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ABSTRACT. Developing ideas of [13], we introduce canonical cosimplicial coho-
mology of rational functions for infinite-dimensional Lie algebra formal series with
prescribed analytic behavior on domains of a complex manifold M. Differential
graded cohomology of a sheaf of Lie algebras G via the cosimplicial cohomology
of G-formal series for any covering by Stein spaces on M is computed. A rela-
tion between cosimplicial cohomology (on a special set of open domains of M)
of formal series of an infinite-dimensional Lie algebra G and singular cohomol-
ogy of auxiliary manifold associated to a G-module is found. Finally, multiple
applications in conformal field theory, deformation theory, and in the theory of
foliations are proposed.

AMS Classification: 53C12, 57R20, 17B69

1. INTRODUCTION

The continuous cohomology of Lie algebras of C'*°-vector fields [6, 11, 12] has
proven to be a subject of great geometrical interest. There exists the natural prob-
lem of calculating the continuous cohomology of holomorphic structures on complex
manifolds [13, 35, 22, 23, 16, 6].

In [13] Feigin obtained various results concerning (co)homologies of certain Lie al-
gebras associated to a complex curve M. For the Hodge decomposition of the tangent
bundle complexification of M corresponding Lie bracket in the space of holomorphic
vector fields extends to a differential Lie superalgebra structure on the Dolbeault
complex. This is called the differential Lie superalgebra I'(Lie(M)) of holomorphic
vector fields on M. The Lie algebra of holomorphic vector fields Liep (M) is defined
as the cosimplicial object in the category of Lie algebras obtained from a covering of
M by associating to any i1 < i < ... < 4, the Lie algebra of holomorphic vector
fields Lie(U;, N...NT;,).

In [13] the author calculates the continuous (co)homologies with coefficients in
certain one-dimensional representations 7., , of these Lie (super)algebras where c, 4
denotes the value of the central charge for corresponding Virasoro algebra. The
main result states that Ho(Liep(M),7.,,) is isomorphic to H(M,p,q), where the
representation 7., . is derived from a vacuum representation of the Virasoro alge-
bra, and H(M,p,q) is the modular functor for the minimal conformal field the-
ory [10]. The algebra H}(I'(Lie(M))) of continuous cohomologies acts naturally on
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H,(Liep(M),7., ), and the dual space is a free H(I'(Lie(M)))-module with gener-
ators in degree zero.

The paper [35] continues work of Feigin [13] and Kawazumi [23] on the Gelfand-
Fuks cohomology of the Lie algebra of holomorphic vector fields on complex manifolds.
To enrich the cohomological structure, one has to involve cosimplicial and differen-
tial graded Lie algebras well known in Kodaira-Spencer deformation theory. The
idea to use cosimplicial spaces to study the cohomology of mapping spaces goes back
at least to Anderson [1], and it was further developed in [6]. In [35] they compute
the corresponding cohomologies for arbitrary complex manifolds up to calculation of
cohomology of sections spaces of complex bundles on extra manifolds. The results
obtained are very similar to the results of Haefliger [16] and [6] in the case of C*° vec-
tor fields. Following constructions of [13] applications in conformal field theory (for
Riemann surfaces), deformation theory, and foliation theory were proposed. In addi-
tion to that, in [35] the Quillen functor scheme was used for the sheaf of holomorphic
vector fields on a complex manifold, and its fine resolution was given by the sheaf
of dz-forms with values in holomorphic vector fields, the sheaf of Kodaira-Spencer
algebras.

Let M be a smooth compact manifold and Vect(M) be the Lie algebra of vec-
tor fields on M. Bott and Segal [6] proved that the Gelfand-Fuks cohomology
H*(Vect(M)) is isomorphic to the singular cohomology H*(E) of the space E of
continuous cross sections of a certain fibre bundle £ over M. Authors of [27, 33]
continued to use advanced topological methods for more general cosimplicial spaces
of maps.

The main purposes of this paper are: to compute the cosimplicial version of coho-
mology of rational functions with prescribed analytic behavior on domains of arbitrary
complex manifolds, and to find relations with other types of cohomologies. We also
propose applications in conformal field theory, deformation theory, cohomology and
characteristic classes of foliations on smooth manifolds.

As it was demonstrated in [35], the ordinary cohomology of vector fields on com-
plex manifolds turns to be not the most effective and general one. In order to avoid
trivialization and reveal a richer cohomological structure of complex manifolds coho-
mology, one has to treat [13] holomorphic vector fields as a sheaf rather than taking
global sections. Inspite results in previous approaches, it is desirable to find a way
to enrich cohomological structure which motivates construction of more refined co-
homology description for non-commutative algebraic structures. The idea of rational
function cosimplician cohomology for complex manifolds was outlined in [13] in con-
formal field theory form (for Riemann surfaces) and is developing in this paper. In
particular, we study relations of the sheaf of rational functions associated to certain
Lie algebras to the sheaf g of vector valued differential forms.

2. RATIONAL FUNCTIONS WITH PRESCRIBED ANALYTIC BEHAVIOR

In this section the space underlying cohomological complexes is defined in terms
of rational functions with certain properties [20, 19]. Such rational functions depend
implicitly on an infinite number of non-commutative parameters.
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2.1. Rational functions with non-commutative parameters. In the whole body
of the paper we use the notation y = (y1,...,yn) for n > 0. Let M be an n-
dimensional complex manifold. Denote by p; be a set of [ points on M. We denote
by U; a set of domains such that p; € U;. Let z; be [ sets of n complex coordinates
in U; around origines p;. In this paper we consider meromorphic functions of several
complex variables defined on sets of open domains of M with local coordinates z;
which are extandable to rational functions on larger domains on M. We denote such
extensions by R(f(z;)).

Let G be an infinite-dimensional Lie algebra generated by g;, i € Z. Then let G be
a graded (with respect to a grading operator K¢) algebraic completion of a G-module.
Denote by F,C the configuration space of [ > 1 ordered coordinates in C'",

FinC = {2z, € C'" | 21y # zj1,i # j}.
We assume that there exists a non-degenerate bilinear form (.,.) on G, and denote
by G the space dual with respect to this form. In order to work with objects having

coordinate invariant formulation [3], for a set of G-elements g; we consider converging
rational functions f(x;) of z; € F},,C, with x; = (g, z;dz;), where z; are multiplied
by corresponding differentials dz;. Here we make use torsor notations [3] for x;.
Definition 1. For arbitrary 9 € C:', we call a map linear in g; and z;,

Fix o RO, f(x1)), (2.1)
a rational function in z; with the only possible poles at z;; = 21/, i # j. Abusing
notations, we denote F(x;) = R(¢, f(x;)).
Definition 2. We define left action of the permutation group S, on F(z;) by

o(F)(x1) = F(g1,Z0(i))-

2.2. Conditions on rational functions. Let z; € F},,C. Denote by T the trans-
lation operator [21]. We define now extra conditions on rational functions leading to
the definition of restricted rational functions.

Definition 3. Denote by (T¢); the operator acting on the i-th entry. We then define
the action of partial derivatives on an element F'(x;)

0., F(x)) = F((Tc)igi,21),
Y 0. F(x) = ToF(x), (2.2)

i>1
and call it Tg-derivative property.
Definition 4. For z € C, let
eTOF(x) = Flgnm +2). (2.3)

Let Ins;(A) denotes the operator of multiplication by A € C at the i-th position.
Then we define

F(gi, Ins;(2) z) = F(Ins;(e*79) g1, 2), (2.4)
are equel as power series expansions in z, in particular, absolutely convergent on the
open disk |z| < min;;{|zi; — 2|}
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Definition 5. A rational function has Kg-property if for z € C* satisfies zz; € F},,C,
MEF(x) = F(z"°g1, 2 ). (2.5)

2.3. Rational functions with prescribed analytical behavior. In this subsec-
tion we give the definition of rational functions with prescribed analytical behavior on
a domain of complex manifold M of dimension n. We denote by Py, : G — Gy, k € C,
the projection of G on G(). For each element g; € G, and z; = (g4, 2), z € C let us
associate a formal series Wy, (2) = W (z;) = Y ¢; ¥ dz, i € Z. Following [?, 19], we

keC
formulate

Definition 6. We assume that there exist positive integers 5(gi s, 917.;) depending
only on gy, giv; € Gfori, j=1,...,(l+k)n, k>0,i%j, 1 <U,1" <n. Let 1,
be a partition of (I + k)n = > l;, and k; =13 + -+ + l;_1. For (; € C, define h; =

i>1
F(Wg, ., (Zk,41,—C)), for i = 1,...,In. We then call a rational function F satisfying
properties (2.2)—(2.5), a rational function with prescribed analytical behavior, if under

the following conditions on domains,

2kip = Gil + |20, 40 = Gl < 1G = G,
fori, 5 = 1,...,k, 1 # j, and for p = 1,..., l;, ¢ = 1, ..., l;, the function
> F(Pyh;;(Q)r), is absolutely convergent to an analytically extension in zj4,
r, EZ™
independently of complex parameters (¢);, with the only possible poles on the di-
agonal of z;4 of order less than or equal to 5(gr i, g17,;). In addition to that, for
gi+k € G, theseries ) . F(W(gk, Pq(W(g, 1, 2k), Zk+1)), Is absolutely convergent
when z; # 2, i # j |zi| > |25| >0, fori =1,...,kand s =k+1,...,l + k and the
sum can be analytically extended to a rational function in z;4, with the only possible
poles at z; = z; of orders less than or equal to 5(g1,i, g1 ;)-

Form e Nand 1 <p <m—1, let J;,;, be the set of elements of S,,, which preserve
the order of the first p numbers and the order of the last m — p numbers, that is,

Imp={0€8Sn|ol)<---<a(p), op+1) <. <a(m)}.
Let J,,), = {0 | 0 € Jmyp}. In addition to that, for some rational functions require
the property:

Z (—1)llo(F(gy),2)) = 0. (2.6)
oeJ !

In;p

Finally, we formulate

Definition 7. We define the space ©(in,k,U) of | complex n-variable restricted
rational functions with prescribed analytical behavior on a Fj,,C-domain U C M and
satisfying To- and Kg-properties (2.2)—(2.5), definition (6), and (2.6).

3. PROPERTIES OF COSIMPLICIAL DOUBLE COMPLEX SPACES

In this section we define double complex spaces of restricted rational function
cohomology on a complex manifold M of dimension n.
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3.1. Cosimplicial double complex spaces. In [15] the original approach to coho-
mology of vector fields of manifolds was initiated. Another approach to cohomology
of the Lie algebra of vector fields on a manifold in the cosimplicial setup we find
in [13, 35]. Let U be a covering {U;} on M, and z;; be [ sets of local complex co-
ordinates on each domain U; aroud ! points p; ;. For a set of G-elements g;, and
differentials dz; ;, we consider x; ; = (g, 2;,; dz ;).

Definition 8. For a domain U C M, and I, k > 0, we denote by C*(0(in,1),U) the
space of all restricted rational functions ©(in, 1) with prescribed analytic behavior on
U depending on [ sets of n complex coordinates considered on U.

Remark 1. Note that according to our construction, M can be infinite-dimensional.
Thus, in that case, we consider [ infinite sets of complex coordinates. The set of In
G-elements g) plays the role of non-commutative parameters in our cohomological
construction.

Using the standard method of defining canonical (i.e., independent of the choice
of covering U) cosimplicial object [13, 35], we consider restricted rational functions
F(x;,;), and give the following

Definition 9. Choose a covering Y = {U;, i € I'} of n-dimensional complex manifold
M, where each U; is affine. Let us associate to any subset {i; < --- <} of I, the
space of restricted rational functions converging on the intersection {U;, N...NU;, }.
Let us introduce the space

ct =t o(n, kn), N U] (3.1)

i1 <. <ig,, k>0
We call this space a cosimplicial cohomology object in the category of algebras of
restricted rational functions on M.
3.2. Co-boundary operators. Let us take C? = G. Then we have
Clls - Ollc—la
when lower index is zero the sequence terminates. We also define
cr =) Cn
meN
For a set J = (ji), and a set x,, of p elements denote
%J = (5617...,§j17...,§?\jk,...,z‘p),
where 7 means omission of corresponding element. For sets J; = (1), J41 = (14 1),
and F € Cf, we define the operator D! by

l
DiF = F(W(x1), %) + Y _ (=1 F(W ()W (xi11)) + (=) F(W (x041), X1.,)-(3:2)

i=1

Then, using similar arguments as in the proof of proposition 4.1 of [19], we obtian
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Proposition 1. The operator (3.2) forms the double chain complex
Dy : G, = Gy, (3.3)
chtll °© D;C =0,
on the spaces (3.1), and one defines the l-th rational function cosimplicial cohomology
H}, of M to be H}, = Ker D}, /Im D7}

4. COSIMPLICIAL COHOMOLOGY OF RESTRICTED RATIONAL FUNCTIONS

4.1. Differential graded (co-)homology. In this subsection we recall certain facts
[35] on construction of differential graded (co-)homology. Let G be an infinite di-
mensional topological Lie algebra. Its (co-)homology is calculated by associating to
G a differential graded coalgebra C.(g) = (A*(g),d), and a differential graded alge-
bra C*(g) = (Hom(A*(g),C),d), the homological and the cohomological Chevalley-
FEilenberg complex. In consideration of tensor products of infinite dimensional topo-
logical vector spaces, we take completions, in particular, G of G. Let (9 = @), ¢°, 9),
be a cohomological differential graded Lie algebra (which we will denote dgla in no-
tations). There exist two functors, Cy 4y and Cj , associating to (g,0) differential
graded coalgebras C 44(g) and Cj,(g).

Definition 10. C, 44(g) is called the Quillen functor, [28].

It was explicitly constructed in [17]. The cohomology version was used in [16]
and [29]. Explicitly, it is given by

Cragle) = €D C4,(9)"= P S "(94+1)

k=p+q k=p+q

as graded vector spaces. Here S7P(g(441)) is the graded symmetric algebra S* on the
shifted by one graded vector space g(,41). Note that for gy # 0, we have in g(1) a
component of degree (—1). S7P(g(,+1)) is bigraded by the tensor degree —p and the
internal degree g which is induced by the grading of g(44.1). The differential on C 44(g)
is the direct sum of the graded homological Chevalley-Eilenberg [8] differential in the
tensor direction (with degree reversed in order to have a cohomological differential)
and the differential induced on S*(g(q+1))* by 0.

4.2. Cosimplicial sheaf formulation. Let us generale the construction of [15, 13,
35] and replace the algebra of holomorphic vector field used in [35], with n-formal
complex parameter series G(z) of an infinite-dimensional Lie algebra G. Now let us
transfer (as for the case of holomorphic vector fields in [35]) to the language of sheaves
of restricted rational functions defined for infinite-dimensional graded Lie algebras via
a non-degenerate form. Let M a complex manifold of dimension n. Denote by Fj;
the coherent sheaf of restricted rational functions on M, and consider Fj;-modules.
Let us denote by £y the sheaf of C*° functions on M. Denote by g(z) a sheaf of Lie-
algebraic n-parameter formal series represented (according definition (7) of restricted
rational functions) by Fps-module. In this case, the Lie bracket does not provide a
morphism of Fjs-modules. An action of the elements of the Lie algebra on f € Fyy
through Wy (z)-operators should be specified, i.e., this leads to the concept of twisted
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Lie algebras action., in particular, in the case when considering tensor products of
G(z) elements for Fjs. In the same way, let (g, 9) be a sheaf of differential graded Lie
algebras which are £jp/-modules. We denote by T'(g, M) the differential graded Lie
algebra of global sections of the sheaf g. As in [35], we can associate to g respectively to
(g, 0) sheaves of differential graded coalgebras C,(g) and C. 44(g). We obtain sheaves
of differential graded algebras C¢,,,(g), Cj,(g), and differential graded coalgebras

C.(T(8)), Cu.as(T(0)),

4.3. Computation of sheaf cohomology via cosimplicial rational function
cohomology. The main idea of this subsection is that we are able to compute the
graded differential algebra cohomology associated to a Lie algebra on a n-dimensional
complex manifold M via the restricted rational function cosimplicial cohomology for
this Lie algebra considered on special type of open domains on M. Since, in partic-
ular, the Cern-de Rham cohomological complex for a Lie algebra G formal series is a
subcomplex of the double complex of restricted rational functions for G, we find (fol-
lowing the lines of [17]) a relation between cohomologies of the sheaf Fj; of restricted
rational functions for a Lie algebra G formal series and the sheaf of graded differential
algebras associated to G. Developing ideas of [35, 8, 30], we now formulate

Definition 11. The cosimplicial cohomology of the complex C(G(z),U) of formal
series Lie algebra G(z) for a covering by Stein open sets U is the cohomology of the
realization of the simplicial cochain complex obtained from applying the continuous
Chevalley-Eilenberg complex as a functor C7,,,, to the cosimplicial Lie algebra. We
denote cosimplicial cohomology by H,,.

In the case when a sheaf g is given by differential algebra of [9], we construct, as
in [35], a morphism of simplicial cochain complexes

fN : C(}kg(g7 N*) — C:ont(g(z)a N*)a
induced by applying the modification of the Quillen functor €, to the inclusion

[ :G(2)(Narg) = 9(Nasyg),

Here, as in [35], N, denotes the thickened nerve of the covering U, i.e., the simplicial
complex manifold associated to the covering . By lemma 5.9 in [6], the morphism
f induces a cohomology equivalence between the realizations of the two simplicial
cochain complexes. The conditions of the lemma are fulfilled because of the iso-
morphism of the cohomologies on a Stein open set of the covering and the Kiinneth
theorem [35]. Using Proposition 6.2 of [6], and involving partitions of unity, one shows
that the cohomology of the realization of the simplicial cochain complex on the left
hand side gives the differential graded cohomology of I'(X, g). We finally obtain the
following

Proposition 2. On a complex manifold M of dimension n, one has

:dg(F(M7 g)) = H:: cos(C(g(z)7u))7
for any covering of M by Stein open sets U.
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4.4. Relation of cosimplicial and singular cohomology. Gelfand and Fuks [11]
calculated the cohomology of the Lie algebra of formal vector fields in n variables W,
i.e., is the Lie algebra of formal vector fields of n complex variables. In particular,
they proved [11, 12]

Theorem 1. There exists a manifold X (n) such that the continuous cohomology of
W, is equivalent to singular cohomology of X (n)

cont

In [6] they showed that for R™ or more generally a starshaped open set U of an
n-dimensional manifold M, the Lie algebra of C*°-vector fields Vect(U) has the same
cohomology as W,,. In [35] it was proven that the same is true for the Lie algebra of
holomorphic vector fields on a disk of radius R in C".

In this paper, we consider cohomology of restricted rational functions provided by
bilinear forms for arbitrary n-formal parameter Lie algebra G(z) series localized on
complex n-dimensional manifold M. We prove

Proposition 3. There exists a manifold X (n) such that the cosimplicial cohomology
of restricted rational functions on a complex manifold for G(z) is equivalent to singular
cohomology of X(n), i.e.,

H; . .(G(z), U) = H;

* COS * sing (X<G7 n))

Proof. Let us construct the special manifold X (n) present in (3). According to the
construction of Section 2.1, non-commutative coefficients of a formal Lie-algebraic
series are elements of a G-module G. For each element g; 1, kK € C, j > 7Z, associate
a diagram [26] representing it as action of generators on the union element. The
properties of non-degenerate bilinear form (.,.) allow us to find appropriate diagram
for the element g; of G dual to g5.k- Recall the chequered cycle construction for
elements g; 1 used in [26]. In this paper we assume that chequered cycle is in one to
one correspondence with the formation of an G-element, and all possible singularities
are missing. Associate a knot of such diagram to a point of X(n). Each point of
the G-cycle is endowed with a power of z;, j € Z. Let us associate to a point on
the G-cycle the zero power of z; the zero point of a local domain U; ob X (n). The
union V(G,n) of all chequered cycles together with local domains U; present in the
definition of the double complex constitutes the cells of a skeleton for G. Thus, we
obtain an analog of a 2n-skeleton for W, of formal vector fields. In contrast to [11, 12]
it is endowed with a power of j-th formal parameter z;. We define a map

m:V(G,n) = G(oo,n),

from the the G-skeleton to an infinite Grassmanian G(oco,n). Since the inverse image
of the union of the cells is not a manifold, we consider an open neighborhood of the
inverse image under 7 of the G-skeleton of the Grassmannian G(oco,n). The union of
such open neighborhoods constitutes the manifold X (p). We now describe the singular
cohomology of H} ., (X(G,n)) of X(n). This is the cohomology of double Lie-
algebraic complexes C},(O(n, k)) which is the union of complexes C!(0(1, k)) for each
local coordinate and g;i-generators. It coincides with the cosimplicial cohomology
H? ...(G(z),U) of W,, of n complex variables. O

* COS
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Note that another way to prove Proposition 3 is to use the same technique as
in [11, 12] since for the complex C%(G(z),U) there exist converging spectral sequences.
i.e., to show that an isomorphism of the Hochschild-Serre spectral sequence [18] for
the subalgebra gl(n) with the Leray spectral of the restriction to the 2n skeleton of
the universal U(n) principal bundle.

5. CONCLUSIONS

In this section we list multiple applications of the research of this paper are in
conformal field theory [13, 35, 3, 5, 10, 34], in deformation theory [2, 17], and in the
theory of foliations [7].

5.1. Applications in conformal field theory and moduli spaces. In [13, 4]
applications of cosimplicial computations on compact Riemann surfaces in conformal
field [10, 3, 5] theory were treated. As we deal with special homology, we replace
the sheaf of holomorphic vector fields by the sheaf of rational functions associated to
corresponding Lie algebra. In [13], for Riemann surface ¥(9), Feigin calculated the
cosimplicial homology of Lie(X(9)) with values in the representations mentioned in
Introduction. It is possible to compute cosimplicial homology of a space of rational
function complexes associated to various Lie algebras. The space of coinvariants on
the right hand side defining so-called modular functor is usually associated to locally
defined objects. We will obtain its homological description in terms of globally defined
objects. The space of coinvariants supposed to be the continuous dual to the local
ring completion of the moduli space of compact Riemann surfaces of genus g > 2 at
the point (9| provided that £(9) is a smooth point. This gives an important link
between Lie algebra homology and the geometry of the moduli space.

5.2. Applications in deformation theory. Deformations of complex manifolds.
Cosimplician considerations above are applicable to cohomology computations in the
deformation theory of complex manifolds [25, 13, 17, 14]. The completion of a local
ring of moduli space at a given point M is isomorphic to the dual of the Lie algebra
of M-infinitesimal automorphisms zero-th homology group. This links Lie algebra
homology and geometry of the moduli space in a formal neighborhood of a point. We
expect results in this direction for higher dimensional complex manifolds. In [35] we
find the condition for the first cohomology in the case of higher dimensional complex
manifolds M. For restricted function cohomology one can consider also related the
deformation theory following Kodaira and Spencer [24].

Deformations of Lie algebras. It is well known that the Lie algebra cohomology
with values in the adjoint representation H*(L, L) of a Lie algebra L answers ques-
tions about deformations of L as an algebraic object. For example, H?(L, L) can
be interpreted as the space of equivalence classes of infinitesimal deformations of L,
see [11, 12]. There arise natural questions of this type for differential bi-graded Lie
algebras resulting from chain complex constructions. For a disk D C C”, holomor-
phic vector fields are rigid, i.e., [35] HZ,,,(Hol(D), Hol(D)) = 0. Using cosimplicial
cohomology results, we will study rigidity of differential bi-graded Lie algebras result-
ing from chain complex constructions. For a compact Riemann surface £(9) of genus
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g > 2, we expect to find a relations for cohomologies in terms of elements of Fréchet
spaces given by the polynomials on Ty, M (g,0). It’s the space of formal power series
on TxM(g,0)*. This could be interpreted as a relation between cohomology with
adjoint coefficients of g, i.e., differential graded deformations of global sections of g,
and deformations of the underlying manifold. As it is explained in [13, 35], the choice
of the coefficients in the Lie algebra cohomology determines a geometric object on the
moduli space in a formal neighborhood of a point. Namely, trivial coefficients corre-
spond to the structure sheaf, adjoint coefficients correspond to vector fields, adjoint
coefficients in the universal enveloping algebra correspond to differential operators.

5.3. Applications in foliation theory. Applications in foliation theory are inspired
by the link between cohomology of Lie algebras and characteristic classes of foli-
ations [11, 12]. In [35] the author considered the case of characteristic classes of
g-structures. For a complex manifold M, and U = {U,};c; a covering of M by open
sets such that I is a countable directed index set, consider the sheave of rational
functions in cosimplicial setup given above. Denote by Wa, |0 the Lie subalgebra of
Wa, generated by the a%i for i =1,...,n. Given a structure of rational functions as-
sociated to such a covering, we obtain that the space of moduli of {wy }yey is isomor-
phic to the moduli space of Wa,, |po-valued differential forms w. To such a structure
we may assign as in [35] characteristic classes by considering H*(|C%,,..(C(U, F))]).
The cosimplicial rational function structure is defined such that by inserting p-times
XUion...nu,, into each ¢ € Cooni(I1; < i F(Uip N...N T3, ), one associates an el-
ement x of the generalized Cech-de Rham complex associated to the covering & on
M. By the standard reasoning this x provide a well-defined cohomology class [x], the
characteristic class associated to the cosimplicial F-structure.
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