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Summary 

Chronic hypoxia alters respiratory muscle force and fatigue, 

effects that could be attributed to hypoxia and/or increased 

activation due to hyperventilation. We hypothesized that chronic 

hypoxia is associated with phenotypic change in non-respiratory 

muscles and therefore we tested the hypothesis that chronic 

hypobaric hypoxia increases limb muscle force and fatigue. Adult 

male Wistar rats were exposed to normoxia or hypobaric hypoxia 

(PB=450 mm Hg) for 6 weeks. At the end of the treatment 

period, soleus (SOL) and extensor digitorum longus (EDL) 

muscles were removed under pentobarbitone anaesthesia and 

strips were mounted for isometric force determination in Krebs 

solution in standard water-jacketed organ baths at 25 °C. 

Isometric twitch and tetanic force, contractile kinetics, force-

frequency relationship and fatigue characteristics were 

determined in response to electrical field stimulation. Chronic 

hypoxia increased specific force in SOL and EDL compared to 

age-matched normoxic controls. Furthermore, chronic hypoxia 

decreased endurance in both limb muscles. We conclude that 

hypoxia elicits functional plasticity in limb muscles perhaps due to 

oxidative stress. Our results may have implications for respiratory 

disorders that are characterized by prolonged hypoxia such as 

chronic obstructive pulmonary disease (COPD). 
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Introduction 
 

Chronic hypoxia occurs in humans in a variety 
of circumstances, including respiratory disease and 
exposure to altitude. The effects of chronic continuous 
hypoxia on skeletal muscle structure have been well 
investigated. In rats, limb muscles generally show a 
transition from slow to fast phenotype (Sillau and 
Branchero 1977, Itoh et al. 1990, Bigard et al. 1991, 
Ishihara et al. 1995, Mortola and Naso 1995, Faucher et 
al. 2005), although Shiota et al. (2004) observed the 
opposite shift and no change has been observed in some 
muscles (Bigard et al. 1991, Ishihara et al. 1995, Shiota 
et al. 2004). Chronic hypoxia has also been shown to 
cause angiogenesis in skeletal muscle (Smith and 
Marshall 1999). In humans, limb muscle fibre diameter 
is reduced but fibre type is unaffected by altitude 
exposure (Green et al. 1989, MacDougall et al. 1991) 
and recently Edwards et al. (2009) reported atrophy in 
skeletal muscle with maintained function. There is good 
evidence that chronic altitude exposure leads to a 
decrease in mitochondrial function and aerobic 
metabolism (Green et al. 1989, Hoppeler et al. 2003, 
Murray 2009). Patients with chronic obstructive 
pulmonary disease (COPD) have reduced aerobic 
metabolism in limb muscles (Gertz et al. 1977) and they 
show evidence of fibre atrophy and a higher proportion 
of fast fibres (Hildebrand et al. 1991, Whittom et al. 
1998, Debigare et al. 2003), which could be influenced 
by a number of factors including hypokinesis and 
chronic hypoxia (Man et al. 2009). 

Functional studies in humans exposed to 
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altitude, examining muscle contraction and endurance 
have been inconsistent in their findings (Garner et al. 
1990, Fulco et al. 1994, Kayser et al. 1994, Caquelard et 
al. 2000) but there is evidence of increased muscle 
fatigability after altitude exposure (Caquelard et al. 2000) 
and in COPD (Zattara-Hartmann et al. 1995). We 
previously reported that chronic hypobaric hypoxia alters 
isolated rat respiratory muscle force and fatigue  
(El-Khoury et al. 2003). We have also demonstrated that 
chronic intermittent hypoxia – modelling human sleep 
apnoea – alters respiratory and limb muscle endurance 
(McGuire et al. 2002a,b, 2003, Bradford et al. 2005, 
Dunleavy et al. 2008). This suggests a generalized effect 
of hypoxia on skeletal muscle. Because of the increased 
activity in the respiratory muscles of rats exposed to 
chronic continuous and chronic intermittent hypoxia – 
due to hyperventilation – a ‘training’ effect i.e. activity-
dependent plasticity may at least in part explain 
functional changes in active muscles exposed to chronic 
hypoxia. We speculated that 6 weeks of chronic 
hypobaric hypoxia, sufficient to cause functional 
plasticity in respiratory muscle (El-Khoury et al. 2003), 
would also elicit widespread effects on skeletal muscle 
function. Therefore, the present study sought to determine 
the effects of chronic hypobaric hypoxia on rat slow-
twitch (soleus, SOL) and fast-twitch (extensor digitorum 
longus, EDL) muscle contractile and endurance 
properties. We hypothesized that chronic hypoxia 
increases limb muscle fatigue.  
 
Methods 
 
Animal care 

All procedures were performed in accordance 
with National and European legislation under licence 
from the Irish Government Department of Health and 
Children with additional institutional approval from the 
Royal College of Surgeons in Ireland animal research 
ethics committee. Adult male Wistar rats (~10 weeks old) 
were randomly assigned to control (N=12) or hypoxia 
(N=15) groups. The hypoxia group was placed in a 
hypobaric chamber at an ambient pressure of  
450 mm Hg (inspired PO2=85 mm Hg). Decompression 
and recompression were performed gradually over 
1-2 hours. Recompression for cage cleaning and food and 
water replenishment occurred every 2-3 days. Age-
matched control rats remained at sea-level pressure in the 
same room in parallel. 
 

In vitro muscle preparation 
After 6 weeks, animals were anaesthetized with 

an intra-peritoneal injection of sodium pentobarbitone 
(70 mg/kg body weight). A midline cervical incision was 
made and a tracheal cannula inserted through which the 
animals could breathe spontaneously. Whole SOL and 
EDL muscles with tendinous insertions intact were 
removed. Blood samples were taken for detemination of 
haematocrit. Animals were euthanized with an overdose 
of anaesthetic. After removal, the muscles were placed in 
a bath at room temperature containing continuously 
gassed (95 % O2/5 % CO2) Krebs solution. The solution 
contained in mM: NaCl 120, KCl 5, Ca2+ gluconate 2.5, 
MgSO4 1.2, NaH2PO4 1.2, NaHCO3 25 and glucose 11.5. 
Strips of muscle were prepared and then suspended 
vertically in Krebs solution in water-jacketed organ baths 
at 25 °C (pH 7.4). The physiological stability of rat 
skeletal muscle in vitro is temperature-dependent and 
stability for muscle strips of 1-2 mm diameter is better at 
25 °C compared to the in vivo temperature of 37 °C 
(Segal and Faulkner 1985). The strips were suspended 
between a pair of platinum electrodes, with the base fixed 
to an immobile hook and the other end tied to an 
isometric force transducer. The position of the force 
transducer could be adjusted by a micro-positioner, thus 
altering preload. 

 
Protocol 

After an equilibration period of 30 min, the 
optimal length (i.e. muscle length producing maximal 
isometric twitch force) was determined. The muscle was 
held at this length for the remainder of the experiment. The 
single isometric twitch force, contraction time, half-
relaxation time, force-frequency relationship and fatigue 
characteristics of the muscles were determined in response 
to electrical field stimulation and were recorded using 
a commercial data acquisition system and stored for later 
analysis on a computer. First, a single twitch was elicited 
(supra-maximal voltage, 1 ms duration). Twitch force, 
contraction time (time to peak force) and half-relaxation 
time (time for peak force to decay by 50 %) were 
determined. Next, force-frequency relationship was 
determined by sequentially stimulating the muscle strips at 
10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 Hz for 300 ms at 
each stimulus frequency allowing a 2 min recovery interval 
between each stimulus. Ten min following this force-
frequency protocol, fatigue was induced by stimulation at 
40 Hz with 300 ms trains at 0.5 Hz for 5 min. Force was 
measured at 1 min intervals during fatigue. 
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Data analysis 

Specific force was calculated in N/cm2 of 
muscle cross-sectional area. The latter was 
approximated by weighing the muscle strip at the end of 
the experimental protocol and dividing this by the 
product of optimal length and muscle density (assumed 
to be 1.056 g/cm3). The force transducers were 
calibrated using known weights. The contraction time 
and half-relaxation time were measured as indices of 
isometric twitch kinetics. For the force-frequency 
relationship, the values were normalized by expressing 
force at each of the different stimulus frequencies as 
a percentage of the maximum tetanic force developed 
during each trial. For the fatigue protocol, values were 
normalized by expressing the force generated at each 
1 min time point, as a percentage of the initial force at 
the beginning of the fatigue trial. Absolute and 
normalized values are expressed as mean ± S.E.M. 
Statistical comparisons between control and hypoxia 
groups were performed using Student’s t test or one-
way ANOVA and Fischer’s least significant difference 
test as appropriate with P<0.05 taken as significant in 
all tests. 
 
Results 
 
General 

The body weight of the hypoxic rats was 
significantly lower than control animals after 6 weeks 
(308±8 g vs. 275±5 g, control vs. hypoxia, P<0.05, 
Student’s t test). Furthermore, the haematocrit was 
significantly higher in the hypoxia group (51±2 % vs. 
64±2 %, mean ± S.E.M., control vs. hypoxia, P<0.05, 
Student’s t test). 

 
Soleus  

Chronic hypobaric hypoxia caused a significant 
increase in twitch and peak tetanic force (Table 1). 
Contraction time was unaffected by hypoxia, but half-
relaxation time was significantly prolonged (Table 1). 
Chronic hypoxia had no effect on the force-frequency 
relationship (Fig. 1A) but decreased SOL muscle 
endurance (Fig. 1B). Fatigue was significantly decreased 
after 4 and 5 min of the repeated muscle stimulation trial; 
one can see from Figure 1B that the fatigue curves for 
normoxic and chronic hypoxic muscles diverge 
considerably after 4 min of stimulation. The magnitude of 
the decline in fatigue tolerance in hypoxic muscles would 
presumably have continued to increase with extended time. 
 

Table 1. Contractile properties of soleus (SOL) and extensor 
digitorum longus (EDL) muscles from normoxic and chronically 
hypoxic rats. 
 

 Normoxia Hypoxia 

SOL (N=12) (N=14) 
Twitch force (N/cm2) 2.0±0.2 2.8±0.2* 
Contraction time (ms) 72±3 70±3 
Half-relaxation time (ms) 70±4 97±4* 
Tetanic force (N/cm2) 9.0±12.1 12.1±0.9* 
Twitch/Tetanus ratio 0.23±0.03 0.24±0.01 

EDL (N=10) (N=15) 

Twitch force (N/cm2) 2.5±0.3 3.8±0.4* 
Contraction time (ms) 32±2 33±2 
Half-relaxation time (ms) 22±6 25±2 
Tetanic force (N/cm2) 8.5±1.8 10.9±1.1 
Twitch/Tetanus ratio 0.35±0.04 0.35±0.01 

 
Values are mean ± S.E.M. * indicates significant difference from 
corresponding value in normoxic control rats; P<0.05, Student’s 
t test. 
 
 

 
 
Fig. 1. Force-frequency relationship (A) and fatigue 
characteristics (B) for soleus muscle in normoxic (N=12) and 
chronically hypoxic (N=14) rats. Values are mean ± S.E.M. In A, 
values are expressed at each stimulus frequency as a percentage 
of the peak tetanic force developed during the trial. In B, values 
are expressed at each time point as a percentage of the initial 
force at the beginning of the fatigue trial (time 0). * indicates a 
significant difference from normoxia (control); P<0.05, ANOVA. 
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Extensor digitorum longus  

Chronic hypoxia caused a significant increase in 
twitch force with no effect on contractile kinetics 
(Table 1). Peak tetanic force was increased but this did 
not achieve statistical significance (Table 1). Chronic 
hypoxia caused a significant left-shift in the force-
frequency relationship (Fig. 2A), which was different to 
the response seen in SOL (Fig. 1A). Chronic hypoxia 
significantly decreased EDL endurance (Fig. 2B). This 
was significant after 3 min of the fatigue trial. Unlike 
SOL, the increased fatigue in hypoxic muscles appeared 
to have reached a plateau within the 5 min time trial. 
 
 

 
 
Fig. 2. Force-frequency relationship (A) and fatigue 
characteristics (B) for extensor digitorum longus muscle in 
normoxic (N=10) and chronically hypoxic (N=15) rats. Values are 
mean ± S.E.M. In A, values are expressed at each stimulus 
frequency as a percentage of the peak tetanic force developed 
during the trial. In B, values are expressed at each time point as 
a percentage of the initial force at the beginning of the fatigue 
trial (time 0). * indicates a significant difference from normoxia 
(control); P<0.05, ANOVA. 
 
 
Discussion 
 

The main finding of this study is that chronic 
hypobaric hypoxia increases specific force and fatigue in 
rat slow-twitch and fast-twitch limb muscles; however 

differences in the effects of hypoxia on SOL and EDL 
were noted. Surprisingly little is known about the effects 
of chronic hypoxia on skeletal muscle contractile and 
endurance characteristics. In humans, chronic hypoxia 
has generally been reported to have little effect on force 
and fatigue (Garner et al. 1990, Fulco et al. 1994, Kayser 
et al. 1994), although forearm force and endurance were 
reduced after 32 days of high altitude exposure 
(Caquelard et al. 2000). Regarding the chronic hypoxia of 
respiratory disease, chronic hypoxaemic patients are 
reported to have reduced respiratory and limb muscle 
force and endurance (Zattara-Hartmann et al. 1995, 
Polkey et al. 1996), but this may relate to other factors 
associated with chronic respiratory disease (e.g. 
hyperinflation/loading, fibre atrophy, inflammation, 
nutritional status, hypokinesis etc) rather than hypoxia 
per se (Man et al. 2009). There have been relatively few 
studies of the effects of chronic hypoxia on isolated 
skeletal muscle function (Itoh et al. 1990, Shiota et al. 
2004, Faucher et al. 2005). Using isolated in vitro muscle 
preparations allows the accurate determination of muscle 
functional characteristics independent of a number of 
potentially confounding variables in vivo such as: oxygen 
and nutrient supply, neuromuscular excitability, and 
muscle cross-sectional area, temperature and initial fibre 
length. We acknowledge too however that there are 
significant limitations associated with isolated muscle 
preparations. Prolonged incubation of muscle bundles in 
Krebs may have led to tissue swelling; we did not 
measure tissue mass at the start of the protocol for 
comparison to mass at the end of the study so we cannot 
rule out this possibility. Moreover, we assume that 
functional changes in vitro are reflective of muscle 
performance in vivo but this may not necessarily be the 
case. Itoh et al. (1990) reported that chronic hypobaric 
hypoxia (10 weeks at a simulated altitude of 4.000 m) in 
rats resulted in a reduction in force and fatigue in the 
EDL muscle but SOL muscle was unaffected. Faucher et 
al. (2005) reported that chronic hypoxia (FiO2 = 0.10 for 
4 weeks) increased SOL muscle force but decreased EDL 
force and endurance whilst others reported that chronic 
hypobaric hypoxia (6 weeks at a simulated altitude of 
5.000 m) had no effect on limb muscle force or fatigue 
(Shiota et al. 2004). In single fibre studies, SOL muscle 
force was decreased an effect attributed to decreased 
myosin content (Degens et al. 2010). One plausible 
explanation for the different findings in these studies may 
be differences in the duration and intensity of chronic 
hypoxia as well as different methodological approaches. 
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We have recently shown that respiratory muscle re-
modelling during sustained hypoxia is time-dependent 
(McMorrow et al. 2011). Moreover, the effects of chronic 
hypoxia on respiratory muscle endurance are dependent 
on the severity of the hypoxic challenge and the intrinsic 
structural and metabolic properties of the muscles studied 
(El-Khoury et al. 2003, McMorrow et al. 2011).  

In the present study, chronic hypoxia increased 
force and fatigue of both SOL and EDL muscles. It is 
possible that fibre-type transition towards glycolytic 
metabolism drives this functional change. Chronic 
hypoxia has been shown to cause an increase in fast 
fibres in the EDL and plantaris muscle (Bigard et al. 
1991), in anterior tibialis and gastrocnemius (Sillau and 
Banchero 1977) and in SOL if hypoxic exposure occurred 
during development (Ishihara et al. 1995) but not during 
adult life (Sillau and Banchero 1977, Bigard et al. 1991, 
Ishihara et al. 1995). Hypoxia-induced inhibition of 
growth-related transitions in fibre phenotype in limb 
muscles has been proposed (Faucher et al. 2005). The 
increase in force observed in the present experiments 
would be consistent with a transition to fast fibres since 
fast fibres generate more force than slow fibres. The 
increase in muscle fatigue would also be consistent with a 
transition to fast fibres since the latter have low fatigue 
resistance. However, in a recent study (McMorrow et al. 
2011) we showed that chronic hypobaric hypoxia does 
not alter fibre distribution or oxidative capacity in rat 
limb muscle. At the molecular level, one might speculate 
that myostatin is implicated in hypoxic adaptation in 
skeletal muscle (Hayot et al. 2011). We suggest that 
redox modulation of muscle function underlies the 
functional changes reported herein. Reactive oxygen 
species (ROS) are important signalling molecules in 
muscle but oxidative stress is implicated in muscle 
fatigue. We have shown that respiratory muscle 
dysfunction in a rat model of chronic intermittent hypoxia 
is prevented by antioxidant treatment (Skelly et al. 2012). 

It would be interesting to explore the effects of 
antioxidant supplementation on skeletal muscle function 
in sustained hypoxia. 

The observed changes in muscle function in both 
slow-twitch and fast-twitch limb muscles suggest a 
widespread effect of chronic hypoxia on skeletal muscle. 
Recently, a study of the effect of acute hypoxia on fatigue 
development in rat limb muscles studied in vivo clearly 
demonstrated that hypoxia induces greater fatigue in 
hindlimb muscle composed primarily of fibres with low 
oxidative capacity compared with that of a muscle with a 
more oxidative phenotype (Howlett and Hogan 2007). 
Concomitant with this apparent increased hypoxic 
sensitivity in fast muscle were greater increases in 
cellular metabolites such as lactate, hydrogen ions, 
inorganic phosphate, and free ADP and AMP (Howlett 
and Hogan 2007), all of which are known to correlate 
with skeletal muscle fatigue (Allen et al. 1995, 
Westerblad and Allen 2003). However, in vivo, 
differential effects of hypoxia on muscle function may 
also be related to differences in oxygen delivery and 
uptake between muscle groups. The results of our study 
suggest that at the level of the muscle fibre, chronic 
hypoxia causes phenotypic plasticity that is qualitatively 
similar in limb muscles of different structural make-up, 
though it is interesting to note that the magnitude of the 
hypoxia-induced increase in muscle fatigue was greater in 
the fast EDL muscle. We conclude that chronic systemic 
hypoxaemia has widespread effects on skeletal muscle. 
Our results have relevance to respiratory disorders that 
are characterized by prolonged hypoxia such as COPD 
where limb muscle fatigue is known to occur.  
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