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Obstacle problem

Fluid domain and obstacle

Q = Rd \ B, d = 2, 3

B compact, convex

Navier–Stokes system

∂t%+ divx(%u) = 0

∂t(%u) + divx(%u⊗ u) +∇xp(%) = divxS(∇xu)

p(%) ≈ a%γ , γ > 1, S = µ

(
∇xu +∇t

xu− 2

d
divxuI

)
+λdivxuI, µ > 0, λ ≥ 0

Boundary and far field conditions

u|∂Q = 0, %→ %∞, u→ u∞ as |x | → ∞



High Reynolds number (vanishing viscosity) limit

Vanishing viscosity

εn ↘ 0, µn = εnµ, µ > 0, λn = εnλ, λ ≥ 0

Questions

Identify the limit of the corresponding solutions (%n, un) as n→∞ in
the fluid domain Q

Yakhot and Orszak [1986]: “The effect of the boundary in the
turbulence regime can be modeled in a statistically equivalent way by
fluid equations driven by stochastic forcing”

Clarify the meaning of “statistically equivalent way”

Is the (compressible) Euler system driven by a general cylindrical white
noise force adequate to describe the limit of (%n, un)?



Bounded energy solutions

(Relative) energy

E
(
%, u

∣∣∣%∞, u∞) =
1

2
%|u− u∞|2 + P(%)− P ′(%∞)(%− %∞)− P(%∞)

P(%) =
a

γ − 1
%γ , u∞ = 0 for |x | < R1, u∞ = u∞ for |x | > R2

Energy inequality

d

dt

∫
Q

E
(
%, u
∣∣∣%∞, u∞) dx +

∫
Q

S(∇xu) : ∇xu dx

≤ −
∫
Q

(
%u⊗ u + p(%)I

)
: ∇xu∞ dx +

1

2

∫
Q

%u · ∇x |u∞|2 dx

+

∫
Q

S(∇xu) : ∇xu∞ dx .



Statistical limit

Energy bounds

m ≡ %u

1

N

N∑
n=1

[
sup

0≤τ≤T

∫
Q

E
(
%n,mn

∣∣∣%∞, u∞) (τ, ·) dx + εn

∫ T

0

∫
Q

S(∇xun) : ∇xun dxdt

]
≤ E

uniformly for N →∞

Trajectory space

(%n,mn) ∈ T ≡ Cweak([0,T ]; Lγloc(Q)× L
2γ
γ+1

loc (Q;Rd))

Statistical limit

VN =
1

N

N∑
n=1

δ(%n,mn), mn = %nun

Prokhorov theorem ⇒ VN → V narrowly in P[T ]

(%,m) ≈ V a random process with paths in T



Limit problem

Statistical dissipative solutions to the Euler system

∂t%+ divxm = 0

∂tm + divx

(
m⊗m

%

)
+∇xp(%) = −divxR

V a.s.

Reynolds stress

R ∈ L∞weak−(∗)(0,T ;M+(Q;Rd×d
sym ))

R : (ξ ⊗ ξ) ≥ 0, ξ ∈ Rd

E
[∫ T

0

ψ

∫
Q

ϕ d trace[R]dt

]
≤ cE‖ψ‖L1(0,T )‖ϕ‖BC(Q)



Reynolds stress

Skorokhod–Jakubowski representation theorem

%N ≈ %̃N , mN ≈ m̃N (equivalence in law)

a.s. weak convergence

(%̃N , m̃N)→ (%,m) in Cweak([0,T ]; Lγloc(Q)× L
2γ
γ+1

loc (Q;Rd))

m̃N ⊗ m̃N

%̃N
+ p(%N)I→ m⊗m

%
+ p(%)I

weakly-(*) in L∞weak−(∗)(0,T ;M(Q;Rd×d
sym ))

Reynolds stress

R ≡ m⊗m

%
+ p(%)−

(
m⊗m

%
+ p(%)I

)
convexity of (%,m) 7→

(
|m · ξ|2

%
+ p(%)|ξ|2

)
⇒ R : (ξ ⊗ ξ) ≥ 0



Stochastic Euler system

Euler system with stochastic forcing

d%̃+ divxm̃dt = 0

dm̃ + divx

(
m̃⊗ m̃

%̃

)
dt +∇xp(%̃)dt = FdW

W = (Wk)k≥1 cylindrical Wiener process

F = (Fk)k≥1 − diffusion coefficient

E

∫ T

0

∑
k≥1

‖Fk‖2
W−`,2(Q;Rd )dt

 <∞
we allow F = F(%,m)



Statistical equivalence
statistical equivalence ⇔ identity in expectation of some quantities

(%,m) statistically equivalent to (%̃, m̃)

⇔

density and momentum

E
[∫

D

%

]
= E

[∫
D

%̃

]
, E

[∫
D

m

]
= E

[∫
D

m̃

]
kinetic and internal energy

E
[∫

D

|m|2

%

]
= E

[∫
D

|m̃|2

%̃

]
, E

[∫
D

p(%)

]
= E

[∫
D

p(%̃)

]
angular energy

E
[∫

D

1

%
(Jx0 ·m) ·m

]
, E

[∫
D

1

%̃
(Jx0 · m̃) · m̃

]
D ⊂ (0,T )× Q, x0 ∈ Rd , Jx0 (x) ≡ |x − x0|2I− (x − x0)⊗ (x − x0)



Results
Hypothesis:

(%,m) statistically equivalent to a solution of the stochastic Euler system (%̃, m̃)

Conclusion:

Noise inactive
R = 0, (%,m) is a statistical solution to a deterministic Euler system

S-convergence (up to a subsequence) to the limit system

1

N

N∑
n=1

b(%n,mn)→ E [b(%,m)] strongly in L1
loc((0,T )× Q)

for any b ∈ Cc(Rd+1), ϕ ∈ C∞c ((0,T )× Q)

Conditional statistical convergence

barycenter (%,m) ≡ E [(%,m)] solves the Euler system

⇒
1

N
#

{
n ≤ N

∣∣∣‖%n − %‖Lγ (K) + ‖mn −m‖
L

2γ
γ+1 (K ;Rd )

> ε

}
→ 0 as N →∞

for any ε > 0, and any compact K ⊂ [0,T ]× Q



Main ideas

Use statistical equivalence of (%,m) to (%̃, m̃) and the fact that the Itô
integral is a martingale to obtain the identity

E [divxR] = E
[
divx

(
m̃⊗ m̃

%̃
− m⊗m

%

)]
(1)

in D′((0,T )× Q)

Show that if Q is exterior to a ball and (%,m) statistically equivalent to
(%̃, m̃), then

R = 0 a.s.

Hint: Use test functions of the form

φL(x) = χ

(
|x |
L

)
∇xF (|x |2), φ ∈ C 1

c (Q), L ≥ 1

χ ∈ C∞c [0,∞), χ(Z) = 1 for Z ≤ 1, χ(Z) = 0 for Z ≥ 2

F convex, F (Z) = 0 for 0 ≤ Z ≤ R2, 0 < F ′(Z) ≤ F for R2 < Z < R2 +1

F ′(Z) = F if Z ≥ R2 + 1,

and let L→∞ to conclude E
[∫ T

0

∫
Q
tr[R]

]
= 0

Extend the result to Q = Rd \ B, B compact, convex.



Stratonovich drift

Stochastic Euler system

d%̃+ divxm̃dt = 0

dm̃ + divx

(
m̃⊗ m̃

%̃

)
dt +∇xp(%̃)dt = (σ · ∇x)m̃ ◦ dW1 + F dW2

Additional hypotheses

Q = Rd

If d = 2, we need %∞ = 0; if d = 3, we need %∞ = 0, u∞ = 0, and
1 < γ ≤ 3

Similar type of noise used recently by Flandoli et al to produce a regularizig
effect in the incompressible Navier–Stokes system



Conclusion

Stochastically driven Euler system irrelevant in the description of
compressible turbulence (slightly extrapolated statement)

Possible scenarios:

Oscillatory limit. The sequence (%n,mn) generates a Young measure.
Its barycenter (weak limit of (%n,mn)) is not a weak solution of the
Euler system. Statistically, however, the limit is a single object. This
scenario is compatible with the hypothesis that the limit is independent
of the choice of εn ↘ 0 ⇒ computable numerically.

Statistical limit. The limit is a statistical solution of the Euler system.
In agreement with Kolmogorov hypothesis concerning turbulent flow
advocated in the compressible setting by Chen and Glimm. This
scenario is not compatible with the hypothesis that the limit is
independent of εn ↘ 0 (⇒ numerically problematic) unless the limit is
a monoatomic measure in which case the convergence must be strong.


