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REDUCTION COHOMOLOGY OF RIEMANN SURFACES

A. ZUEVSKY

ABSTRACT. We study the algebraic conditions leading to the chain property of
complexes for vertex algebra m-point functions with differential being defined
through reduction formulas. The notion of the reduction cohomology of Riemann
surfaces is introduced. Algebraic, geometrical, and cohomological meanings of
reduction formulas is clarified. A counterpart of the Bott-Segal theorem for
Riemann surfaces in terms of the reductions cohomology is proven. It is shown
that the reduction cohomology is given by the cohomology of n-point connections
over the vertex algebra bundle defined on a genus g Riemann surface $(9). The
reduction cohomology for a vertex algebra with formal parameters identified with
local coordinates around marked points on $(9) is found in terms of the space of
analytical continuations of solutions to Knizhnik-Zamolodchikov equations. For
the reduction cohomology, the Euler-Poincare formula is derived. Examples for
various genera and vertex cluster algebras are provided.

1. INTRODUCTION

The natural problem of computation continuous cohomologies for non-commutative
structures on manifolds has proven to be a subject of great geometrical interest
[BS, Kaw, PT, Fei, Fuks, Wag|. As it was demonstrated in [Fei, Wag], the ordinary
Gelfand-Fuks cohomology of the Lie algebra of holomorphic vector fields on complex
manifolds turns to be not the most effective and general one. For Riemann surfaces,
and even for higher dimension complex manifolds, the classical cohomology of vector
fields becomes trivial [Kaw]. The Lie algebra of holomorphic vector fields is not always
an interesting Lie algebra. For example, it is zero for a compact Riemann surface of
genus greater than one, and one looks for other algebraic objects having locally the
same cohomology. In [Fei] Feigin obtained various results concerning (co)-homology
of the Lie algebra cosimplicial objects of holomorphic vector fields Lie(M). Inspite
results in previous approaches, it is desirable to find a way to enrich cohomological
structures which motivates constructions of more refined cohomology description for
non-commutative algebraic structures. In the seminal paper [BS], the authors have
been proven that the Gelfand-Fuks cohomology H*(Vect(M)) of vector fields on a
smooth compact manifold M is isomorphic to the singular cohomology of the space of
continuous cross sections of a certain fibre bundle over M. An important problem of
revealing relations between non-commutative structures and geometrical objects on
complex manifolds still remains underinvestigeted in the literature [PT].

Key words and phrases. Cohomology; Vertex algebras; Riemann surfaces; Cluster algebras.
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2 A. ZUEVSKY

The main idea of this paper is to introduce and compute the reduction cohomology
vertex algebras [B, FLM, FHL, K] with formal parameters considered as local coordi-
nates on a genus g compact Riemann surface [FK, Bo, Gu, A] is to study cohomology
of spaces of converging functions with respect to adding new sets of pairs of vertex
algebra elements and corresponding formal parameters [BZF, DGM, DL, EO, FMS].
Due to structure of correlations functions [FMS] and reduction relations [Y, Zhu,
MTZ, GT, TW] among them, one can form chain complexes of n-point functions that
are fine enough to describe local geometry of Riemann surfaces. Another meaning
of the reduction cohomology of Riemann surfaces is how sections of certain bundles
with values in higher genus generalizations of elliptic funtions change along growing
of number of marked points on a surface. In addition to that we prove a version of the
Bott-Segal [BS, Wag, PT] theorem for compact Riemann surfaces of arbitrary genus.
It relates the reduction cohomology with cohomology of a space of sections of cer-
tain vertex algebra bundle [BZF]. Our new vertex algebra approach to cohomology
of compact Riemann surfaces involves Lie-algebraic formal series with applications
of techniques used in surgery of spheres [Huang]. In contrast to more geometrical
methods, e.g., in ordinary cosimplicial cohomology for Lie algebras [Fei, Wag], the
reduction cohomology pays more attention to the analytical structure of elements of
chain complex spaces. Computational methods involving reduction formulas proved
their effectiveness in conformal field theory, geometrical descriptions of intertwined
modules for Lie algebras, and differential geometry of integrable models. In section
2 we give the definition of the reduction cohomology and prove a proposition re-
lating it to cohomology of a vertex algebra bundle in terms of n-point connections.
In section 3 the main proposition expressing the reduction cohomology in terms of
spaces of auxiliary functions on Riemann surfaces is proven. Results of this paper
are useful for cosimplisial cohomology theory of smooth manifolds, generalizations of
the Bott-Segal theorem have their consequences in conformal field theory [Fei, Wag],
deformation theory [O], non-commutative geometry, modular forms, and the theory
of foliations.

2. CHAIN COMPLEX FOR VERTEX ALGEBRA n-POINT FUNCTIONS

2.1. Spaces of n-point correlation functions. In this section we recall definitions
and some properties of correlation functions for vertex algebras on Riemann surfaces
[FHL, Zhu, FMS, DGM]. Let us fix a vertex algebra V. Depending on its commutation
relations and configuration of a genus ¢ Riemann surface ¥(9), the space of all V' n-
point functions can contain various forms of complex functions defined on X(9).

We denote by v, = (vy,...,v,) € V& a tuple of vertex algebra elements (see
Appendix 5 for definition of a vertex algebra). Mark n points p,, = (p1,...,pn) On a
Riemann surface of genus (9. Denote by z, = (z1,...,2,) local coordinates around
prn € 2. Let us introduce the notation: x, = (Vn,2,). On a genus g Riemann
surfaces an n > 0-point correlation function ]-',(Lg ) (xn, B(g)) has certain specific form

depending on g, construction of a Riemann surface £(9), type of conformal field the-
ory model used for definitions of n-point functions, and the type of commutation
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relations for V- elements. In addition to that, it depends on a set of moduli param-
eters B9 e B where we denote by B a subset of the moduli space of genus ¢
Riemann surfaces (@) obtained by specific ways of sewing of lower genus Riemann
surfaces. In particular, for n-point functions considered on Riemann surfaces, B is
an element of the space [Y] B = (QW; (¢;); (pi); (mw;)), 0 < i < g, where vectors
(€i), (ps), are Riemann surface sewing parameters [Y], (u;) are any further modular
space parameters, and Q) is the period matrix of corresponding Riemann surface
(9 ysed in the procedure of (9 construction.

Definition 1. For a Riemann surface of genus g, and a V-module W, we consider
the spaces of n-point correlation functions

Cly(0) = { A (30, B9) n >0,

In what follows, we will omit where possible W and B9). The co-boundary oper-
ator 6y (vn+1) on Cf) (W)-space is defined according to the reduction formulas for

V-module W on a genus g Riemann surface (cf. particular examples in subsections
4.1-4.5, [Zhu, MTZ, GT, TW]).

Definition 2. For ¢ > 0, n > 0, and any z,41 € V x C, define
. n+1
3g) : Clp(W) = Crg” (W),
59 —Hg@ - H9 gD, (2.1)

with non-commutative operators Hl(g) (Tnt1)s Hég)(anr]) given by

i(g)

HY? (0) FEO (xa) = 33 17 (e, 1) TOFY ().
=1

H(g)(anrl Xn = Z Z fQ(g)(XnJrlvkam)
k=1m>0

T (vsr (m) Fif), (xa) . (22)
where [(g) > 0 is a constant depending on g, and the meaning of indexes 1 <k <n
1 <1<1(g), m = 0 explained below.

Operator-valued functions fl(g) (Xn+1,1) Tl( ,f2 (Xn+1,k m). T,ig) (vp+1(m)) de-
pend on genus of a Riemann surface $(9). T( 9 and T(g)( (m)) are operators of
insertion of certain function of vertex algebra modes into ]—"(,gn (xp) at the k-th entry:

T w(m) Fif, (x0) = Fif, (17 (0m).n )
where we use the notation
(Vg Tn = (T1, - V- Thy - -+, X))

for an operator 7y acting on k-th entry. Note that commutation properties of H fg ) (Tn+1)
and HQ(g) (2n+1) depend on genus g. The reduction formulas have the form:

]:{Eg,)nﬂ (Xn11) = HO (2,41) .7:‘(,57)7I (xn), (2.3)
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for n > 0.

Remark 1. The author’s conjecture (based on [Y, MT, MTZ, TZ, GT, TW, BKT))
is that for all possible configurations of a genus g Riemann surface, the form of the
reduction relations (2.2) is coinvariant and it is given by a sum of operators acting on
the an n-point correlation function

fév)n (Xn+1) Z f (Xn+1,k,1,m) T(g)(k,l,m) ]-"‘Ev)n (xn) -

1<I<I(g)
m=0,k=0

Remark 2. The reductions formulas have an interpretation in terms of torsors [BZF]
(Chapter 6). In such formulation x,, is a torsor with respect to the group of trans-
formation of the space V® ™ x C". In particular, from (2.3) we see that Tlgg) (u(m))-
operators act on V® "-entries of x,, in Fég’)n(xn, B(g)), while T,if]l)—operators act on z,

of _7-'1(/5) (Xn, B(g)) as a complex function.

For n > 0, let us denote by 9, the subsets of all x,,.1 € V®" x C", such that the
chain condition
H9 (2,11) HO (2,) Fif), (x0) = 0, (2.4)
for the coboundary operators (2.2) for complexes Cf, (W) is satisfied.
Explicitly, the chain condition (2.4) leads to an infinite n > 0 set of equations
involving functions fl(g) (Xn+1,1), fég) (Xn+1,k,m), and ]—"(,gy)n (xn):

i(g)

Z fl x’n+27 ) fl(g) (Xn+17l;B(g)) /I’l(’g) 1’}(9)
I'=1,1=1

2020 2 A7 (xuren V) £57 (k) T T (o (m)
79 (1) 52 (02.1) T (0 () T

00D DAY () S (k) T (w2 (m) T (01 (m)) )

Fi (%) = 0. (2.5)

Remark 3. (2.5) contain finite series and narrows the space of compatible n-point
functions. The subspaces of C’("g)(W), g =0, n >0, of genus g n-point functions such
that the condition (2.5) is fulfiled for reduction cohomology complexes are non-empty.
Indeed, for all g, the condition (2.5) represents an infinite n > 0 set of functional-
differential equations (with finite number of summands) on converging complex func-
tions f‘(/g’)n (x,,) defined for n local complex variables on a Riemann surface of genus g

with functional coefficients £ (v,11,1) and £i? (k,m) (in our examples in subsection
4.1-4.5, these are generalizations of genus g elliptic functions) on (@) Note that (see
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examples in Sectiion 4), all vertex algebra elements of v,, € V®", as non-commutative
parameters are not present in final form of functional-differential equations since they
incorporated into either matrix elements, traces, etc. According to the theory of such
equations [FK, Gul, each equation in the infinite set of (2.5) always have a solution
in domains they are defined. Thus, there always exist solutions of (2.5) defining
]-'ég?n € C((W), and they are not empty.

Definition 3. The spaces with conditions (2.5) constitute a semi-infinite chain com-
plex

61 n—1
(y) 1 (9) n—1 n
0—>C’ (g)—>...—>C’(g) —»C(g)—>.... (2.6)
For n > 1, we call correspondlng cohomology

H,y = Ker §(,) /Im 6( ) (2.7)

the n-th reduction cohomology of a vertex algebra V-module W on a compact Rie-
mann surface (9 of genus g.

In particular, the operators Tl(g)7 0<I<lg), T,Eg) (u(m)), m > 0,1 <k <n, form
a set of generators of an infinite-dimensional continual Lie algebra g(V') endowed with
a natural grading indexed by [ and m.

Indeed, we set the space of functions fl(,g’)n as the base algebra [Sav] for the continual
Lie algebra g(V'), and the generators as

Xou (Fi x0)) = T2 (FP, (xa)) .
X (Fif () = T () (FiF), (x.)) - (2.8)

for 0 <1 <1i(g), m 20,1 <k < n. Then the commutation relations for vertex
algebra modes v,1(m). in the action of operators T(g) and T(g) onvg, 1l <k<n

inside JF; (g)n represent the commutation relations of the continual Lie algebra g(V).
Jacobi identities for g(V') follow from Jacobi identities (5.4) for a vertex algebra V.

Remark 4. Recall that we consider genus g Riemann surfaces resulting from combina-
tions of sewing procedures of [Y]. Accordingly, due to [MT, TZ, TZ1, TZ2, GT, TW],
corresponding genus g n-point functions are obtained coherently by combining lower
genus functions. Then, relations among n-point functions of various genera appear.
One is able to consider a cohomology theory taking into account such relations. For
instance, for the e-formalism of [Y] one has

COW) = L) x G, (W), (29)
]:ég)n( n) Z eF ‘(/glnﬂ ( U, 2),%Xn; B ) fé)gi)ﬂ ((u,z),X;;B(gz)) ’
=0

for g = g1 + g2, n = n1 + na, and W = W; ® Wa. In the p-formalism [Y] one has

COW) - )W), (2.10)
P ) = 20" Al (02301 (82,5, B ).

=0
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2.2. Geometrical meaning of reduction formulas and conditions (2.5). In this
section we show that the reduction formulas have the form of multipoint connections
generalizing ordinary holomorphic connections on complex curves [BZF].

2.2.1. Holomorphic n-point connections. Let us define the notion of a multipoint con-
nection which will be usefull for identifying reduction cohomology in section 3. Mo-
tivated by the definition of a holomorphic connection for a vertex algebra bundle (cf.
Section 6, [BZF] and [Gu]) over a smooth complex curve, we introduce the definition
of the multiple point connection over (9.

Definition 4. Let V be a holomorphic vector bundle over (9, and Xy c £9) be its
subdomain. Denote by SV the space of sections of V. A multi-point connection G on
V is a C-multi-linear map

G: (Z9) " x Ve

such that for any holomorphic function f, and two sections ¢(p) and ¥ (p’) of V at
points p and p’ on Xy £ correspondingly, we have

> G (fw@)6(d) = F®) G () + F(6) G (v()), (211

4,q'€XpcX(9)

where the summation on left hand side is performed over locuses of points ¢, ¢’ on
X,. We denote by Con,, the space of n-point connections defined over %(9),

Geometrically, for a vector bundle V defined over £(9)| a multi-point connection
(2.11) relates two sections ¢ and ¢ at points p and p’ with a number of sections on
XO = E(q)

Definition 5. We call
G(6,9) = [(6(p) G (V@) + @) G (o)~ >, G (f(¥(d)-¢(q), (212)

q,9'eXoc X

the form of a n-point connection G. The space of n-point connection forms will be
denoted by G™.

Here we prove the following

Proposition 1. n-point correlation functions of the space {.7:155))” (xp),n = O} form

n-point connections on the space of sections of the vertex algebra bundle V associated
to V. Forn = 0, the reduction cohomology of a compact Riemann surface of genus g
18

H{yy (W) = H{y(SV) = Con™ /G, (2.13)

is isomorphic to the cohomology of the space of V-sections.

Remark 5. Proposition 1 is a vertex algebra version of the main proposition of [BS,
Wag], i.e., the Bott-Segal theorem for Riemann surfaces.
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Proof. In [BZF] (Chapter 6, subsection 6.5.3) the vertex operator bundle V was ex-
plicitely constructed. It is easy to see that n-point connections are holomorphic con-
nection on the bundle V with the following identifications. For non-vanishing f(¢(p))
let us write (2.3) as

/ 1
f()) Z

q,9'eXoc X

G (f(¥(a)-0(d)) (2.14)

Let us set

g = ‘Flglg)n (Xn) 9

s

P) = (Xn+1),
o(p) = (xa),
G (fW@)od) = T (wm) A, (),
_f@Ww)) — S (9)(9) (4, @) 79
Fo) 9 @@ = LAY @) TOFRE, (),
: ! = N DD (k. m
7)) %%e)g(f@(qﬁ-qﬁ(q)) 2 2 B0 k)

T (v(m)) F, (x4) -
(2.15)

Thus, the formula (2.15) gives (2.3). Recall [BZF] the construction of the vertex
algebra bundle V. According to Proposition 6.5.4 of [BZF], one canonically (i.e., co-
ordinate independently) associates EndV-valued sections ), of V* (the bundle dual
to V) to matrix elements of a number of vertex operators on appropriate punctured
disks around points with local coordinates z,, on ¥(9). The spaces of such V-sections
for each n of is described by identifications (2.15). Taking into account the construc-
tion of Section 6 (subsection 6.6.1, in particular, construction 6.6.4, and Proposition
6.6.7) of [BZF], we see that n-point functions are connections on the space of sections
of V, and the reduction cohomology (2.7) is represented by (2.13). O

For the chain condition (2.5) we have

0=6 (X)) = m“w)”Mw X U@,
0 = G(x®")
- L) G o)) - AN 3 SU@s)
" W S G (F@)@)). (2.16)

Gn @, €X0CE(9)
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The geometrical meaning of (2.5) consists in the following. Since in (2.2) operators act
on vertex algebra elements only, we can interpet it as a relation on modes of V' with
functional coeflicients. In particular, all operators T change vertex algebra elements
by action either of o(v) = vyty—1. Or positive modes of v(m)., m = 0. Recall that for
all g the n-point functions possess certain modular properties with respect to groups
depending on genus ¢ and modular space B parameters. Moreover, the reduction
formulas (2.3) are used to prove modular invariance for n-point functions. Due to
automorphic properties of n-point functions, (2.5) can be also interpreted as relations
among modular forms. The condition (2.3) defines a complex variety in z, € C"
with non-commutative parameters v,, € V®*. As most identities (e.g., trisecant
identity [Fa, TZ1] and triple product identity [K, MTZ, TZ2]) for n-point functions
(2.5) has its algebraic-geometrical meaning. The condition (2.5) relates finite series
of vertex algebra correlations functions on a genus g Riemann surface with rational
function coefficients (at genus g = 0) [FHL], or elliptic functions (at genus g = 1)
[Zhu, MT, MTZ], or generalizations of classical elliptic functions (at genus g > 2)
[GT, TW]. Since in all cases n-point functions possess certain modular properties,
we treat (2.5) as a source of new identities on modular forms at corresponding genus
of Riemann surfaces.

3. COHOMOLOGY

In this section we compute the reduction cohomology defined by (2.6)—(2.7). The
main result of this paper is the following.

Proposition 2. The n-th reduction cohomology of a vertex algebra V -module W is the
space of analytical continuations of solutions fég’)n (xn) to a Knizhnik-Zamolodchikov

equation, and provided by series of auxiliary functions recursively generated by reduc-
tion formulas (2.3) with x; ¢ 0;, for 1 <i < n.

Remark 6. The first cohomology is given by the space of transversal (i.e., with vanish-

ing sum over ¢, ¢') one-point connections .7-"53)1 (1) provided by coefficients in terms of
series of special functions. The second cohomology is given by a space of generalized
higher genus complex kernels corresponding to V and (9.

Proof. By definition (2.7), the n-th reduction cohomology is defined by the subspace
of O (W) of functions }"ég,)n (x,,) satisfying

1(9) ( )
(242 Gnr1) T (vn1)
=1

+ 30 2 A ey T (w1 (m))) FiE, (k) = 0,

k=1m=0

(3.1)
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/

') resulting from:

modulo the subspace of CY )(W) n-point functions ]—"‘(,57)” (x

(g)
]:"(}57)n (X’/ﬂ) _ (Z f(g) / l T(g)

n—1
2 A ) T Wh(m)) Fiy (%)
k=1m=0

s

(3.2)

We assume that, subject to other fixed parameters, n-point functions are completely
determined by all choices x,, € V® x C". Thus, the reduction cohomology can be
treated as depending on set of x,, only with appropriate action of endomorphisms
generated by x,,41. Consider a non-vanishing solution ]—"(,5’)” (xp) to (3.1) for some
X,. Let us use the reduction formulas (2.3) recursively for each z;, 1 < i < n of x,
in order to express .71(/57)” (x5,) in terms of the partition function ]-"(,37)0 (B(g)), ,1.e., we
obtain

Fif), (x0) = D9 (x) Fif)y (B2, (3.3)
as in [MT, MTZ, TZ, TZ1, TZ2]. Tt is clear that z; ¢ U, for 1 <14 < n, i.e., at each

stage of the recursion procedure towards (3.3), otherwise }“I(/g)n (xn) would be zero.

Thus, .7-"55,)” (x5,) is explicitly known and is repsented as a series of auxiliary functions
D) depending on V, genus g, and moduli space parameters B(9). Consider now
.7-"(/5)“ (x1,) given by (3.2). It is either vanishes when v, _; € U,,_;, 2 < i < n, or given
by (3.3) with x/, arguments.

The way the reduction relations (2.3) were derived in [MT, MTZ, GT, TW, BKT]
is exactly the same as for the vertex algebra derivation [KZ, TK] for the Knizhnik-
Zamolodchikov equations. The general idea is consider the double integration of
Fov (9) ,, (x5,) along small circles around two auxiliary variables with the action of repro-
ductlon kernels inserted. Then, these procedure leads to recursion formulas relating
f‘(,gn 41 and f‘(,gv)n with functional coefficients depending on the nature of the vertex
algebra V, and the way a Riemann surface (%) was constructed. Thus, in our context,
(3.1) is seen as a version of the Knizhnik-Zamolodchikov equation. In [Y, MT, MTZ]
formulas to n-point functions in various specific examples of V' and configuration of
Riemann surfaces were explicitely and recursively obtained.

In terms of 41, by using (5.1)—(5.6), we are able to transfer in (3.1) the action
of v, 11-modes into an analytical continuation of fég’)n (x5,) multi-valued holomorphic
functions to domains D,, < ¥ with 2; # 2; for i # j. Namely, in (3.1), the
operators Tl(g) and T,sg)(vn (m)) act by certain modes v,11(m). of a vertex algebra
element v,,.; on v, € V&, Using Vertex algebra associativity property (5.6) we
express the action of of operators T ) and T ( »(m)) in terms of modes vy,1(m)
inside vertex operators in actions of V modes on the whole vertex operator at expense
of a shift of their formal parameters z,, by 2,11, i.e., z,, = z, + z,+1. Note that under
such associativity transformations v-part of x,,, i.e., v,, remains the untouched. Thus,
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the n-th reduction cohomology of a V-module W is given by the space of analytical
continuations of n-point functions ]-'ég?n (xy,) with x,—1 ¢ 0,,_1 that are solutions to
the Knizhnik-Zamolodchikov equations (3.1). The above analytic extensions for the
Knizhnik-Zamolodchikov equations generated by z,,,1 and with coefficients provided

by functions fl(g) (Xp+1,n) and fZ(g) (Xn+1,k,m) on the Riemann surface ¥(9)) O

This result is coherent with considerations of [TUY]. We illustrate the proposition

above in cases of zero, one, two, and higher genera in section 4. Omne can make
connection with the first cohomology of grading-restricted vertex algebras in terms
of derivations, and to the second cohomology in terms of square-zero extensions of V'
by W [Huang2].
Euler-Poincare formula. In [Fuks|, for a Lie algebra, we find a celebrated formula
relating sums over dimensions of chain complex spaces and dimensions of homologies
for a graded infinite-dimensional Lie algebra. Suppose a V-module W is endowed with
a complex grading W = (J,,,cc W(m), i-e., one could consider m = m’ + 3(m), where
m' € Z, and $(m) € C [MTZ]. In our case all spaces C(; (W) are infinite-dimensional,
but, according to definition of a vertex algebra, dim W(,,) < oo, m € C. Thus, for a
fixed g, each C@)(W) can be endowed with separation with respect to m. Then the
complex (2.6) decomposes into sum of complexes

0 5?9) 1 5(19) n—1 6(;77)1 n

Forg>0,1>0, let

Gnn = dim Py (Vi) = dim {févg}n (%n) : X, € VES € <c} .

Let
o n o n n—1
P = dim H" (V;,,)) = dim { (Ker 5(9)/Im 5(9) ) [V (m)s Vns1 € V(m)} ,

be dimensions of corresponding cohomology spaces. In our context we find that for
fixed me C, and n = 0,
N

Z (_1)71 (Qmm - pn,m) = 0; (35)

n=0

Indeed, let us consider relations of chain complex spaces and cohomology spaces for
vertex algebra elements that belond to fixed V{,,) grading subspace of V. Recall
that according to the definition of a vertex algebra (see Appendix 5) subspaces W,

are finite dimensional. Thus, as a functional space, {.7—'1(/5’)71 (Xn),Vn € V(%’)L} is finite-
dimensional. Consider now the cohomology spaces {H Fg)’ Vipil € V((:')l()" +b } Let us fix

Un+1 € Visy). For the same reason as above, rank (Ker 6(’2)) < oo, rank (Im (5&31) <

00, as subspaces of n+ 1- and n-point functions. Thus, rankH&) |V(m) < o0. Using then
the standard Eulre-Poincare formula [Fuks] considerations for rank we obtain (3.5).
The formula (3.5) has deep number-theoretical meanings as equality of generating
functions for series expansions for automorphic forms.
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4. EXAMPLES

The reduction cohomology depends on actual coefficients of the Knizhnik-Zamolodchikov
equations (3.1). Note that for n = 0, ]-'1(,5))0 (B(g)), g = 0, is the partition function (or
graded dimension for g = 1), for a vertex algebra V' module W. In this section we
provide examples of vertex algebras considered on Riemann surfaces of various genus

g.

4.1. Vertex algebra n-point functions on the sphere. For u, v, € V, and a
homogeneous u € V, we find the formula [FHL, FLM] for the n-point functions

Fiynen) = ', Y (x,Ju),
where

Y(x,) =Y (z1)...Y(zp),
The partition function is given by

]:1(,87)0 = <u’(a), U(p)) = Oa,b-
The reduction operators of (2.2) are [FHL]

HO (x01) FP (xa) = Ti(o(v)) F (x0), (4.1)
H (0010) FPxn) = S Futtonsym (Znsts z0) Ti(v(m)) Fiph (x,),
k=1m=>=0

where we define fw z,w) is a rational function defined by

0 ooy = () "
Foom (2,0) m! (dw) z—w’

Lo [0 (2,w) = 2 (nn—:]> ZTnT Iyt

JeN

t(v, m(

Let us take x,.1 as the variable of expansion. The n-th reduction cohomology
Hp, (W) is given the space of solutions to the Knizhnik-Zamolodchikov equation (4.4)

of the n-point function .7:58,)0 (x5) (not given by 53)_1]-"‘58,)7],_1()(”_1))
Y(xn) = o(vns1) Y(xn),
X U(m).Xk, (42)

(i.e., generated by x,,+1-endomorphisms) of solututions ]-"‘(,? 7)7 of the Knizhnik-Zamolodchikov
equation

0= Fy), (0(vai1) Z S e 2k) Fap (wngr (m)exn), (4.3)
=1m=0

with rational function coefficiens f wt(ons1)om, 4 (#n+1, 2&), modulo the space of n-point
functions obtained by the recursion procedure. Using (5.1)—(5.6) we obtain from (4.3),
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and the standard Virasoro algebra representation Ly (0) = 2,410-,,,, we obtain
(aznﬂ + ﬁ(vi)(vn“)’m(znﬂ,zk)) F (%n + (zas1)r) = 0, (4.4)
k=1

which is the Knizhnik-Zamolodchikov equation on analytical continuation of .7-"58,)” (xp+

(zn+1)k) with a different £ Using the reduction formulas (2.3) we obtain
Fi e + (znsn)i) = DO xnr),

where D©) (xn+1) is given by the series of rational-valued functions in x,.1 ¢ U,
resulting from the recursive procedure starting from n-point function to the partition
function. Thus, in this example, the n-th cohomology is the space of analytic exten-
sions [FHL, FLM] of rational function solutions to the equation (4.3) with rational
function coefficients.

4.2. Vertex algebra n-point functions on the torus. In order to consider modular-
invariance of n-point functions at genus one, Zhu introduced [Zhu] a second square-
bracket VOA (V. Y., .], 1y, ®) associated to a given VOA (V,Y(.,.), 1y,w). The new
square bracket vertex operators are
Y[v,z] = Z v[n]z"" " = Y (¢t v, ¢, — 1),
nez
with ¢, = e®, while the new conformal vector is

v

D=w— —1y.
w w 24V

For v of L(0) weight wt(v) € R and m > 0,
v[m] = m! Z c(wt(v),i,m)v(i),
=m
where

i c(wt(v),i,m)z™ = (W(U) —1+ x> .

m=0 v

For v,, € V®" the genus one n-point function [Zhu] has the form
EV(x,57) = Try (Y (qL(O)vn,qn) qL(O)_CV/24) ,

for ¢ = €™ and ¢; = e*, where T is the torus modular parameter, and cy is the
central charge of V-Virasoro algebra. Then the genus one Zhu recursion formula is
given by the following [Zhu]. For any v,.1, vn € V®" we find for an n + 1-point
function

HY (xn11) = FY (0(vns1) Xn; 7) (4.5)

HY (n1) = 20 D) Pt (ng1 — 25 D) ED (0[] 305 7).

k=1m>=0
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In this theorem P,,(z,7) denote higher Weierstrass functions defined by

(_1)m nm—lqn
Po(z,7) = .,
(m—1)! nezzio 1—qn
The partition function
Fio(r) = Ty (gm O/, (4.6)

is called the graded dimension for V. Let us fix x,, 41 € V®" x C". The n-th reduction
cohomology H™ is the space of extensions of the Knizhnik-Zamolodchikov equation
solutions

n+1

0= By (0(wns1) Xai T) + D) 2 Pt (znst = 21, IV (01 [m]) i 0 7). (4.7)

k=1m=0

This space can be described by complex kernels (i.e., prime forms [Mu]) given by
sums of elliptic functions.

4.3. Genus two n-point functions. In this subsection we recall [GT] the construc-
tion and reduction formulas for vertex operator algebra n-point functions on a genus
two Riemann surface formed in the sewing procedure of two torai due to [Y]. Let us
assume that a vertex operator algebra V is of strong-type. Thus, it possess a non-
degenerate bilinear form. For a V-basis {u(*} we define the dual basis {7(*)} with
respect to the bilinear form where

@(a)’ u(b)>sq = 0.

Definition 6. The genus two partition function (zero-point function) for V' is defined
by

FR(BD) =Y e > Flwn) Fwn), (4.8)

r=0  ueVp,

where B9 = (71,75, €) in the e-sewing procedure for constructing a genust two Rie-
mann surface [Y, MT, TZ1], and the internal sum is taken over any V},;-basis, and
w is the dual of u with respect to the bilinear form on V.

We then recall [GT] a formal genus two reduction formulas for all n-point functions.

Definition 7. Let v,,1 € V be inserted at x,,11 € i@, vi € VO Dbe inserted at

Vi € igl) and v} € V® be inserted at y, € flgl), a punctured torus

E0 = 50N {za, |2a] < [el/fra}, (4.9)
where we here we use the convention

1=2 2=1 (4.10)
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We consider the corresponding genus two n-point function
7 (xn+1;Xk;XE;B(2))
=3 3 F Vwnn] Yixady, wn) FO (Yx)], @) (4.11)
r=0 ’U.EV[T]
where the sum as in (4.8).

Remark 7. (4.8) is independent of the choice of V-basis. One could also write a

similar expression by inserting the Y[x] vertex operator at z € f]gl) on the right hand
side of (4.11).

First, one defines the functions ]:\(/22“1 for a € {1,2}, by

Fiona (Xn+1;B(2)> = Y& > Ty (O(Un+1)Y(q;£ Vias) a0 CV/M)
r=0 uEV[T]

']:\(/%2171@ (Y[Xkt1,n] @72),

.7-"(,%2 <xn+1 B ) Z Z 1 K] U;T1)

r=0 UEV[T]

9

Ly (0)—cy /24
‘Try (O(Un-y-l) Y(ng(:)l nd+17qZk+1) D) v(O)-ev/ )

and ]—"‘(/277)173 (xn+1; B@) =X of (6.7), We also define

Definition 8. Let fc(f)(p; Zn+1), for p =1, and a = 1, 2 be given by

FO (D 2ng1) = 1% + (—1)Phoe /2 (@m 21 (Xa)‘““) W, (@12

for zp41 € f]gl). Let f§2) (p; Znt1), for zp41 € 221)7 be an infinite row vector given by

£ (3 2n1) = (R(zn+1) + Q(p; 2nt1) (KaAa + AEF)) I1. (4.13)

In [GT] it is proven that the genus two n = k+I-point function for a quasi-primary

vector v, 41 of weight p = wt[v,41] inserted at z € i@, and general vectors vy and

1)

v, inserted at xj € i§ , respectively, has the following operators H1(2)(xn+1) and

H (xp41):

HP (2n41) i) (Xn;B(Q)) = f(2)(p; Zns1) Fiin, (Xn+1;B(2)) ,

H2(2)(xn+1) ‘F\(/?,»zl (Xn7 ) =

b er

Z J+1 p, Zn-‘rl)Zz) ‘F\(/W)z ((U7L+1[j])i~xn;B(2)) )
j=0

(4.14)

with Pj11(p;z,y) of (6.10). A similar expression corresponds to v,41 inserted on
(1)
T € Xy
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Remark 8. The functions Pj1(p;2,y) are holomorphic for  # y on the sewing
domain in the cases p = 1, 2.

4.4. Vertex algebra n-point functions and reduction formulas in genus g
Schottky parameterization. In this section we recall [TZ, TW, T2] the construc-
tion and reduction relations for vertex operator algebra n-point functions defined on
a genus g Riemann surface formed in the Schottky parameterization. In particular,
the formal partition and n-point correlation functions for a vertex operator algebra
associated to a genus g Riemann surface 39 are introduced in the Schottky scheme.
All expressions here are functions of formal variables w4, p, € C and vertex operator
parameters. Then we recall the genus g reduction formula with universal coefficients
that have a geometrical meaning and are meromorphic on a Riemann surface ©(9).
These coefficients are generalizations of the elliptic Weierstrass functions [L]. For a
2g vertex algebra V states

b= (b_1,bi;...:b_giby),
and corresponding local coordinates
w = (W_1,W1;...;W_g,Wy),

of 2¢g points (p_1,p1;...;P—g,Pg) on the Riemann sphere () consider the genus zero
2g-point correlation function

Z(O)(b,'w) =Z(O)(b_1,w_1; bi,wis...;b g, w_g;bg, wy)
= n pyt(ba)z(o)(glaw—ﬁb17w1§~--;Bg7w—g§bgawg)~
aely
where 7, = {1,2,...,g}. Let
b+ = (b17 s 7bg)7

denote an element of a V-tensor product V®9-basis with dual basis
bo = (b_1,...,b—y),

with respect to the bilinear form {-,-),, (cf. Appendix 5).

Let w, for a € Z be 2¢ formal variables. One identify them with the canonical
Schottky parameters (for detailes of the Schottky construction, see [TW, T2]). One
can define the genus g partition function as

29 = 2 (w,p) = ¥, 2 (b, w), (4.15)
by
for
(w, p) = (Wi1, P15 -3 Wig, Pg)-

Now we recall the formal reduction formulas for all genus g Schottky n-point functions.
One defines the genus g formal n-point function for n vectors v,, € V& inserted at
Yn by

29 (v,y) = 20 (v, y:w,p) = . 20 (v, y: b, w), (4.16)
by
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where
Z(O)(’U,y; baw) = Z(O)(UlayU U, Yns b, wogs bngg)~
Let U be a vertex operator subalgebra of V where V has a U-module decomposition
V= @ Wy,
a€eA

for U-modules W,, and some indexing set A. Let

g
Wa = ® Waav
a=1
denote a tensor product of g modules
Z‘(/g())c (v,y) = Z Z(O)(v3 y; b, w), (4.17)
bieWq

where here the sum is over a basis {by} for Wy. It follows that

2 (v,9) = 3, Zif). (v, ), (4.18)
acA
where the sum ranges over a = (v, ..., ) € A, for A = A®9. Finally, one defines

corresponding formal n-point correlation differential forms

‘/—_"(/9) (v,y) — Z(g) (v’ y) dth(U),

Fi (v,y) = 2 (v, y) dy™ ), (4.19)
where

dywt(v) _ H dyZVt(’Uk).
k=1

Recall notations and identifications given in Appendix 6.3. In [TW] they prove that
the genus g (n+1)-point formal differential .7-'1(/5()1 (z;v,y), for 41 = (Vnt1, Ynt1), for
a quasiprimary vector v,4+1 € U of weight wt(v,41) = p inserted at a point pgy, with
the coordinate y,41, and general vectors v,, inserted at points p, with coordinates
yn satisfies the recursive identity for x,, = (v,y)

.FI(/I‘(/]',)n+1a (anrl; Xn) = (Hl(g) + Hz(g)) flgg,)n (X”) ’ (420)

e

HO (i) FL %) =Y Oulynir) OF= (vpi13%n)

)
Il
—

Al Uy (Ynt1, Yk)
0

FD (u(5))k-xn) dyf

=

HQ(Q) (XnJrl)]:!S[%)n-H (Tpy1) =

i
—
<.
V

Here 0(%7) is given by
O f(w,y) = 00 f(2,y),
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for a function f(z,y), and (?(O’j) denotes partial derivatives with respect to x and y;.
The forms W, (yn+1,yr) dyi, given by (6.24), O4(z) is of (6.26), and O (v,41;%,)
of (6.27).

4.5. Vertex cluster algebras. Finally, we would like to describe the example of
vertex cluster algebras introduced in [Zu] and reveal their cohomological nature. The
condition (2.5) for mutation (4.26) to be involutive gives us a cohomological condi-
tion (vanishing square of the n-th coboundary operator) on modular forms. Cluster
algebras introduced in [FZ1] have numerous applications in various areas of mathe-
matics [FG1, FG2, FG3, FG4, GSV1, GSV2, GSV3, FST, KS, N1, N2, DFK, GLS,
HL, Kel, Ke2, Na, Sch, N1, N2, Sch]. In this subsection we recall [Zu] definition
of a vertex cluster algebra and show its cohomological nature. Let us fix a vertex
operator algebra V. Chose n-marked points p;, ¢ = 1,...,n on a genus g compact
Riemann surface formed by one of procedures [Y, TZ] mentioned in Introduction. In
the vicinity of each marked point p; define a local coordinate z; with zero at p;. For
n-tuples of elements x,, let us denote

Y(xn) = (Y(z1),...,Y(zn)).
Definition 9. We define a vertex operator cluster algebra seed
(vn, V(xn), FE, (xn)> . (4.21)
The mutation is defined as follows:

Definition 10. For v,,, we define the mutation v/, of v, in the direction k€ 1,...,n
as

Vi = 1 (Tnt1, M)Vi = (Fi(Vn+1(m)))k Vi) (4.22)
for some m > 0, and V-valued functions F,Eg ) (Un+1(m)), depending on genus g of the
Riemann surface. Note that due to the property (5.3) we get a finite number of terms
as a result of the action of v,4+1(m) on vg, 1 < k < n. For the n-tuple of vertex
operators we define

Y (1) = lni,m) ¥ (x0) = (Y (G @Wnsa (m)x0 ) ) (4.23)
where G,(fg) (Un+1(m)) are other V-valued functions. For u € V, w € C, the mutation
p(ni1) of FY (xn),

Fip (%) = wlania) Fif, (xn) (4.24)
where p(z,41) is given by the coboundary operator
1) = 7,

defined by summation over mutations in all possible directions k, 1 < k < n, with
auxiliary functions fl(g) (Zpt1,1) and f2(g) (m,k), 1 <Ii<l(g9),1<k<n m=>=1,

]:‘(}57)”/ (X’) = ?g)fl(/lg,)n (Xn) - (4.25)
We also require the involutivity condition
1(@nt1) p(@ns1) = 1d, (4.26)
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define the mutation of the seed (4.21) in the direction k € 1,...,n of 2,41 € V. We
denote by CELG) the space of seeds (4.21) for particular n > 1, satisfying condition

(4.26).

The involutivity condition can be expressed in terms of coboundary operator (5(’;)
as (2.5) with vy,42 = vp41 with extra term Id on the right hand side.
Definition 11. For a fixed g, definitions 9-10 and involutivity condition (4.26) for

mutation determine the structure of a vertex operator cluster algebra CG,, of dimen-
sion n. We call the full vertex operator cluster algebra the union | J,~, CGn-

It is naturally graded by n. of CG,,. The cohomology of vertex cluster algebras will
be considered elsewhere. In [Zu] we have proven the following

Proposition 3. For a verter operator algebra V such that dimVy = 1, k € Z, and
with u = 1y, w e C, and

Fi(u(m)).v = Gi(u(m)).v = &, yu[—1].v,
73 (u(m)) = u[ml,

form =0, and &, € C, &, = 1, depending on u and v, in (4.22), (4.23), and
(4.25), the mutation

H = (uk(lVa _1)7Mk(1V7 _1)’/1’(1‘/’ ’LU)) ’

(Vi V) 2 0c0) ) = 1o (v, Vo), B, (x0) ) (4.27)
defined by (4.22), (4.23), (4.25) is an involution, i.e.,
wop=1Id.
[m]
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5. APPENDIX: VERTEX OPERATOR ALGEBRAS

In this subsection we recall the notion of a vertex operator algebra [B, DL, FHL,
FLM, K, LL, MN].

Definition 12. A vertex operator algebra is determined by a quadruple (V,Y, 1y, w),
where is a linear space endowed with a Z-grading with
V= @ V,»,
TreZ
with dim V. < co. The state 1y € Vg, 1y #+ 0, is the vacuum vector and w € V5 is the
conformal vector with properties described below. The vertex operator Y is a linear
map

Y : V — End(V)[[z, 2],
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for formal variable z so that for any vector v € V' we have a vertex operator
Y(u,z) = Z u(n)z= "L (5.1)
nez
The linear operators (modes) u(n) : V — V satisfy creativity
Y(u,z)ly = u+ O(z), (5.2)
and lower truncation
u(n)v = 0, (5.3)
conditions for each u, v € V and n » 0. Finally, the vertex operators satisfy the
Jacobi identity

z(;l(? (zl — Z2> Y (u,21)Y (v, 22) — 251(5 (z2 — Zl) Y (v, 22)Y (u, 21)

<0 —Z0

— 2515 (Zl 2_2 ZO) Y (Y (u, 20)v, 22) . (5.4)

These axioms imply locality, skew-symmetry, associativity and commutativity condi-
tions:

(21 — 22)NY (u, 21)Y (v, 22) = (21 — 20) VY (v, 22)Y (u, 21), (5.5)

Y (u, 2)v = 2FVY (v, —2)u,

(20 + 20) VY (u, 20 + 22)Y (v, 22)w = (20 + 22) VY (Y (u, 20)v, 20)w, (5.6)
u(k)Y (v, 2) = ¥ (v, 2)u(k) = 3 (5) y e, )24, (5.7)

for u, v, w e V and integers N » 0.

For the conformal vector w one has
Y(w,2) = Z L(n)z~ "2 (5.8)
nez

where L(n) satisfies the Virasoro algebra for some central charge C

C
+ E(m3 —m)dpm,—nIdy, (5.9)
where Idy is identity operator on V. Each vertex operator satisfies the translation
property

[L(m),L(n)] = (m —n)L(m+ n)

0.Y(u,2) =Y (L(—1)u, 2). (5.10)
The Virasoro operator L(0) provides the Z-grading with
L(0)u = ru,
forueV,, reZ.

For v = 1y, one has
Y(lv, Z) = Idv. (511)
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Note also that modes of homogeneous states are graded operators on V, i.e., for
Ve Vk,

v(n) : Vip = Vs k—n—1. (5.12)

In particular, let us define the zero mode o(v) of a state of weight wt(v) = k, i.e.,
ve Vg, as

o(v) = v(wit(v) — 1), (5.13)
extending to V' additively.

Definition 13. Given a vertex operator algebra V', one defines the adjoint vertex
operator with respect to o € C, by

The adjoint operators defined by the mapping z — 1/z, i.e., with a = €,
Llo] ¢

Vi = v [ep (Coi) (-5) "0 5.
e [v, 2] [exp L) () v

associated with the formal Mobius map [FHL]

«
zZ > —.
z

Definition 14. An element u € V is called quasiprimary if
L(1)u = 0.
For quasiprimary u of weight wt(u) one has
ul(n) = (=1)H W o1ty (9wt (u) — n — 2).
Definition 15. A bilinear form
(,>:VxV->C,
is called invariant if [FHL, Li]
(Y (u, 2)a, by = {a, Y (u, 2)b), (5.15)

for all a, b, ue V.

Notice that the adjoint vertex operator YT(.,.) as well as the bilinear form (.,.),
depend on «. In terms of modes, we have

(u(n)a, by = (a,u’ (n)b). (5.16)
Choosing u = w, and for n = 1 implies
(L(0)a, by = {a, L(0)b).
Thus,
(a,b) =0,
when wt(a) # wt(b).
Definition 16. A vertex operator algebra is called of strong-type if
Vo = Cly,

and V is simple and self-dual, i.e., V is isomorphic to the dual module V' as a V-
module.
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It is proven in [Li] that a strong-type vertex operator algebra V has a unique
invariant non-degenerate bilinear form up to normalization. This motivates

Definition 17. The form {.,.) on a strong-type vertex operator algebra V is the
unique invariant bilinear form {.,.) normalized by

1y, 1y) = 1.

Given a vertex operator algebra (V,Y(.,.), 1y,w), one can find an isomorphic vertex
operator algebra (V,Y7[.,.],1y,®) called [Zhu] the square-bracket vertex operator al-
gebra. Both algebras have the same underlying vector space V', vacuum vector 1y,
and central charge. The vertex operator Y., .] is determined by

Y[v,z] = Z v[n]z™" =Y (C]ZL(O)%% - 1) .
neZ

The new square-bracket conformal vector is
N c
w=w-——1ly,
247"

with the vertex operator

nez
The square-bracket Virasoro operator mode L[0] provides an alternative Z—grading
onV, ie., wt[v] =k if
L[0]v = kv,

where wt[v] = wt(v) for primary v, and L(n)v = 0 for all n > 0. We can similarly
define a square-bracket bilinear form (., .)sq.

6. APPENDIX: GENUS g GENERALIZATIONS OF ELLIPTIC FUNCTIONS
In this Appendix we recall [T2] genus g generalizations of classical elliptic functions.

6.1. Classical elliptic functions. In this subsection we recall the classical elliptic
functions and modular forms [Se, Lal.

Definition 18. For an integer k > 2, the Eisenstein series is given by

Ek(T) = Ek(q) = 6n,even <_i:€ + ﬁ Z>:1 Uk—l(n)qn> 5

where 7 € H, ¢ = e2™'7,

op—1(n) = Z dk1

d|n

and k — th Bernoulli number Bj.

If k£ > 4 then Ei(7) is a modular form of weight k& on SL(2,7Z), while Ex(7) is a
quasi-modular form.
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Definition 19. For integer k > 1, define elliptic functions z € C:

k=1

Puter) = T P ),

Pi(z,7) = 1o Z Ej ()21,
k=2

In particular
Py(z,7) = p(2,7) + Ex(7),

for Weierstrass function p(z,7) with periods 27i and 2mit. Py(z,7) is related to the
quasi—periodic Weierstrass o—function with

Py(z + 2miT,7) = Pi(2,7) — L.
6.2. Genus two counterparts of Weierstrass functions. In this section we recall

the definition of genus two Weierstrass functions [GT]. For m, n > 1, we first define
a number of infinite matrices and row and column vectors:

F(mvn) = 5m,7n+2p727

A(m,n) = (5m7n+2p,2. (61)
We also define the projection matrix
lop—1 O
H—FQ—l o 1 (6.2)
0 "

where Idg,_3 denotes the 2p — 3 dimensional identity matrix and Id_; = 0. Let A,
for a € {1, 2} be the matrix with components

Aog(m,m) = Ag(m,n;7y,e)
= emtn)/2(_qyntl <m +: - 1) Eman(Ta)- (6.3)
Note that
Ay = S4,571, (6.4)

for A, given by

(—1)F+1eBHD2 (41— 1)!
\/H (k_l)!(l_l)!Ek-H(Ta)'

introduce the infinite dimensional matrices for S a diagonal matrix with components

S(m,n) = vV/mbmn.- (6.5)

Aa = Aa(kalaTave) =

Let R(x) for x € EAZ((II) be the row vector with components

R(x,m) = G%meLl(xaTa)' (66)
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Let X, for a € {1,2} be the column vector with components

Xi(m) = X <m; vn+1,xn;B(2)>
= M2 Z ]-"(,1]1 (Y [xx]v[m]u; 1) .7:‘(/{7)17,6 (Y [Xk+1,n] U5 72),
ueV

Xo(m) = Xy (m;vnﬂ,xn; B(2)>

= 2N FO (Yhad wn) Fy) oy (Y[xaodolmlam) . (6.7)
ueV

Introduce also Q(p; ) an infinite row vector defined by

o e\l
Qpso) =R@)A (1-Azha) (6.8)
for z € EA]((II). Notice that
A, = AA.
On introduces '
(=1
Pjyi(z) = 7 Py (2),
for x € i(ll), and j > 0, is the column with components
m(m+7—1
Prawim) = ("IN (P - GeBa(n)). (69)

Definition 20. One defines
Pi(p;z,y) = Pr(p; @, y; 71, 72, €),
for p = 1 by
Pi(p;z,y) =Pi(z =y, 7a) — P1(2, 7a)
—Q(p; 2)AaP1(y) — (1 = 5,1) (Qp; 2)Aa) (2p — 2),

for x, y € ig), and

Pu(pi, y) =(—1)7" | Qs 0)P1 () + (1= 1) Pap1 ()
+(1=8,) (Qps)Aaha ) (2p - 2)|,
for x € f)él), Yy E f]g). For j > 0, define
Piri(piz,y) = %@i (Pi(p;@,y)),
ie.,

, Saa
Pir1(p;x,y) = 60aPjr1(x —y) + (—1)1.Q(p; ) (Aa) Pit1(y), (6.10)

for x € i(ll), Yy € f)él). One calls Pj;1(p; z,y) the genus two generalized Weierstrass
functions.
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6.3. Genus g generalizations of elliptic functions. For purposes of the formula
(4.20) we recall here certain definitions [TW]. Define a column vector

X = (Xa(m)),
indexed by m > 0 and a € Z with components
Xo(m) :p;%ZZ(O)(...;u(m)ba,wa;...), (6.11)
by

and a row vector
p(x) = (palz, m)),
for m > 0,a € Z with components

Pa(x,m) = pa% &(O’W)wéo)(x, Wq). (6.12)

Introduce the column vector
G = (Ga (m))7
for m = 0,a € Z, given by

2 a(yr) 2 ((u()))kxn),

where ¢(y) = (¢o(y;m)), for m > 0, a € Z, is a column vector with components

Ga(y;m) = (*1)”0%0(’”’0)1/),(,0)(10_(1,y), (6.13)
and
R = (Rap(m,n)),

for m, n = 0 and a, b € Z is a doubly indexed matrix with components

m+1 n
_1\p, 2 (m,n),;,(0) -
Rup(m,n) = { TVPa’ P00 p (woaywp), 0 # b, (6.14)
(=DPpa * &p(w-a), a = —b,
where
2p—2
y) = >, " fuly) 0™y, (6.15)
2p—2
PO (2,y) = —— i Z folz (6.16)

for any Laurent series fy(x) for £ = 0,...,2p — 2. Define the doubly indexed matrix
A = (Agp(m,n)) by

Aab(ma n) = 6m,n+2p—15ab- (617)

Denote by
R = RA,
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~

and the formal inverse (I — R)~! is given by

(I - sz)_l = Y &~ (6.18)

k=0
Define x(x) = (xa(z;¢)) and
o(u;v,y) = (0a(u; v, y3 1)),
are finite row and column vectors indexed by a € Z, 0 < £ < 2p — 2 with
_t N ~
Xa(2:6) = pa* (p(x) + P(2)(I — R) "' R)a(0), (6.19)
0a(6) = 0a(u50, 33 0) = pi Xa(0), (6.20)

and where

Yp(z,y) is defined by

~

Up(a,y) = 00 (2, y) + plx)(I — R)q(y). (6.21)
For each a € Z, we define a vector
Oa(2) = (0a(2;0)),
indexed by 0 < ¢ < 2p — 2 with components
Oa(2;0) = Xa(w; 0) + (=1)Pph " "X al(a;2p — 2 0). (6.22)
Now define the following vectors of formal differential forms

P(z) = p(z) dz?,

Qly) = aly) dy' 7, (6.23)
with
P(z) = P(z)A
Then with
Uy (2,y) = Pp(,y) da? dy' P, (6.24)
we have
Uy (z,y) = U (2, y) + P(2)(I - R)7'Q(y). (6.25)
Defining
Oq(x;0) = O04(x; 0) da®, (6.26)
and
O (50, Y3 £) = 0q(u; v, y; £) dy™* ™), (6.27)

Remark 9. The ©,(z), and ¥, (z,y) coefficients depend on p = wt(u) but are other-
wise independent of the vertex operator algebra V.
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