$ is a probability measure on the phase space related to the state variables $(\varrho,\mathbf m,S)$

Laurence Chisholm Young [1905-2000]

$$egin{aligned} \mathbf{U}_n &
ightarrow \mathbf{U} ext{ weakly, } \int B(\mathbf{U}_n) arphi
ightarrow \int \overline{B(\mathbf{U})} arphi \ \overline{B(\mathbf{U})}(t, \mathbf{x}) \equiv \left\langle \mathcal{V}_{t, \mathbf{x}}; B(\widetilde{\mathbf{U}})
ight
angle \end{aligned}$$

Lax equivalence principle – nonlinear version

■ Step 1 - stability.

 $(\mathbf{U}_n)_{n=1}^{\infty}$ a stable approximation. Up to a subsequence, \mathbf{U}_n converge (generate) a parametrized (Young) measure $\mathcal{V}_{t,x}$.

- Step 2 consistency. $(U_n)_{n=1}^{\infty}$ a stable and consistent approximation. Then $\mathcal V$ is a measure—valued solution of the Euler system
- Step 3 weak-strong uniqueness principle.

A measure valued and the strong solution emanating from the same data coincide on the life span of the latter. Here coincide means

$$\mathcal{V}_{t,x} = \delta_{\mathbf{U}(t,x)}$$

■ Step 4 - strong convergence

As the limit is a Dirac mass, the sequence does not oscillate and the convergence is (a.a.) pointwise

Convergence beyond the life span of strong solution

 $\mathbf{U}_n = (\varrho_n, \mathbf{m}_n, S_n)$ stable consistent approximation of the Euler system

Convergence to a weak solution

•

$$U_n \to U$$
 pointwise (a.a.) \Rightarrow the limit $U = (\varrho, m, S)$ is a weak solution

the weak limit
$$\mathbf{U} = (\varrho, \mathbf{m}, S)$$
 is a weak solution $\Rightarrow \mathbf{U}_n \rightarrow \mathbf{U}$ pointwise (a.a.)

Conclusion:

 $\mathbf{U}_n \to \mathbf{U}$ (genuinely) weakly \Rightarrow the limit is not a weak solution of the Euler system

Towards (compressible) turbulence

Scenario I. The viscous approximation $(\varrho_n, \mathbf{m}_n, S_n)$ converges weakly and generates a non–trivial (non monoatomic) Young measure. The weak limit – the barycenter of the Young measure – is not a weak solution of the Euler system

Scenario II - via Kolmogorov hypothesis

The viscous approximation $(\varrho_n, \mathbf{m}_n, S_n)$ is precompact in the strong Lebesgue type topology, in particular contains strongly convergent subsequence. The limit, however, is not unique.

Andrey Nikolaevich Kolmogorov 1903–1987

Visualizing (computing) the limit object

Scenario I

$$\mathbf{U}_n(t,x) \approx \delta_{\mathbf{U}_n(t,x)}$$

Young measure
$$\left\langle \mathcal{V}_{t,x};b(\widetilde{\mathbf{U}})\right\rangle =\overline{b(\mathbf{U})}(t,x)$$

$$\overline{b(\mathbf{U})} \quad -\text{ weak limit of }b(\mathbf{U}_n)$$

S-convergence

$$\frac{1}{N}\sum_{n=1}^{N}b(\mathbf{U}_{n})
ightarrow\overline{b(\mathbf{U})}$$
 strongly

Scenario II - statistical limit

$$\mathbf{U}_n \in C([0, T]; X), X$$
 a suitable Hilbert space

S-convergence

$$\frac{1}{N}\sum_{n=1}^{N}\delta_{\mathbf{U}_{n}} \rightarrow \mathbf{U}$$
 strongly

The limit is a statistical solution of the Euler system – a probability measure on the trajectory space

Obstacle problem

Leonhard Paul Euler 1707–1783

Isentropic Euler system driven by temporal white noise

$$\begin{split} \mathrm{d}\varrho + \mathrm{div}_x \mathbf{m} \mathrm{d}t &= 0 \\ \mathrm{d}\mathbf{m} + \mathrm{div}_x \left(\frac{\mathbf{m} \otimes \mathbf{m}}{\varrho}\right) \mathrm{d}t + \nabla_x p(\varrho) \mathrm{d}t = \sigma \mathrm{d}W, \ p(\varrho) = \mathsf{a}\varrho^\gamma \\ W &= W(t) \text{ cylindrical Wiener process} \end{split}$$

$$\Omega = R^d \setminus B$$
, B compact convex obstacle

Far field conditions

$$\varrho o \varrho_\infty, \ \mathbf{m} o \mathbf{m}_\infty \ \text{as} \ |x| o \infty.$$

Statistical equivalence

$$(\varrho^1, \mathbf{m}^1)$$
 is statistically equivalent to $(\varrho^2, \mathbf{m}^2)$ \Leftrightarrow

Equality of expected values

$$\textit{E}[\varrho^1] = \textit{E}[\varrho^2], \; \textit{E}[\textbf{m}^1] = \textit{E}[\textbf{m}^2] \; \text{in} \; (0, \, \textit{T}) \times \Omega$$

 Equality of expected values of kinetic and internal energy (pressure)

$$E\left[\frac{|\mathbf{m}^1|^2}{\varrho^1}\right] = E\left[\frac{|\mathbf{m}^2|^2}{\varrho^2}\right], \ E[p(\varrho^1)] = E[p(\varrho^2)] \text{ in } (0,T) \times \Omega$$

■ Equality of expected values of angular energy

$$E\left[\frac{\mathbf{m}^1 \otimes \mathbf{m}^1}{\varrho^1} : (\xi \otimes \xi)\right] = E\left[\frac{\mathbf{m}^2 \otimes \mathbf{m}^2}{\varrho^2} : (\xi \otimes \xi)\right] \text{ in } (0, T) \times \Omega$$

Modeling turbulence by noise?

Absence of noise in the high Reynolds (low viscosity) limit

 $(\varrho,\mathbf{m})-\text{statistical limit in the vanishing viscosity regime}$ $(\varrho,\mathbf{m})\text{ statistically equivalent}$ to a solution of the Euler system driven by the temporal white noise \Rightarrow $(\varrho,\mathbf{m})\text{ is a statistical solution of the } deterministic \text{ Euler system}$ \Rightarrow the noise is not active

Collaborators

D.Breit (Edinburgh)

M.Lukáčová (Mainz)

M. Hofmanová (Bielefeld)

S. Markfelder (Wuerzburg)

C.Klingenberg (Wuerzburg)

H.Mizerová (Bratislava)

O.Kreml (Praha)

B.She (Praha)

