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REDUCTION COHOMOLOGY OF RIEMANN SURFACES

A. ZUEVSKY

Abstract. We study the algebraic conditions leading to the chain property of

complexes for vertex algebra n-point functions with differential being defined

through reduction formulas. The notion of the reduction cohomology of Riemann
surfaces is introduced. Algebraic, geometrical, and cohomological meanings of

reduction formulas is clarified. A counterpart of the Bott-Segal theorem for

Riemann surfaces in terms of the reductions cohomology is proven. It is shown
that the reduction cohomology is given by the cohomology of n-point connections

over the vertex algebra bundle defined on a genus g Riemann surface Σpgq. The

reduction cohomology for a vertex algebra with formal parameters identified with
local coordinates around marked points on Σpgq is found in terms of the space of

analytical continuations of solutions to Knizhnik-Zamolodchikov equations. For

the reduction cohomology, the Euler-Poincare formula is derived. Examples for
various genera and vertex cluster algebras are provided.

1. Introduction

The natural problem of computation continuous cohomologies for non-commutative
structures on manifolds has proven to be a subject of great geometrical interest
[BS, Kaw, PT, Fei, Fuks, Wag]. As it was demonstrated in [Fei, Wag], the ordinary
Gelfand-Fuks cohomology of the Lie algebra of holomorphic vector fields on complex
manifolds turns to be not the most effective and general one. For Riemann surfaces,
and even for higher dimension complex manifolds, the classical cohomology of vector
fields becomes trivial [Kaw]. The Lie algebra of holomorphic vector fields is not always
an interesting Lie algebra. For example, it is zero for a compact Riemann surface of
genus greater than one, and one looks for other algebraic objects having locally the
same cohomology. In [Fei] Feigin obtained various results concerning (co)-homology
of the Lie algebra cosimplicial objects of holomorphic vector fields LiepMq. Inspite
results in previous approaches, it is desirable to find a way to enrich cohomological
structures which motivates constructions of more refined cohomology description for
non-commutative algebraic structures. In the seminal paper [BS], the authors have
been proven that the Gelfand-Fuks cohomology H˚pV ectpMqq of vector fields on a
smooth compact manifold M is isomorphic to the singular cohomology of the space of
continuous cross sections of a certain fibre bundle over M . An important problem of
revealing relations between non-commutative structures and geometrical objects on
complex manifolds still remains underinvestigeted in the literature [PT].

Key words and phrases. Cohomology; Vertex algebras; Riemann surfaces; Cluster algebras.
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The main idea of this paper is to introduce and compute the reduction cohomology
vertex algebras [B, FLM, FHL, K] with formal parameters considered as local coordi-
nates on a genus g compact Riemann surface [FK, Bo, Gu, A] is to study cohomology
of spaces of converging functions with respect to adding new sets of pairs of vertex
algebra elements and corresponding formal parameters [BZF, DGM, DL, EO, FMS].
Due to structure of correlations functions [FMS] and reduction relations [Y, Zhu,
MTZ, GT, TW] among them, one can form chain complexes of n-point functions that
are fine enough to describe local geometry of Riemann surfaces. Another meaning
of the reduction cohomology of Riemann surfaces is how sections of certain bundles
with values in higher genus generalizations of elliptic funtions change along growing
of number of marked points on a surface. In addition to that we prove a version of the
Bott-Segal [BS, Wag, PT] theorem for compact Riemann surfaces of arbitrary genus.
It relates the reduction cohomology with cohomology of a space of sections of cer-
tain vertex algebra bundle [BZF]. Our new vertex algebra approach to cohomology
of compact Riemann surfaces involves Lie-algebraic formal series with applications
of techniques used in surgery of spheres [Huang]. In contrast to more geometrical
methods, e.g., in ordinary cosimplicial cohomology for Lie algebras [Fei, Wag], the
reduction cohomology pays more attention to the analytical structure of elements of
chain complex spaces. Computational methods involving reduction formulas proved
their effectiveness in conformal field theory, geometrical descriptions of intertwined
modules for Lie algebras, and differential geometry of integrable models. In section
2 we give the definition of the reduction cohomology and prove a proposition re-
lating it to cohomology of a vertex algebra bundle in terms of n-point connections.
In section 3 the main proposition expressing the reduction cohomology in terms of
spaces of auxiliary functions on Riemann surfaces is proven. Results of this paper
are useful for cosimplisial cohomology theory of smooth manifolds, generalizations of
the Bott-Segal theorem have their consequences in conformal field theory [Fei, Wag],
deformation theory [O], non-commutative geometry, modular forms, and the theory
of foliations.

2. Chain complex for vertex algebra n-point functions

2.1. Spaces of n-point correlation functions. In this section we recall definitions
and some properties of correlation functions for vertex algebras on Riemann surfaces
[FHL, Zhu, FMS, DGM]. Let us fix a vertex algebra V . Depending on its commutation
relations and configuration of a genus g Riemann surface Σpgq, the space of all V n-
point functions can contain various forms of complex functions defined on Σpgq.

We denote by vn “ pv1, . . . , vnq P V
bn a tuple of vertex algebra elements (see

Appendix 5 for definition of a vertex algebra). Mark n points pn “ pp1, . . . , pnq on a
Riemann surface of genus Σpgq. Denote by zn “ pz1, . . . , znq local coordinates around
pn P Σpgq. Let us introduce the notation: xn “ pvn, znq. On a genus g Riemann

surfaces an n ě 0-point correlation function F pgqn

`

xn, B
pgq

˘

has certain specific form

depending on g, construction of a Riemann surface Σpgq, type of conformal field the-
ory model used for definitions of n-point functions, and the type of commutation
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relations for V -elements. In addition to that, it depends on a set of moduli param-
eters Bpgq P Bpgq where we denote by Bpgq a subset of the moduli space of genus g
Riemann surfaces Σpgq obtained by specific ways of sewing of lower genus Riemann
surfaces. In particular, for n-point functions considered on Riemann surfaces, Bpgq is
an element of the space [Y] Bpgq “

`

Ωpiq; pεiq; pρiq; pmuiq
˘

, 0 ď i ď g, where vectors
pεiq, pρiq, are Riemann surface sewing parameters [Y], pµiq are any further modular
space parameters, and Ωpiq is the period matrix of corresponding Riemann surface
Σpgiq used in the procedure of Σpgq construction.

Definition 1. For a Riemann surface of genus g, and a V -module W , we consider
the spaces of n-point correlation functions

CnpgqpW q “
!

F pgqW,n

´

xn, B
pgq

¯

, n ě 0,
)

.

In what follows, we will omit where possible W and Bpgq. The co-boundary oper-
ator δn

pgqpvn`1q on Cn
pgqpW q-space is defined according to the reduction formulas for

V -module W on a genus g Riemann surface (cf. particular examples in subsections
4.1–4.5, [Zhu, MTZ, GT, TW]).

Definition 2. For g ě 0, n ě 0, and any xn`1 P V ˆ C, define

δnpgq : CnpgqpW q Ñ Cn`1
pgq pW q,

δpgqn “ Hpgq “ H
pgq
1 `H

pgq
2 , (2.1)

with non-commutative operators H
pgq
1 pxn`1q, H

pgq
2 pxn`1q given by

H
pgq
1 pxn`1q F pgqn pxnq “

lpgq
ÿ

l“1

f
pgq
1 pxn`1, lq T

pgq
l F pgqn pxnq ,

H
pgq
2 pxn`1q F pgqn pxnq “

n
ÿ

k“1

ÿ

mě0

f
pgq
2 pxn`1, k,mq

¨T
pgq
k pvn`1pmqq F pgqW,n pxnq , (2.2)

where lpgq ě 0 is a constant depending on g, and the meaning of indexes 1 ď k ď n,
1 ď l ď lpgq, m ě 0 explained below.

Operator-valued functions f
pgq
1 pxn`1, lq T

pgq
l , f

pgq
2 pxn`1, k,mq. T

pgq
k pvn`1pmqq de-

pend on genus of a Riemann surface Σpgq. T
pgq
l and T

pgq
k pvpmqq are operators of

insertion of certain function of vertex algebra modes into F pgqW,n pxnq at the k-th entry:

T
pgq
l,k pvpmqq F

pgq
W,n pxnq “ F pgqW,n

´

T
pgq
l pvpmqq.xn

¯

,

where we use the notation

pγ.qk xn “ px1, . . . , γ.xk, . . . , xnq ,

for an operator γ acting on k-th entry. Note that commutation properties ofH
pgq
1 pxn`1q

and H
pgq
2 pxn`1q depend on genus g. The reduction formulas have the form:

F pgqW,n`1 pxn`1q “ Hpgqpxn`1q F pgqW,n pxnq , (2.3)
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for n ě 0.

Remark 1. The author’s conjecture (based on [Y, MT, MTZ, TZ, GT, TW, BKT])
is that for all possible configurations of a genus g Riemann surface, the form of the
reduction relations (2.2) is coinvariant and it is given by a sum of operators acting on
the an n-point correlation function

F pgqW,n pxn`1q “
ÿ

1ďlďlpgq
mě0,kě0

f pgq pxn`1, k, l,mq T
pgqpk, l,mq F pgqW,n pxnq .

Remark 2. The reductions formulas have an interpretation in terms of torsors [BZF]
(Chapter 6). In such formulation xn is a torsor with respect to the group of trans-

formation of the space V b n ˆ Cn. In particular, from (2.3) we see that T
pgq
k pupmqq-

operators act on V b n-entries of xn in F pgqW,npxn, B
pgqq, while T

pgq
k,l -operators act on zn

of F pgqW,npxn, B
pgqq as a complex function.

For n ě 0, let us denote by Vn the subsets of all xn`1 P V
bn ˆ Cn, such that the

chain condition
Hpgqpxn`1q H

pgqpxnq F pgqW,n pxnq “ 0, (2.4)

for the coboundary operators (2.2) for complexes Cn
pgqpW q is satisfied.

Explicitly, the chain condition (2.4) leads to an infinite n ě 0 set of equations

involving functions f
pgq
1 pxn`1, lq, f

pgq
2 pxn`1, k,mq, and F pgqW,n pxnq:

´

lpgq
ÿ

l1“1, l“1

f
pgq
1

`

xn`2, l
1
˘

f
pgq
1

´

xn`1, l;B
pgq

¯

T
pgq
l1 T

pgq
l

`

lpgq
ÿ

l1“1,

n
ÿ

k“1

ÿ

mě0

f
pgq
1
pgq

`

xn`2, l
1
˘

f
pgq
2 pm, kq T

pgq
l1 T

pgq
k pvn`1pmqq

`

n`1
ÿ

k1“1

ÿ

m1ě0

lpgq
ÿ

l“1,

f
pgq
2

`

k1,m1
˘

f
pgq
1 pxn`2, lq T

pgq
k1 pvn`1pm

1qq T
pgq
l

`

n`1
ÿ

k1“1

n
ÿ

k“1

ÿ

m1,
mě0

f
pgq
2

`

k1,m1
˘

f
pgq
2 pk,mq T

pgq
k1 pvn`2pm

1qq T
pgq
k pvn`1pmqq

¯

.F pgqW,n pxnq “ 0. (2.5)

Remark 3. (2.5) contain finite series and narrows the space of compatible n-point
functions. The subspaces of Cn

pgqpW q, g ě 0, n ě 0, of genus g n-point functions such

that the condition (2.5) is fulfiled for reduction cohomology complexes are non-empty.
Indeed, for all g, the condition (2.5) represents an infinite n ě 0 set of functional-
differential equations (with finite number of summands) on converging complex func-

tions F pgqW,npxnq defined for n local complex variables on a Riemann surface of genus g

with functional coefficients f
pgq
1 pvn`1, lq and f

pgq
2 pk,mq (in our examples in subsection

4.1–4.5, these are generalizations of genus g elliptic functions) on Σpgq. Note that (see
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examples in Sectiion 4), all vertex algebra elements of vn P V
bn, as non-commutative

parameters are not present in final form of functional-differential equations since they
incorporated into either matrix elements, traces, etc. According to the theory of such
equations [FK, Gu], each equation in the infinite set of (2.5) always have a solution
in domains they are defined. Thus, there always exist solutions of (2.5) defining

F pgqW,n P C
n
pgqpW q, and they are not empty.

Definition 3. The spaces with conditions (2.5) constitute a semi-infinite chain com-
plex

0 ÝÑ C0
pgq

δ0
pgq
ÝÑ C1

pgq

δ1
pgq
ÝÑ . . . ÝÑ Cn´1

pgq

δn´1

ÝÑ Cnpgq ÝÑ . . . . (2.6)

For n ě 1, we call corresponding cohomology

Hn
pgq “ Ker δnpgq{Im δn´1

pgq , (2.7)

the n-th reduction cohomology of a vertex algebra V -module W on a compact Rie-
mann surface Σpgq of genus g.

In particular, the operators T
pgq
l , 0 ď l ď lpgq, T

pgq
k pupmqq, m ě 0, 1 ď k ď n, form

a set of generators of an infinite-dimensional continual Lie algebra gpV q endowed with
a natural grading indexed by l and m.

Indeed, we set the space of functions F pgqW,n as the base algebra [Sav] for the continual

Lie algebra gpV q, and the generators as

X0,l

´

F pgqW,n pxnq
¯

“ T
pgq
l

´

F pgqW,n pxnq
¯

,

Xk,m

´

F pgqW,n pxnq
¯

“ T
pgq
k pupmqq

´

F pgqW,n pxnq
¯

. (2.8)

for 0 ď l ď lpgq, m ě 0, 1 ď k ď n. Then the commutation relations for vertex

algebra modes vn`1pmq. in the action of operators T
pgq
l and T

pgq
k,l on vk, 1 ď k ď n

inside F pgqW,n represent the commutation relations of the continual Lie algebra gpV q.

Jacobi identities for gpV q follow from Jacobi identities (5.4) for a vertex algebra V .

Remark 4. Recall that we consider genus g Riemann surfaces resulting from combina-
tions of sewing procedures of [Y]. Accordingly, due to [MT, TZ, TZ1, TZ2, GT, TW],
corresponding genus g n-point functions are obtained coherently by combining lower
genus functions. Then, relations among n-point functions of various genera appear.
One is able to consider a cohomology theory taking into account such relations. For
instance, for the ε-formalism of [Y] one has

Cpgqn pW q Ñ C
pg1q

n1`1pW1q ˆ C
pg2q

n2`1pW2q, (2.9)

F pgqW,n pxnq “
ÿ

lě0

εlF pg1q

W,n`1

´

pū, zq,xn;Bpg1q
¯

F pg2q

w,n`1

´

pu, zq,x1n;Bpg2q
¯

,

for g “ g1 ` g2, n “ n1 ` n2, and W “W1 bW2. In the ρ-formalism [Y] one has

Cpgqn pW q Ñ C
pg´1q
n1`1 pW q, (2.10)

F pgqW,n pxnq “
ÿ

lě0

ρl F pg´1q
W,n`2

´

pu, zq,xn; pū, zq,x1n;Bpg´1q
¯

.
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2.2. Geometrical meaning of reduction formulas and conditions (2.5). In this
section we show that the reduction formulas have the form of multipoint connections
generalizing ordinary holomorphic connections on complex curves [BZF].

2.2.1. Holomorphic n-point connections. Let us define the notion of a multipoint con-
nection which will be usefull for identifying reduction cohomology in section 3. Mo-
tivated by the definition of a holomorphic connection for a vertex algebra bundle (cf.
Section 6, [BZF] and [Gu]) over a smooth complex curve, we introduce the definition
of the multiple point connection over Σpgq.

Definition 4. Let V be a holomorphic vector bundle over Σpgq, and X0 Ă Σpgq be its
subdomain. Denote by SV the space of sections of V. A multi-point connection G on
V is a C-multi-linear map

G :
´

Σpgq
¯

ˆn ˆ V bn Ñ C,

such that for any holomorphic function f , and two sections φppq and ψpp1q of V at
points p and p1 on X0 Ă Σpgq correspondingly, we have

ÿ

q,q1PX0ĂΣpgq

G
`

fpψpqqq.φpq1q
˘

“ fpψpp1qq G pφppqq ` fpφppqq G
`

ψpp1q
˘

, (2.11)

where the summation on left hand side is performed over locuses of points q, q1 on
X0. We denote by Conn the space of n-point connections defined over Σpgq.

Geometrically, for a vector bundle V defined over Σpgq, a multi-point connection
(2.11) relates two sections φ and ψ at points p and p1 with a number of sections on
X0 Ă Σpgq.

Definition 5. We call

Gpφ, ψq “ fpφppqq G
`

ψpp1q
˘

`fpψpp1qq G pφppqq´
ÿ

q,q1PX0ĂX
G
`

fpψpq1qq.φpqq
˘

, (2.12)

the form of a n-point connection G. The space of n-point connection forms will be
denoted by Gn.

Here we prove the following

Proposition 1. n-point correlation functions of the space
!

F pgqW,n pxnq , n ě 0
)

form

n-point connections on the space of sections of the vertex algebra bundle V associated
to V . For n ě 0, the reduction cohomology of a compact Riemann surface of genus g
is

Hn
pgqpW q “ Hn

pgqpSVq “ Conn{Gn´1, (2.13)

is isomorphic to the cohomology of the space of V-sections.

Remark 5. Proposition 1 is a vertex algebra version of the main proposition of [BS,
Wag], i.e., the Bott-Segal theorem for Riemann surfaces.
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Proof. In [BZF] (Chapter 6, subsection 6.5.3) the vertex operator bundle V was ex-
plicitely constructed. It is easy to see that n-point connections are holomorphic con-
nection on the bundle V with the following identifications. For non-vanishing fpφppqq
let us write (2.3) as

G
`

ψpp1q
˘

“ ´
fpψpp1qq

fpφppqq
G pφppqq ` 1

fpφppqq

ÿ

q,q1PX0ĂX
G
`

fpψpqqq.φpq1q
˘

.(2.14)

Let us set

G “ F pgqW,n pxnq ,

ψpp1q “ pxn`1q ,

φppq “ pxnq ,

G
`

fpψpqqq.φpq1q
˘

“ T
pgq
k pvpmqq F pgqW,n pxnq ,

´
fpψpp1qq

fpφppqq
G pφppqq “

lpgq
ÿ

l“1

f
pgq
1
pgq pvn`1, lq T

pgq
l F pgqW,n pxnq ,

1

fpφppqq

ÿ

qn,q1nP

X0ĂΣpgq

G
`

fpψpqqq.φpq1q
˘

“

n
ÿ

k“1

ÿ

mě0

f
pgq
2
pgq pk,mq

¨T
pgq
k pvpmqq F pgqW,n pxnq .

(2.15)

Thus, the formula (2.15) gives (2.3). Recall [BZF] the construction of the vertex
algebra bundle V. According to Proposition 6.5.4 of [BZF], one canonically (i.e., co-
ordinate independently) associates EndV-valued sections Yp of V˚ (the bundle dual
to V) to matrix elements of a number of vertex operators on appropriate punctured
disks around points with local coordinates zn on Σpgq. The spaces of such V-sections
for each n of is described by identifications (2.15). Taking into account the construc-
tion of Section 6 (subsection 6.6.1, in particular, construction 6.6.4, and Proposition
6.6.7) of [BZF], we see that n-point functions are connections on the space of sections
of V, and the reduction cohomology (2.7) is represented by (2.13). �

For the chain condition (2.5) we have

0 “ G
`

χpp2q
˘

“ ´
fpχpp2qq

fpψpp1qq
Gpψpp1qq ` 1

fpψpp1qq

ÿ

rqn,rq1nPX0ĂΣpgq

G
`

fpχprqqq.ψprq1q
˘

,

0 “ G
`

χpp2q
˘

“
fpχpp2qq

fpφppqq
G pφppqq ´ fpχpp2qq

fpψpp1qq fpφppqq

ÿ

qn,q1nPX0ĂΣpgq

G
`

fpψpqqq.φpq1q
˘

`
1

fpψpp1qq

ÿ

rqn,rq1nPX0ĂΣpgq

G
`

fpχprqqq.ψprq1q
˘

, (2.16)
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The geometrical meaning of (2.5) consists in the following. Since in (2.2) operators act
on vertex algebra elements only, we can interpet it as a relation on modes of V with
functional coefficients. In particular, all operators T change vertex algebra elements
by action either of opvq “ vwtv´1. or positive modes of vpmq., m ě 0. Recall that for
all g the n-point functions possess certain modular properties with respect to groups
depending on genus g and modular space Bpgq parameters. Moreover, the reduction
formulas (2.3) are used to prove modular invariance for n-point functions. Due to
automorphic properties of n-point functions, (2.5) can be also interpreted as relations
among modular forms. The condition (2.3) defines a complex variety in zn P Cn
with non-commutative parameters vn P V bn. As most identities (e.g., trisecant
identity [Fa, TZ1] and triple product identity [K, MTZ, TZ2]) for n-point functions
(2.5) has its algebraic-geometrical meaning. The condition (2.5) relates finite series
of vertex algebra correlations functions on a genus g Riemann surface with rational
function coefficients (at genus g “ 0) [FHL], or elliptic functions (at genus g “ 1)
[Zhu, MT, MTZ], or generalizations of classical elliptic functions (at genus g ě 2)
[GT, TW]. Since in all cases n-point functions possess certain modular properties,
we treat (2.5) as a source of new identities on modular forms at corresponding genus
of Riemann surfaces.

3. Cohomology

In this section we compute the reduction cohomology defined by (2.6)–(2.7). The
main result of this paper is the following.

Proposition 2. The n-th reduction cohomology of a vertex algebra V -module W is the

space of analytical continuations of solutions F pgqW,n pxnq to a Knizhnik-Zamolodchikov
equation, and provided by series of auxiliary functions recursively generated by reduc-
tion formulas (2.3) with xi R Vi, for 1 ď i ď n.

Remark 6. The first cohomology is given by the space of transversal (i.e., with vanish-

ing sum over q, q1) one-point connections F pgqW,1 px1q provided by coefficients in terms of
series of special functions. The second cohomology is given by a space of generalized
higher genus complex kernels corresponding to V and Σpgq.

Proof. By definition (2.7), the n-th reduction cohomology is defined by the subspace

of C
pgq
n pW q of functions F pgqW,n pxnq satisfying

´

lpgq
ÿ

l“1

f
pgq
1 pxn`1, lq T

pgq
l pvn`1q

`

n
ÿ

k“1

ÿ

mě0

f
pgq
2 pk,mq T

pgq
k pvn`1pmqq

¯

F pgqW,n pxnq “ 0,

(3.1)



REDUCTION COHOMOLOGY OF RIEMANN SURFACES 9

modulo the subspace of C
pgq
n pW q n-point functions F pgqW,n px

1
nq resulting from:

F pgqW,n

`

x1n
˘

“

´

lpgq
ÿ

l“1

f
pgq
1

`

x1n, l
˘

T
pgq
l

`

n´1
ÿ

k“1

ÿ

mě0

f
pgq
2 pk,mq T

pgq
k pv1npmqq

¯

F pgqW,n´1

`

x1n´1

˘

.

(3.2)

We assume that, subject to other fixed parameters, n-point functions are completely
determined by all choices xn P V

bn ˆ Cn. Thus, the reduction cohomology can be
treated as depending on set of xn only with appropriate action of endomorphisms

generated by xn`1. Consider a non-vanishing solution F pgqW,n pxnq to (3.1) for some

xn. Let us use the reduction formulas (2.3) recursively for each xi, 1 ď i ď n of xn

in order to express F pgqW,n pxnq in terms of the partition function F pgqW,0

`

Bpgq
˘

, , i.e., we
obtain

F pgqW,n pxnq “ DpgqpxnqF pgqW,0

´

Bpgq
¯

, (3.3)

as in [MT, MTZ, TZ, TZ1, TZ2]. It is clear that xi R Vi for 1 ď i ď n, i.e., at each

stage of the recursion procedure towards (3.3), otherwise F pgqW,n pxnq would be zero.

Thus, F pgqW,n pxnq is explicitly known and is repsented as a series of auxiliary functions

Dpgq depending on V , genus g, and moduli space parameters Bpgq. Consider now

F pgqW,n px
1
nq given by (3.2). It is either vanishes when vn´i P Vn´i, 2 ď i ď n, or given

by (3.3) with x1n arguments.
The way the reduction relations (2.3) were derived in [MT, MTZ, GT, TW, BKT]

is exactly the same as for the vertex algebra derivation [KZ, TK] for the Knizhnik-
Zamolodchikov equations. The general idea is consider the double integration of

F pgqW,n pxnq along small circles around two auxiliary variables with the action of repro-
duction kernels inserted. Then, these procedure leads to recursion formulas relating

F pgqW,n`1 and F pgqW,n with functional coefficients depending on the nature of the vertex

algebra V , and the way a Riemann surface Σpgq was constructed. Thus, in our context,
(3.1) is seen as a version of the Knizhnik-Zamolodchikov equation. In [Y, MT, MTZ]
formulas to n-point functions in various specific examples of V and configuration of
Riemann surfaces were explicitely and recursively obtained.

In terms of xn`1, by using (5.1)–(5.6), we are able to transfer in (3.1) the action

of vn`1-modes into an analytical continuation of F pgqW,n pxnq multi-valued holomorphic

functions to domains Dn Ă Σpgq with zi ‰ zj for i ‰ j. Namely, in (3.1), the

operators T
pgq
l and T

pgq
k pvnpmqq act by certain modes vn`1pmq. of a vertex algebra

element vn`1 on vn P V bn. Using vertex algebra associativity property (5.6) we

express the action of of operators T
pgq
l and T

pgq
k pvnpmqq in terms of modes vn`1pmq

inside vertex operators in actions of V -modes on the whole vertex operator at expense
of a shift of their formal parameters zn by zn`1, i.e., z1n “ zn`zn`1. Note that under
such associativity transformations v-part of xn, i.e., vn remains the untouched. Thus,
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the n-th reduction cohomology of a V -module W is given by the space of analytical

continuations of n-point functions F pgqW,n pxnq with xn´1 R Vn´1 that are solutions to

the Knizhnik-Zamolodchikov equations (3.1). The above analytic extensions for the
Knizhnik-Zamolodchikov equations generated by xn`1 and with coefficients provided

by functions f
pgq
1 pxn`1, nq and f

pgq
2 pxn`1, k,mq on the Riemann surface Σpgq) �

This result is coherent with considerations of [TUY]. We illustrate the proposition
above in cases of zero, one, two, and higher genera in section 4. One can make
connection with the first cohomology of grading-restricted vertex algebras in terms
of derivations, and to the second cohomology in terms of square-zero extensions of V
by W [Huang2].

Euler-Poincare formula. In [Fuks], for a Lie algebra, we find a celebrated formula
relating sums over dimensions of chain complex spaces and dimensions of homologies
for a graded infinite-dimensional Lie algebra. Suppose a V -module W is endowed with
a complex grading W “

Ť

mPCWpmq, i.e., one could consider m “ m1 ` βpmq, where
m1 P Z, and βpmq P C [MTZ]. In our case all spaces Cn

pgqpW q are infinite-dimensional,

but, according to definition of a vertex algebra, dimWpmq ď 8, m P C. Thus, for a
fixed g, each Cn

pgqpW q can be endowed with separation with respect to m. Then the

complex (2.6) decomposes into sum of complexes

0 ÝÑ C0
pgqpmq

δ0
pgq
ÝÑ C1

pgqpmq
δ1
pgq
ÝÑ . . . ÝÑ Cn´1

pgq pmq
δn´1
pgq
ÝÑ Cnpgq ÝÑ . . . . (3.4)

For g ě 0, l ě 0, let

qn,m “ dimCnpgq
`

Vpmq
˘

“ dim
!

F pgqW,n pxnq : xn P V
bn
pmq,m P C

)

.

Let

pm,n “ dimHnpVpmqq “ dim
!´

Ker δnpgq{Im δn´1
pgq

¯

|V pmq, vn`1 P Vpmq

)

,

be dimensions of corresponding cohomology spaces. In our context we find that for
fixed m P C, and n ě 0,

N
ÿ

ně0

p´1qn pqn,m ´ pn,mq “ 0, (3.5)

Indeed, let us consider relations of chain complex spaces and cohomology spaces for
vertex algebra elements that belond to fixed Vpmq grading subspace of V . Recall
that according to the definition of a vertex algebra (see Appendix 5) subspaces Wpmq

are finite dimensional. Thus, as a functional space,
!

F pgqW,n pxnq ,vn P V
bn
pmq

)

is finite-

dimensional. Consider now the cohomology spaces
!

Hn
pgq,vn`1 P V

bpn`1q
pmq

)

. Let us fix

vn`1 P Vpmq. For the same reason as above, rank
´

Ker δn
pgq

¯

ă 8, rank
´

Im δn´1
pgq

¯

ă

8, as subspaces of n`1- and n-point functions. Thus, rankHn
pgq|Vpmq ă 8. Using then

the standard Eulre-Poincare formula [Fuks] considerations for rank we obtain (3.5).
The formula (3.5) has deep number-theoretical meanings as equality of generating
functions for series expansions for automorphic forms.



REDUCTION COHOMOLOGY OF RIEMANN SURFACES 11

4. Examples

The reduction cohomology depends on actual coefficients of the Knizhnik-Zamolodchikov

equations (3.1). Note that for n “ 0, F pgqW,0

`

Bpgq
˘

, g ě 0, is the partition function (or

graded dimension for g “ 1), for a vertex algebra V module W . In this section we
provide examples of vertex algebras considered on Riemann surfaces of various genus
g.

4.1. Vertex algebra n-point functions on the sphere. For u, vn P V , and a
homogeneous u P V , we find the formula [FHL, FLM] for the n-point functions

F p0qW,npxnq “ xu
1,Ypxnquy,

where

Ypxnq “ Y px1q . . . Y pxnq,

The partition function is given by

F p0qW,0 “ xu
1
paq, upbqy “ δa,b.

The reduction operators of (2.2) are [FHL]

H
p0q
1 pxn`1q F p0qW,npxnq “ T1popvqq F p0qW,npxnq, (4.1)

H
p0q
2 pxn`1q F p0qW,npxnq “

n
ÿ

k“1

ÿ

mě0

fwtpvn`1q,mpzn`1, zrq Tkpvpmqq F p0qW,npxnq,

where we define f
p0q
wtpv,mpz, wq is a rational function defined by

f p0qn,mpz, wq “
z´n

m!

ˆ

d

dw

˙m
wn

z ´ w
,

ιz,wf
p0q
n,mpz, wq “

ÿ

jPN

ˆ

n` j

m

˙

z´n´j´1wn`j´1.

Let us take xn`1 as the variable of expansion. The n-th reduction cohomology
Hn
p0qpW q is given the space of solutions to the Knizhnik-Zamolodchikov equation (4.4)

of the n-point function F p0qW,0pxnq (not given by δn´1
0q F p0qW,n´1pxn´1q)

Ypxnq ÞÑ opvn`1q Ypxnq,

xk ÞÑ vpmq.xk, (4.2)

(i.e., generated by xn`1-endomorphisms) of solututions F p0qV,n of the Knizhnik-Zamolodchikov
equation

0 “ F p0qW,n popvn`1q xnq `
n
ÿ

k“1

ÿ

mě0

f
p0q
wtpvn`1q,m

pzn`1, zkq F p0qW,nppvn`1pmqqk.xnq, (4.3)

with rational function coefficiens f
p0q
wtpvn`1q,m,k

pzn`1, zkq, modulo the space of n-point

functions obtained by the recursion procedure. Using (5.1)–(5.6) we obtain from (4.3),
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and the standard Virasoro algebra representation LV p0q “ zn`1Bzn`1 , we obtain
˜

Bzn`1 `

n
ÿ

k“1

rf
p0q
wtpvn`1q,m

pzn`1, zkq

¸

F p0qW,npxn ` pzn`1qkq “ 0, (4.4)

which is the Knizhnik-Zamolodchikov equation on analytical continuation of F p0qW,npxn`
pzn`1qkq with a different rf p0q. Using the reduction formulas (2.3) we obtain

F p0qW,npxn ` pzn`1qkq “ Dp0qpxn`1q,

where Dp0qpxn`1q is given by the series of rational-valued functions in xn`1 R Vn

resulting from the recursive procedure starting from n-point function to the partition
function. Thus, in this example, the n-th cohomology is the space of analytic exten-
sions [FHL, FLM] of rational function solutions to the equation (4.3) with rational
function coefficients.

4.2. Vertex algebra n-point functions on the torus. In order to consider modular-
invariance of n-point functions at genus one, Zhu introduced [Zhu] a second square-
bracket VOA pV, Y r., .s,1V , ω̃q associated to a given VOA pV, Y p., .q,1V , ωq. The new
square bracket vertex operators are

Y rv, zs “
ÿ

nPZ
vrnsz´n´1 “ Y pqLp0qz v, qz ´ 1q,

with qz “ ez, while the new conformal vector is

ω̃ “ ω ´
cV
24

1V .

For v of Lp0q weight wtpvq P R and m ě 0,

vrms “ m!
ÿ

iěm

cpwtpvq, i,mqvpiq,

where
i
ÿ

m“0

cpwtpvq, i,mqxm “

ˆ

wtpvq ´ 1` x

i

˙

.

For vn P V
bn the genus one n-point function [Zhu] has the form

F p1qn pxn; τq “ TrV

´

Y
´

qLp0qvn,qn

¯

qLp0q´cV {24
¯

,

for q “ e2πiτ and qi “ ezi , where τ is the torus modular parameter, and cV is the
central charge of V -Virasoro algebra. Then the genus one Zhu recursion formula is
given by the following [Zhu]. For any vn`1, vn P V

bn we find for an n ` 1-point
function

H
p1q
1 pxn`1q “ F p1qn popvn`1q xn; τq (4.5)

H
p1q
2 pxn`1q “

n
ÿ

k“1

ÿ

mě0

Pm`1pzn`1 ´ zk, τqF
p1q
V ppvrmsqk. xn; τq.
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In this theorem Pmpz, τq denote higher Weierstrass functions defined by

Pmpz, τq “
p´1qm

pm´ 1q!

ÿ

nPZ‰0

nm´1qnz
1´ qn

.

The partition function

F p1qW,0pτq “ TrV

´

qLV p0q´c{24
¯

, (4.6)

is called the graded dimension for V . Let us fix xn`1 P V
bnˆCn. The n-th reduction

cohomology Hn is the space of extensions of the Knizhnik-Zamolodchikov equation
solutions

0 “ F
p1q
V popvn`1q xn; τq `

n`1
ÿ

k“1

ÿ

mě0

Pm`1pzn`1 ´ zk, τqF
p1q
n ppvn`1rmsqk.xn; τq. (4.7)

This space can be described by complex kernels (i.e., prime forms [Mu]) given by
sums of elliptic functions.

4.3. Genus two n-point functions. In this subsection we recall [GT] the construc-
tion and reduction formulas for vertex operator algebra n-point functions on a genus
two Riemann surface formed in the sewing procedure of two torai due to [Y]. Let us
assume that a vertex operator algebra V is of strong-type. Thus, it possess a non-
degenerate bilinear form. For a V –basis tupaqu we define the dual basis tupaqu with
respect to the bilinear form where

xupaq, upbqysq “ δab.

Definition 6. The genus two partition function (zero-point function) for V is defined
by

F p2qV,0
´

Bp2q
¯

“
ÿ

rě0

εr
ÿ

uPVrrs

F p1qV,1pu; τ1q F p1qV,1pu; τ2q, (4.8)

where Bpgq “ pτ1, τ2, εq in the ε-sewing procedure for constructing a genust two Rie-
mann surface [Y, MT, TZ1], and the internal sum is taken over any Vrns–basis, and
u is the dual of u with respect to the bilinear form on V .

We then recall [GT] a formal genus two reduction formulas for all n-point functions.

Definition 7. Let vn`1 P V be inserted at xn`1 P pΣ
p1q
1 , vk P V

bk be inserted at

yk P pΣ
p1q
1 and v1l P V

bl be inserted at y1l P
pΣ
p1q
2 , a punctured torus

pΣp1qa “ Σp1qa z tza, |za| ď |ε|{rāu , (4.9)

where we here we use the convention

1 “ 2, 2 “ 1. (4.10)
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We consider the corresponding genus two n-point function

F p2qV,n
´

xn`1; xk; x1l;B
p2q

¯

“
ÿ

rě0

εr
ÿ

uPVrrs

F p1qV,k`1 pY rxn`1s Yrxksk u; τ1q F p1qV,l
`

Yrx1lsl u; τ2
˘

.(4.11)

where the sum as in (4.8).

Remark 7. (4.8) is independent of the choice of V –basis. One could also write a

similar expression by inserting the Y rxs vertex operator at z P pΣ
p1q
2 on the right hand

side of (4.11).

First, one defines the functions F p2qV,n,a for a P t1, 2u, by

F p2qV,n,1
´

xn`1;Bp2q
¯

“
ÿ

rě0

εr
ÿ

uPVrrs

TrV

´

opvn`1q YpqLp0q
zk

vk,qzk
q q

LV p0q´cV {24
1

¯

¨F p1qV,n´k pYrxk`1,ns u; τ2q ,

F p2qV,n,2
´

xn`1;Bp2q
¯

“
ÿ

rě0

εr
ÿ

uPVrrs

F p1qV,k pYrxks u; τ1q

¨TrV

´

opvn`1q YpqLp0q
zk`1,n

vk`1,qzk`1
q q

LV p0q´cV {24
2

¯

,

and F p2qV,n,3
`

xn`1;Bp2q
˘

“ XΠ
1 of (6.7), We also define

Definition 8. Let f
p2q
a pp; zn`1q, for p ě 1, and a “ 1, 2 be given by

f p2qa pp; zn`1q “ 1δba ` p´1qpδbaε1{2
ˆ

Qpp; zn`1q

´

rΛa

¯δba
˙

p1q, (4.12)

for zn`1 P pΣ
p1q
b . Let f

p2q
3 pp; zn`1q, for zn`1 P Σ

p1q
a , be an infinite row vector given by

f
p2q
3 pp; zn`1q “

´

Rpzn`1q `Qpp; zn`1q

´

rΛaΛa ` ΛaΓ
¯¯

Π. (4.13)

In [GT] it is proven that the genus two n “ k` l-point function for a quasi-primary

vector vn`1 of weight p “ wtrvn`1s inserted at x P pΣ
p1q
1 , and general vectors vk and

v1l inserted at xk P pΣ
p1q
1 , respectively, has the following operators H

p2q
1 pxn`1q and

H
p2q
2 pxn`1q:

H
p2q
1 p xn`1q F p2qV,n

´

xn;Bp2q
¯

“

3
ÿ

l“1

f
p2q
l pp; zn`1q F p2qV,n,l

´

xn`1;Bp2q
¯

,

H
p2q
2 pxn`1q F p2qV,n

´

xn;Bp2q
¯

“

n
ÿ

i“1

ÿ

jě0

Pj`1pp; zn`1, ziq F p2qV,n
´

pvn`1rjsqi.xn;Bp2q
¯

,

(4.14)

with Pj`1pp;x, yq of (6.10). A similar expression corresponds to vn`1 inserted on

x P pΣ
p1q
2 .
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Remark 8. The functions Pj`1pp;x, yq are holomorphic for x ‰ y on the sewing
domain in the cases p “ 1, 2.

4.4. Vertex algebra n-point functions and reduction formulas in genus g
Schottky parameterization. In this section we recall [TZ, TW, T2] the construc-
tion and reduction relations for vertex operator algebra n-point functions defined on
a genus g Riemann surface formed in the Schottky parameterization. In particular,
the formal partition and n-point correlation functions for a vertex operator algebra
associated to a genus g Riemann surface Σg are introduced in the Schottky scheme.
All expressions here are functions of formal variables w˘a, ρa P C and vertex operator
parameters. Then we recall the genus g reduction formula with universal coefficients
that have a geometrical meaning and are meromorphic on a Riemann surface Σpgq.
These coefficients are generalizations of the elliptic Weierstrass functions [L]. For a
2g vertex algebra V states

b “ pb´1, b1; . . . ; b´g; bgq,

and corresponding local coordinates

w “ pw´1, w1; . . . ;w´g, wgq,

of 2g points pp´1, p1; . . . ; p´g, pgq on the Riemann sphere Σp0q, consider the genus zero
2g-point correlation function

Zp0qpb,wq “Zp0qpb´1, w´1; b1, w1; . . . ; b´g, w´g; bg, wgq

“
ź

aPI`

ρwtpbaq
a Zp0qpb1, w´1; b1, w1; . . . ; bg, w´g; bg, wgq.

where I` “ t1, 2, . . . , gu. Let

b` “ pb1, . . . , bgq,

denote an element of a V -tensor product V bg-basis with dual basis

b´ “ pb´1, . . . , b´gq,

with respect to the bilinear form x¨, ¨yρa (cf. Appendix 5).
Let wa for a P I be 2g formal variables. One identify them with the canonical

Schottky parameters (for detailes of the Schottky construction, see [TW, T2]). One
can define the genus g partition function as

Z
pgq
V “ Z

pgq
V pw,ρq “

ÿ

b`

Zp0qpb,wq, (4.15)

for

pw,ρq “ pw˘1, ρ1; . . . ;w˘g, ρgq.

Now we recall the formal reduction formulas for all genus g Schottky n-point functions.
One defines the genus g formal n-point function for n vectors vn P V

bn inserted at
yn by

Z
pgq
V pv, yq “ Z

pgq
V pv, y;w,ρq “

ÿ

b`

Zp0qpv, y; b,wq, (4.16)
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where

Zp0qpv, y; b,wq “ Zp0qpv1, y1; . . . ; vn, yn; b´1, w´1; . . . ; bg, wgq.

Let U be a vertex operator subalgebra of V where V has a U -module decomposition

V “
à

αPA

Wα,

for U -modules Wα and some indexing set A. Let

Wα “

g
â

a“1

Wαa ,

denote a tensor product of g modules

Z
pgq
Wα
pv, yq “

ÿ

b`PWα

Zp0qpv, y; b,wq, (4.17)

where here the sum is over a basis tb`u for Wα. It follows that

Z
pgq
V pv, yq “

ÿ

αPA

Z
pgq
Wα
pv, yq, (4.18)

where the sum ranges over α “ pα1, . . . , αgq P A, for A “ Abg. Finally, one defines
corresponding formal n-point correlation differential forms

F pgqV pv, yq “ Zpgqpv, yq dywtpvq,

F pgqWα
pv, yq “ Z

pgq
Wα
pv, yq dywtpvq, (4.19)

where

dywtpvq “

n
ź

k“1

dy
wtpvkq
k .

Recall notations and identifications given in Appendix 6.3. In [TW] they prove that

the genus g pn`1q-point formal differential F pgqWα
px;v, yq, for xn`1 “ pvn`1, yn`1q, for

a quasiprimary vector vn`1 P U of weight wtpvn`1q “ p inserted at a point p0, with
the coordinate yn`1, and general vectors vn inserted at points pn with coordinates
yn satisfies the recursive identity for xn “ pv, yq

F pgqW,n`1α
pxn`1; xnq “

´

H
pgq
1 `H

pgq
2

¯

F pgqW,n pxnq , (4.20)

H
pgq
1 pxn`1qF pgqW,n pxnq “

g
ÿ

a“1

Θapyn`1q O
Wα
a pvn`1; xnq ,

H
pgq
2 pxn`1qF pgqW,n`1 pxn`1q “

n
ÿ

k“1

ÿ

jě0

Bp0,jq Ψppyn`1, ykq

¨F pgqW,nα
ppupjqqk.xnq dy

j
k

Here Bp0,jq is given by

Bpi,jqfpx, yq “ Bpiqx B
pjq
y fpx, yq,
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for a function fpx, yq, and Bp0,jq denotes partial derivatives with respect to x and yj .

The forms Ψppyn`1, ykq dy
j
k given by (6.24), Θapxq is of (6.26), and OWα

a pvn`1; xnq
of (6.27).

4.5. Vertex cluster algebras. Finally, we would like to describe the example of
vertex cluster algebras introduced in [Zu] and reveal their cohomological nature. The
condition (2.5) for mutation (4.26) to be involutive gives us a cohomological condi-
tion (vanishing square of the n-th coboundary operator) on modular forms. Cluster
algebras introduced in [FZ1] have numerous applications in various areas of mathe-
matics [FG1, FG2, FG3, FG4, GSV1, GSV2, GSV3, FST, KS, N1, N2, DFK, GLS,
HL, Ke1, Ke2, Na, Sch, N1, N2, Sch]. In this subsection we recall [Zu] definition
of a vertex cluster algebra and show its cohomological nature. Let us fix a vertex
operator algebra V . Chose n-marked points pi, i “ 1, . . . , n on a genus g compact
Riemann surface formed by one of procedures [Y, TZ] mentioned in Introduction. In
the vicinity of each marked point pi define a local coordinate zi with zero at pi. For
n-tuples of elements xn let us denote

Ypxnq “ pY px1q, . . . , Y pxnqq.

Definition 9. We define a vertex operator cluster algebra seed
´

vn,Ypxnq,F pgqW,n pxnq
¯

. (4.21)

The mutation is defined as follows:

Definition 10. For vn, we define the mutation v1n of vn in the direction k P 1, . . . , n
as

v1n “ µkpxn`1,mqvn “ ppFkpvn`1pmqqqk vnq , (4.22)

for some m ě 0, and V -valued functions F
pgq
k pvn`1pmqq, depending on genus g of the

Riemann surface. Note that due to the property (5.3) we get a finite number of terms
as a result of the action of vn`1pmq on vk, 1 ď k ď n. For the n-tuple of vertex
operators we define

Y
`

x1n
˘

“ µkpxn`1,mq Y pxnq “
´

Y
´

G
pgq
k pvn`1pmqq.xn

¯¯

, (4.23)

where G
pgq
k pvn`1pmqq are other V -valued functions. For u P V , w P C, the mutation

µpxn`1q of F pgqn pxnq,

F pgqW,n
1
`

x1n
˘

“ µpxn`1q F pgqW,n pxnq , (4.24)

where µpxn`1q is given by the coboundary operator

µpxn`1q “ δnpgq,

defined by summation over mutations in all possible directions k, 1 ď k ď n, with

auxiliary functions f
pgq
1 pxn`1, lq and f

pgq
2 pm, kq, 1 ď l ď lpgq, 1 ď k ď n, m ě 1,

F pgqW,n
1
`

x1
˘

“ δnpgqF
pgq
W,n pxnq . (4.25)

We also require the involutivity condition

µpxn`1q µpxn`1q “ Id, (4.26)
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define the mutation of the seed (4.21) in the direction k P 1, . . . , n of xn`1 P V . We
denote by Cn

pGq the space of seeds (4.21) for particular n ě 1, satisfying condition

(4.26).

The involutivity condition can be expressed in terms of coboundary operator δn
pgq

as (2.5) with vn`2 “ vn`1 with extra term Id on the right hand side.

Definition 11. For a fixed g, definitions 9–10 and involutivity condition (4.26) for
mutation determine the structure of a vertex operator cluster algebra CGn of dimen-
sion n. We call the full vertex operator cluster algebra the union

Ť

ně0 CGn.

It is naturally graded by n. of CGn. The cohomology of vertex cluster algebras will
be considered elsewhere. In [Zu] we have proven the following

Proposition 3. For a vertex operator algebra V such that dimVk “ 1, k P Z, and
with u “ 1V , w P C, and

Fkpupmqq.v “ Gkpupmqq.v “ ξu,vur´1s.v,

T
pgq
k pupmqq “ urms,

for m ě 0, and ξu,v P C, ξ2
u,v “ 1, depending on u and v, in (4.22), (4.23), and

(4.25), the mutation

µ “ pµkp1V ,´1q, µkp1V ,´1q, µp1V , wqq ,
´

v1n,Ypx1nq,F
pgq
W,n

1px1nq
¯

“ µ
´

v,Ypxnq,F pgqW,n pxnq
¯

, (4.27)

defined by (4.22), (4.23), (4.25) is an involution, i.e.,

µ µ “ Id.

˝
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related discussions. Research of the author was supported by the GACR project
18-00496S and RVO: 67985840.

5. Appendix: Vertex operator algebras

In this subsection we recall the notion of a vertex operator algebra [B, DL, FHL,
FLM, K, LL, MN].

Definition 12. A vertex operator algebra is determined by a quadruple pV, Y,1V , ωq,
where is a linear space endowed with a Z-grading with

V “
à

rPZ
Vr,

with dimVr ă 8. The state 1V P V0, 1V ­“ 0, is the vacuum vector and ω P V2 is the
conformal vector with properties described below. The vertex operator Y is a linear
map

Y : V Ñ EndpV qrrz, z´1ss,
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for formal variable z so that for any vector u P V we have a vertex operator

Y pu, zq “
ÿ

nPZ
upnqz´n´1. (5.1)

The linear operators (modes) upnq : V Ñ V satisfy creativity

Y pu, zq1V “ u`Opzq, (5.2)

and lower truncation

upnqv “ 0, (5.3)

conditions for each u, v P V and n " 0. Finally, the vertex operators satisfy the
Jacobi identity

z´1
0 δ

ˆ

z1 ´ z2

z0

˙

Y pu, z1qY pv, z2q ´ z
´1
0 δ

ˆ

z2 ´ z1

´z0

˙

Y pv, z2qY pu, z1q

“ z´1
2 δ

ˆ

z1 ´ z0

z2

˙

Y pY pu, z0qv, z2q . (5.4)

These axioms imply locality, skew-symmetry, associativity and commutativity condi-
tions:

pz1 ´ z2q
NY pu, z1qY pv, z2q “ pz1 ´ z2q

NY pv, z2qY pu, z1q, (5.5)

Y pu, zqv “ ezLp´1qY pv,´zqu,

pz0 ` z2q
NY pu, z0 ` z2qY pv, z2qw “ pz0 ` z2q

NY pY pu, z0qv, z2qw, (5.6)

upkqY pv, zq ´ Y pv, zqupkq “
ř

jě0

´

k
j

¯

Y pupjqv, zqzk´j , (5.7)

for u, v, w P V and integers N " 0.

For the conformal vector ω one has

Y pω, zq “
ÿ

nPZ
Lpnqz´n´2, (5.8)

where Lpnq satisfies the Virasoro algebra for some central charge C

rLpmq, Lpnq s “ pm´ nqLpm` nq `
C

12
pm3 ´mqδm,´nIdV , (5.9)

where IdV is identity operator on V . Each vertex operator satisfies the translation
property

BzY pu, zq “ Y pLp´1qu, zq . (5.10)

The Virasoro operator Lp0q provides the Z-grading with

Lp0qu “ ru,

for u P Vr, r P Z.
For v “ 1V one has

Y p1V , zq “ IdV . (5.11)
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Note also that modes of homogeneous states are graded operators on V , i.e., for
v P Vk,

vpnq : Vm Ñ Vm`k´n´1. (5.12)

In particular, let us define the zero mode opvq of a state of weight wtpvq “ k, i.e.,
v P Vk, as

opvq “ vpwtpvq ´ 1q, (5.13)

extending to V additively.

Definition 13. Given a vertex operator algebra V , one defines the adjoint vertex
operator with respect to α P C, by

The adjoint operators defined by the mapping z ÞÑ 1{z, i.e., with α “ ε,

Y :ε rv, zs “ Y

„

exp
´z

ε
Lr1s

¯´

´
ε

z2

¯Lr0s

v,
ε

z



.

associated with the formal Möbius map [FHL]

z ÞÑ
α

z
.

Definition 14. An element u P V is called quasiprimary if

Lp1qu “ 0.

For quasiprimary u of weight wtpuq one has

u:pnq “ p´1qwtpuqαn`1´wtpuqup2wtpuq ´ n´ 2q.

Definition 15. A bilinear form

x., .y : V ˆ V Ñ C,
is called invariant if [FHL, Li]

xY pu, zqa, by “ xa, Y :pu, zqby, (5.15)

for all a, b, u P V .

Notice that the adjoint vertex operator Y :p., .q as well as the bilinear form x., .y,
depend on α. In terms of modes, we have

xupnqa, by “ xa, u:pnqby. (5.16)

Choosing u “ ω, and for n “ 1 implies

xLp0qa, by “ xa, Lp0qby.

Thus,
xa, by “ 0,

when wtpaq ‰ wtpbq.

Definition 16. A vertex operator algebra is called of strong-type if

V0 “ C1V ,

and V is simple and self-dual, i.e., V is isomorphic to the dual module V 1 as a V -
module.
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It is proven in [Li] that a strong-type vertex operator algebra V has a unique
invariant non-degenerate bilinear form up to normalization. This motivates

Definition 17. The form x., .y on a strong-type vertex operator algebra V is the
unique invariant bilinear form x., .y normalized by

x1V ,1V y “ 1.

Given a vertex operator algebra pV, Y p., .q,1V , ωq, one can find an isomorphic vertex
operator algebra pV, Y r., .s,1V , rωq called [Zhu] the square-bracket vertex operator al-
gebra. Both algebras have the same underlying vector space V , vacuum vector 1V ,
and central charge. The vertex operator Y r., .s is determined by

Y rv, zs “
ÿ

nPZ
vrnsz´n´1 “ Y

´

qLp0qz v, qz ´ 1
¯

.

The new square-bracket conformal vector is

rω “ ω ´
c

24
1V ,

with the vertex operator

Y rrω, zs “
ÿ

nPZ
Lrnsz´n´2.

The square-bracket Virasoro operator mode Lr0s provides an alternative Z–grading
on V , i.e., wtrvs “ k if

Lr0sv “ kv,

where wtrvs “ wtpvq for primary v, and Lpnqv “ 0 for all n ą 0. We can similarly
define a square-bracket bilinear form x., .ysq.

6. Appendix: genus g generalizations of elliptic functions

In this Appendix we recall [T2] genus g generalizations of classical elliptic functions.

6.1. Classical elliptic functions. In this subsection we recall the classical elliptic
functions and modular forms [Se, La].

Definition 18. For an integer k ě 2, the Eisenstein series is given by

Ekpτq “ Ekpqq “ δn,even

˜

´
Bk
k!
`

2

pk ´ 1q!

ÿ

ně1

σk´1pnqq
n

¸

,

where τ P H, q “ e2πiτ ,

σk´1pnq “
ÿ

d|n

dk´1,

and k ´ th Bernoulli number Bk.

If k ě 4 then Ekpτq is a modular form of weight k on SLp2,Zq, while E2pτq is a
quasi-modular form.
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Definition 19. For integer k ě 1, define elliptic functions z P C:

Pkpz, τq “
p´1qk´1

pk ´ 1q!
Bk´1
z P1pz, τq,

P1pz, τq “
1

z
´

ÿ

kě2

Ekpτqz
k´1.

In particular

P2pz, τq “ ℘pz, τq ` E2pτq,

for Weierstrass function ℘pz, τq with periods 2πi and 2πiτ . P1pz, τq is related to the
quasi–periodic Weierstrass σ–function with

P1pz ` 2πiτ, τq “ P1pz, τq ´ 1.

6.2. Genus two counterparts of Weierstrass functions. In this section we recall
the definition of genus two Weierstrass functions [GT]. For m, n ě 1, we first define
a number of infinite matrices and row and column vectors:

Γpm,nq “ δm,´n`2p´2,

∆pm,nq “ δm,n`2p´2. (6.1)

We also define the projection matrix

Π “ Γ2 “

«

12p´1 0

0
. . .

ff

, (6.2)

where Id2p´3 denotes the 2p ´ 3 dimensional identity matrix and Id´1 “ 0. Let Λa
for a P t1, 2u be the matrix with components

Λapm,nq “ Λapm,n; τa, εq

“ εpm`nq{2p´1qn`1

ˆ

m` n´ 1

n

˙

Em`npτaq. (6.3)

Note that

Λa “ SAaS
´1, (6.4)

for Aa given by

Aa “ Aapk, l, τa, εq “
p´1qk`1εpk`lq{2

?
kl

pk ` l ´ 1q!

pk ´ 1q!pl ´ 1q!
Ek`lpτaq.

introduce the infinite dimensional matrices for S a diagonal matrix with components

Spm,nq “
?
mδmn. (6.5)

Let Rpxq for x P pΣ
p1q
a be the row vector with components

Rpx;mq “ ε
m
2 Pm`1px, τaq. (6.6)
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Let Xa for a P t1, 2u be the column vector with components

X1pmq “ X1

´

m; vn`1,xn;Bp2q
¯

“ ε´m{2
ÿ

uPV

F p1qV,k pYrxksvrmsu; τ1q F p1qV,n´k pYrxk`1,ns u; τ2q,

X2pmq “ X2

´

m; vn`1,xn;Bp2q
¯

“ ε´m{2
ÿ

uPV

F p1qV,k pYrxks u; τ1qF p1qV,m´k pYrxn´ksvrmsu; τ2q . (6.7)

Introduce also Qpp;xq an infinite row vector defined by

Qpp;xq “ Rpxq∆
´

1´ rΛarΛa

¯´1

, (6.8)

for x P pΣ
p1q
a . Notice that

rΛa “ Λa∆.

On introduces

Pj`1pxq “
p´1qj

j!
P1pxq,

for x P pΣ
p1q
a , and j ě 0, is the column with components

Pj`1px;mq “ ε
m
2

ˆ

m` j ´ 1

j

˙

pPj`mpx, τaq ´ δj0Empτaqq . (6.9)

Definition 20. One defines

P1pp;x, yq “ P1pp;x, y; τ1, τ2, εq,

for p ě 1 by

P1pp;x, yq “P1px´ y, τaq ´ P1px, τaq

´Qpp;xqrΛa P1pyq ´ p1´ δp1q pQpp;xqΛaq p2p´ 2q,

for x, y P pΣ
p1q
a , and

P1pp;x, yq “p´1qp`1
”

Qpp;xqP1pyq ` p1´ δp1qε
p´1P2p´1pxq

`p1´ δp1q
´

Qpp;xqrΛaΛa

¯

p2p´ 2q
ı

,

for x P pΣ
p1q
a , y P pΣ

p1q
a . For j ą 0, define

Pj`1pp;x, yq “
1

j!
Bjy pP1pp;x, yqq ,

i.e.,

Pj`1pp;x, yq “ δa,āPj`1px´ yq ` p´1qj`1.Qpp;xq
´

rΛa

¯δa,ā

Pj`1pyq, (6.10)

for x P pΣ
p1q
a , y P pΣ

p1q
ā . One calls Pj`1pp;x, yq the genus two generalized Weierstrass

functions.
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6.3. Genus g generalizations of elliptic functions. For purposes of the formula
(4.20) we recall here certain definitions [TW]. Define a column vector

X “ pXapmqq,

indexed by m ě 0 and a P I with components

Xapmq “ ρ
´m

2
a

ÿ

b`

Zp0qp. . . ;upmqba, wa; . . .q, (6.11)

and a row vector

ppxq “ ppapx,mqq,

for m ě 0, a P I with components

papx,mq “ ρ
m
2
a B

p0,mqψp0qp px,waq. (6.12)

Introduce the column vector

G “ pGapmqq,

for m ě 0, a P I, given by

G “
n
ÿ

k“1

ÿ

jě0

B
pjq
k qpykq Z

pgq
V ppupjqqkxnq,

where qpyq “ pqapy;mqq, for m ě 0, a P I, is a column vector with components

qapy;mq “ p´1qpρ
m`1

2
a Bpm,0qψp0qp pw´a, yq, (6.13)

and

R “ pRabpm,nqq,

for m, n ě 0 and a, b P I is a doubly indexed matrix with components

Rabpm,nq “

$

&

%

p´1qpρ
m`1

2
a ρ

n
2

b B
pm,nqψ

p0q
p pw´a, wbq, a ‰ ´b,

p´1qpρ
m`n`1

2
a Enmpw´aq, a “ ´b,

(6.14)

where

Enmpyq “
2p´2
ÿ

`“0

Bpmqf`pyq B
pnqy`, (6.15)

ψp0qp px, yq “
1

x´ y
`

2p´2
ÿ

`“0

f`pxqy
`, (6.16)

for any Laurent series f`pxq for ` “ 0, . . . , 2p ´ 2. Define the doubly indexed matrix
∆ “ p∆abpm,nqq by

∆abpm,nq “ δm,n`2p´1δab. (6.17)

Denote by
rR “ R∆,
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and the formal inverse pI ´ rRq´1 is given by

´

I ´ rR
¯´1

“
ÿ

kě0

rR k. (6.18)

Define χpxq “ pχapx; `qq and

opu;v, yq “ poapu;v, y; `qq,

are finite row and column vectors indexed by a P I, 0 ď ` ď 2p´ 2 with

χapx; `q “ ρ
´ `

2
a pppxq ` rppxqpI ´ rRq´1Rqap`q, (6.19)

oap`q “ oapu;v, y; `q “ ρ
`
2
aXap`q, (6.20)

and where

rppxq “ ppxq∆.

ψppx, yq is defined by

ψppx, yq “ ψp0qp px, yq ` rppxqpI ´ rRq´1qpyq. (6.21)

For each a P I` we define a vector

θapxq “ pθapx; `qq,

indexed by 0 ď ` ď 2p´ 2 with components

θapx; `q “ χapx; `q ` p´1qpρp´1´`
a χ´apx; 2p´ 2´ `q. (6.22)

Now define the following vectors of formal differential forms

P pxq “ ppxq dxp,

Qpyq “ qpyq dy1´p, (6.23)

with
rP pxq “ P pxq∆.

Then with

Ψppx, yq “ ψppx, yq dx
p dy1´p, (6.24)

we have

Ψppx, yq “ Ψp0qp px, yq `
rP pxqpI ´ rRq´1Qpyq. (6.25)

Defining

Θapx; `q “ θapx; `q dxp, (6.26)

and

Oapu;v, y; `q “ oapu;v, y; `q dywtpvq, (6.27)

Remark 9. The Θapxq, and Ψppx, yq coefficients depend on p “ wtpuq but are other-
wise independent of the vertex operator algebra V .
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