Photosynthetica, 2015 (vol. 53), issue 3

Photosynthetica 2015, 53(3):395-402 | DOI: 10.1007/s11099-015-0125-2

Responses of two endemic species of Hippophae at the Qinghai-Tibet Plateau to elevated CO2 concentration

F. Ma1, T. T. Xu2, M. F. Ji3, C. M. Zhao3,*
1 New Technology Application, Research and Development Center, Ningxia University, Yinchuan, China
2 School of Life Science, Ningxia University, Yinchuan, China
3 State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, Lanzhou, China

The responses of photosynthesis and growth to increasing CO2 concentration ([CO2]) were investigated in Hippophae gyantsensis and H. rhamnoides subsp. yunnanensis, which are endemic at the Qinghai-Tibet Plateau and phylogenetically related, but distributed parapatrically in divergent regions. Seedlings of the two species were grown at ambient [AC; 360 μmol(CO2) mol-1] and elevated [EC; 720 μmol(CO2) mol-1] [CO2] in growth chambers. The responses to EC were significantly different between the two species. EC induced an increase in photosynthesis, stomatal conductance, intrinsic water-use efficiency, apparent quantum efficiency, total dry mass, and a decrease in photorespiration rate, maximum carboxylation rate of Rubisco, and maximum electron transport rate in H. gyantsensis compared to those in H. rhamnoides subsp. yunnanensis. Moreover, a significant increase in leaf nitrogen content and a decrease in root/shoot ratio was also observed in H. gyantsensis. H. gyantsensis showed a significantly higher specific leaf area than that of H. rhamnoides through treatments. Relative to H. rhamnoides subsp. yunnanensis, H. gyantsensis showed a greater potential to increase photosynthesis and growth to cope with the increasing [CO2] and it might expand its distribution range in the future.

Keywords: biomass allocation; leaf gas exchange; leaf properties

Received: February 6, 2014; Accepted: November 20, 2014; Published: September 1, 2015Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Ma, F., Xu, T.T., Ji, M.F., & Zhao, C.M. (2015). Responses of two endemic species of Hippophae at the Qinghai-Tibet Plateau to elevated CO2 concentration. Photosynthetica53(3), 395-402. doi: 10.1007/s11099-015-0125-2.
Download citation

References

  1. Ainsworth E.A., Long S.P.: What have we learned from 15 years of free air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. - New Phytol. 165: 351-371, 2005. Go to original source...
  2. Ainsworth E.A., Rogers A.: The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. - Plant Cell Environ. 30: 258-270, 2007. Go to original source...
  3. Aranda X., Agusti C., Joffre R., Fleck I.: Photosynthesis, growth and structural characteristics of holm oak resprouts originated from plants grown under elevated CO2. - Physiol. Plantarum 128: 302-312, 2006. Go to original source...
  4. Avola G., Cavallaro V., Patanè C., Riggi E.: Gas exchange and photosynthetic water use efficiency in response to light, CO2 concentration and temperature in Vicia faba. - J. Plant Physiol. 165: 796-804, 2008. Go to original source...
  5. Baxter R., Ashenden T.W., Sparks T.H., Farrar J.F.: Effects of elevated carbon dioxide on three montane grass species I. Growth and dry matter partitioning. - J. Exp. Bot. 45: 305-315, 1994. Go to original source...
  6. Bernacchi C.J., Calfapietra C., Davey P.A. et al.: Photosynthesis and stomatal conductance responses of poplars to free air CO2 enrichment (PopFACE) during the first growth cycle and immediately following coppice. - New Phytol. 159: 609-621, 2003. Go to original source...
  7. Bezemer T.M., Jones T.H.: The effects of CO2 and nutrient enrichment on photosynthesis and growth of Poa annua in two consecutive generations. - Ecol. Res. 27: 873-882, 2012. Go to original source...
  8. Bhatt R.K., Baig M.J., Tiwari H.S.: Growth, biomass production and assimilatory characters in Cenchrus ciliaris L. under elevated CO2 condition. - Photosynthetica 45: 296-298, 2007. Go to original source...
  9. Busch F.A.: Current methods for estimating the rate of photorespiration in leaves. - Plant Biol. 15: 648-655, 2012.
  10. Chapin III F.S., Mcguire A.D., Randerson J. et al.: Arctic and boreal ecosystems of western North America as components of the climate system. - Global Change Biol. 6: 211-223, 2000. Go to original source...
  11. Chaturvedi A.K., Prasad P., Nautiyal M.C.: Impact of elevated CO2 on growth, morphology and dry matter partitioning in alpine growth forms of north western Himalayas. - Ind. J. Plant Physiol. 18: 118-124, 2013.
  12. Chen X.L., Ma R.J., Sun K., Lian Y.S.: [Germplasm resource and habitat types of Seabuckthorn in China.] - Acta Bot. Boreal.-Occident. Sin. 23: 451-455, 2003. [In Chinese]
  13. Cheng K., Sun K., Wen H.Y. et al.: [Maternal divergence and phylogeographical relativeships between Hippophae gyantsensis and H. rhamnoides subsp. yunnanensis.] - J. Plant Ecol. 33: 1-11, 2009. [In Chinese]
  14. Curtis P.S., Klus D.J., Kalisz S., Tonsor S.J.: Intraspecific variation in CO2 responses in Raphanus raphanistrum and Plantago lanceolata: assessing the potential for evolutionary change with rising atmospheric CO2. - In: Körner C., Bazzaz F.A. (ed.): Carbon Dioxide, Populations, and Communities. Pp. 13-22. Academic Press, San Diego 1996. Go to original source...
  15. Curtis P.S., Wang X.: A meta-analysis of elevated CO2 effects in woody plant mass, form, and physiology. - Oecologia 113: 299-313, 1998. Go to original source...
  16. Dawes M.A., Hättenschwiler S., Bebi P. et al.: Species-specific tree growth responses to nine years of CO2 enrichment at the alpine treeline. - J. Ecol. 99: 383-394, 2011.
  17. De Graaff M., van Groenigen K., Six J. et al.: Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. - Glob. Change Biol. 12: 2077-2091, 2006. Go to original source...
  18. Dixon M., Thiec D., Garrec J.P.: The growth and gas exchange response of soil-planted Norway spruce [Picea abies (L.) Karst.] and red oak (Quercus rubra L.) exposed to elevated [CO2] and to naturally occurring drought. - New Phytol. 129: 265-273, 1995. Go to original source...
  19. Farquhar G.D., von Caemmerer S.: Modelling of photosynthetic response to environmental conditions. - In: Lange O.L., Nobel P.S., Osmond C.B., Ziegler H. (ed.): Physiological Plant Ecology II. Pp. 549-588. Springer, Berlin - Heidelberg - New York 1982. Go to original source...
  20. Jia D.R., Abbott R.J., Liu T.L. et al.: Out of the Qinghai-Tibet Plateau: Evidence for the origin and dispersal of Eurasian temperate plants from a phylogeographic study of Hippophaë rhamnoides (Elaeagnaceae). - New Phytol. 194: 1123-1133, 2012. Go to original source...
  21. Körner C.: Alpine Plant Life. Pp. 171-196. Springer, Berlin - Heidelberg - New York 1999.
  22. Körner C., Asshoff R., Bignucolo O. et al.: Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. - Science 309: 1360-1362, 2005. Go to original source...
  23. Körner C., Diemer M.W.: Evidence that plants from high altitudes retain their greater photosynthetic efficiency under elevated CO2. - Funct. Ecol. 8: 58-68, 1994. Go to original source...
  24. Leakey A.D.B., Ainsworth E.A., Bernacchi C.J. et al.: Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. - J. Exp. Bot. 60: 2859-2876, 2009. Go to original source...
  25. Le Quéré C., Peters G.P., Andres R.J. et al.: Global carbon budget 2013. - Earth Syst. Sci. Data Discuss. 6: 689-760, 2013.
  26. Li J.H., Johnson D.P., Dijkstra P. et al.: Elevated CO2 mitigates the adverse effects of drought on daytime net ecosystem CO2 exchange and photosynthesis in a Florida scrub-oak ecosystem. - Photosynthetica 45: 51-58, 2007 Go to original source...
  27. Lian Y.S.: The plant biology and chemistry of Hippophae. Gansu Science and Technology Press, Lanzhou 2000.
  28. Long S.P., Ainsworth E.A., Rogers A., Ort D.R.: Rising atmospheric carbon dioxide: plants FACE the future. - Annu. Rev. Plant Biol. 55: 591-628, 2004. Go to original source...
  29. Ma F., Zhang X.W., Chen L.T. et al.: The alpine homoploid hybrid Pinus densata has greater cold photosynthesis tolerance than its progenitors. - Environ. Exp. Bot. 85: 85-91, 2013. Go to original source...
  30. Ma F., Zhao C.M., Milne R. et al.: Enhanced drought-tolerance in the homoploid hybrid species Pinus densata: implication for its habitat divergence from two progenitors. - New Phytol. 185: 204-216, 2010. Go to original source...
  31. Manea A., Leishman M.R.: Competitive interactions between native and invasive exotic plant species are altered under elevated carbon dioxide. - Oecologia 165: 735-744, 2011. Go to original source...
  32. Medlyn B.E., Barton C.V.M., Broadmeadow M.S.J. et al.: Stomatal conductance of European forest species after long-term exposure to elevated [CO2]: a synthesis of experimental data. - New Phytol. 149: 247-264, 2001. Go to original source...
  33. Myers N., Mittermeier R.A., Mittermeier C.G. et al.: Biodiversity hotspots for conservation priorities. - Nature 403: 853-858, 2000. Go to original source...
  34. Niinemets U.: Components of leaf dry mass per area-thickness and density-alter leaf photosynthetic capacity in reverse directions in woody plants. - New Phytol. 144: 35-47, 1999. Go to original source...
  35. Norby R.J., Wullschleger S.D., Gunderson C.A. et al.: Tree responses to rising CO2 in field experiments: Implications for the future forest. - Plant Cell Environ. 22: 683-714, 1999. Go to original source...
  36. Oechel W.C., Vourlitis G.L., Hastings S.J. et al.: Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. - Nature 406: 978-981, 2000. Go to original source...
  37. Olivo N., Martinez C.A., Oliva M.A.: The photosynthetic response to elevated CO2 in high altitude potato species (Solanum curtilobum). - Photosynthetica 40: 309-313, 2002. Go to original source...
  38. Parson R., Ogstone S.A.: Photosyn Assistant Ver. 1.1. Dundee Scientific, Scotland, UK 1997.
  39. Poorter H., Navas M.L.: Plant growth and competition at elevated CO2: on winners, losers and functional groups. - New Phytol. 157: 175-198, 2003. Go to original source...
  40. Reddy A.R., Rasineni G.K., Raghavendra A.S.: The impact of global elevated CO2 concentration on photosynthesis and plant productivity. - Curr. Sci. 99: 46-57, 2010.
  41. Roberntz P., Stockfors J.: Effects of elevated CO2 concentration and nutrition on net photosynthesis, stomatal conductance and needle respiration of field-grown Norway spruce trees. - Tree Physiol. 18: 233-241, 1998. Go to original source...
  42. Rogers A., Ainsworth E.A., Leakey A.D.B.: Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? - Plant Physiol. 151: 1009-1016, 2009. Go to original source...
  43. Sanz-Elorza M., Dana E.D., Gonzalez A., Sobrino E.: Changes in the high-mountain vegetation of the central Iberian peninsula and a probable sign of global warming. - Ann. Bot.-London 92: 273-280, 2003. Go to original source...
  44. Seneweera S.P., Ghannoum O., Conroy J.P. et al.: Changes in source-sink relations during development influence photosynthetic acclimation of rice to free air CO2 enrichment (FACE). - Funct. Plant Biol. 29: 947-955, 2002. Go to original source...
  45. Sharkey T.D.: Estimating the rate of photorespiration in leaves. - Physiol. Plantarum 73: 147-152, 1988. Go to original source...
  46. Singh J.S., Singh S.P., Gupta S.R.: Ecology, Environment and Resource Conservation. Pp. 688. Anamaya Publishers, New Delhi 2006.
  47. Smith S.D., Huxman T.E., Zitzer S.F. et al.: Elevated CO2 increases productivity and invasive species success in an arid ecosystem. - Nature 408: 79-82, 2000. Go to original source...
  48. Song L., Wu J., Li C.H. et al.: Different responses of invasive and native species to elevated CO2 concentration. - Acta Oecol. 35: 128-135, 2009. Go to original source...
  49. Urban O., Hrstka M., Zitová M., et al.: Effect of season, needle age and elevated CO2 concentration on photosynthesis and Rubisco acclimation in Picea abies. - Plant Physiol. Bioch. 58: 135-141, 2012. Go to original source...
  50. Wang D., Heckathorn S.A., Wang X.Z., Philpott S.M.: A metaanalysis of plant physiological and growth responses to temperature and elevated CO2. - Oecologia 169: 1-13, 2012. Go to original source...
  51. Ward J.K., Strain B.R.: Effects of low and elevated CO2 partial pressure on growth and reproduction of Arabidopsis thaliana from different elevations. - Plant Cell Environ. 20: 254-260, 1997. Go to original source...
  52. Zheng D. The system of physico-geographical regions of the Qinghai-Tibet (Xizang) Plateau. - Sci. China (Ser. D). 39: 410-417, 1996.
  53. Ziska L.H. Evaluation of the growth response of six invasive species to past, present and future atmospheric carbon dioxide. - J. Exp. Bot. 54: 395-404, 2003. Go to original source...