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1 Introduction

Contact problems represent an important tool in applied mathematics with a lot of applications
in different applied physical sciences and engineering. Already since 1930s the basic model
of Signorini is used (the mostly cited reference to it is [11]). It describes the contact of a
deformable body with a rigid foundation and respects the impenetrability of mass. Due to
the mostly dynamic character of contact problems, the main task for mathematical analysts
is to study them. Their investigation started in late seventies with one-dimensional objects
as strings. However, the one-dimensional case making possible compact imbedding of Sobolev
space H1 into continuous functions and making the boundary very simple is too special to be
immediately extended to a higher space dimensions. The first result in higher dimensions was
[7], it treated a dynamic contact of an elastic half–space with a flat foundation but it did not
indicated a possibility to extend it to general bodies. The solvability of this problem for general
viscoelastic bodies was proved in 1996 ([4]). It has been further investigated in [10] while in
[9] the question of the existence of an energy-conserving solution has been solved for the case
of a string. However, there is still a substantial open question of solvability of such problems
for purely elastic material, although an amount of existence results for dynamic contact of two
dimensional thin structures as plates and shells was proved, where the purely elastic case was
solved for their fourth-order models.

The real material has never a perfect geometrical form, it has small surface asperities to
be deformed and small holes to be filled. These microscopical facts can be macroscopically
described as some kind of interpenetration between the body and the foundation. Since 1980s
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models of contact with unlimited interpenetration have been studied, cf e.g. [8]. The contact
term has there usually the form of a compact perturbation of corresponding contactless prob-
lems which is advantageous for mathematical analysis. However, they are obviously not realistic
from the point of view of physics, although they can be useful for numerical approximation of
problems from technical practice. In 2007 the first model with a limited interpenetration was
suggested in [6], the limit of the interpenetration is prescribed and reachable.

In [3] a new physically reasonable model has been introduced which describes a coercive
static contact of a body with a foundation which is rigid, but allows some prescribed limited
interpenetration into its surface. Both the frictionless and the frictional problem has been
treated. The limit of the interpenetration is prescribed and cannot be reached outside a set of
zero measure which seems to be physically more suitable than the model in [6]. The semicoercive
static version of this problem was treated in [5]. However, the decisive step to some wider
applicability of such a model is the proof of the solvability of its dynamic version at least for
some sufficiently wide class of materials. A physically well posed viscosity is of a great help.
To prove the existence of solutions to such problems is the aim of this paper.

Our contact model, although easily formulated, is mathematically quite complex and thus
we introduce and solve first approximate problems similar to penalized ones formulated for the
Signorini contact. After an easy proof of their solvability we have to carry out an appropriate
limit process based on further estimates of solutions to the approximate problems. Our task
here is to prove that the limit satisfies the non-compact normal–compliance type relation. The
main argument we use here is the maximal monotonicity of the superposition operator involved.

2 Problem formulation and approximation

We assume the constitutive law for the stress tensor σ given by Hooke’s law of linear viscoelas-
ticity

(1) σ = A (1)ε̇ + A (0)ε

with a possibly space–dependent tensors A (ι) = (a
(ι)
ijk`)

d
i,j,k,`=1 of the fourth order, ι = 0, 1. Both

tensors are assumed to be symmetric and to have measurable entries,

a
(ι)
ijk` = a

(ι)
k`ij = a

(ι)
jik`, a

(ι)
ijk` ∈ L∞(Ω) for every i, j, k, ` ∈ {1, . . . , N}, ι = 0, 1

on a domain Ω which is a bounded connected set in Rd with a boundary Γ of the class C3/2.
The tensor ε is the linearized strain tensor εij : u 7→ 1/2(∂ui/∂uj + ∂uj/∂ui) and the dot ˙
denotes here and in the sequel the time derivative.

Moreover, the entries a
(ι)
ijk` are supposed to be positive definite and bounded in the sense

d∑

i,j,k,`=1

a
(ι)
ijk`(x) ξij ξk` ≥ a

(ι)
0 |ξ|2 and

d∑

i,j,k,`=1

a
(ι)
ijk`(x) ξij ηk` ≤ A

(ι)
0 |ξ||η|, ι = 0, 1(2)

for every symmetric tensors ξ = (ξij)
d
i,j=1, η = (ηij)

d
i,j=1 with norm |ξ| =

√∑d
i,j=1 |ξij|2 and

with constants a
(ι)
0 , A

(ι)
0 > 0 independent of x ∈ Ω for ι = 0, 1.

The normal component of the boundary traction is denoted by σν = σν · ν, where ν is the
unit outward normal.

In the sequel, we use the following notation for the spaces employed: by Hk(M) with k ≥ 0
the Sobolev (for a noninteger k the Sobolev-Slobodetskii) spaces of the Hilbert type are denoted
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provided they are defined on a domain or an appropriate manifold M . If M is a time-space
domain we will use the anisotropic spaces with the notation Hk(M) ( k = (k1, k2) ∈ R2

+) and
it signifies that k1 is related to the time while k2 to the spacial variables.

The extension of this notation for the Bochner–type spaces is the following: Hk1(I; Hk2(Ω))
stands for the space of mappings u : I → Hk2(Ω) having square integrable time derivatives up
to the order k1 in Sobolev space Hk2(Ω).

If M is an interval, by H
1/2
00 (M) is denoted the space of functions extendable by zero to

H1/2(R). By H̊k(M) we denote the spaces with zero traces on ∂M if k > 1/2. By H−k(M)
their duals are denoted.

D(M) is used for the space of infinitely differentiable functions with compact support in M
and D ′(M) for the space of distributions on M .

For the finite-dimensional vectors and spaces of vector-valued functions the bold symbols
are consequently used throughout the paper. For the sake of notation simplicity this does not
apply for zero elements in infinitely-dimensional spaces.

The contact model shall be a normal compliance law of the type

(3) σν = −p(uν − g)

with a function p : R→ R+, where R+ = [0, +∞]. The natural assumptions for p are p(z) = 0
for z ≤ α with a constant α, p is monotone, limz→β− p(z) = +∞ with a β > α, and p(z) = +∞
for z ≥ β. The third requirement here means that the interpenetration in the normal compliance
model is limited by β. The value of α may describe the contact of the first asperities, the value
of β the total flattening of the boundary such that no further interpenetration is possible.

In the analysis that is presented here we use slightly weaker conditions, we require that

p : R→ R+, p|(−∞,β) ∈ C(−∞, β), lim
z→−∞

p(z) = 0,

lim
z→β

p(z) = +∞, p is monotone on (−∞, β) and

∫ y

−∞
p(z) dz < +∞ for y < β.

(4)

Moreover, we assume that there is a decreasing sequence

(λn)+∞
n=1 with lim

n→+∞
λn = 0 such that the derivatives p′(β − λn) exist,

the sequence (p′(β − λn))+∞
n=1 is increasing and lim

n→+∞
p′(β − λn) = +∞.

(5)

The dynamic contact problem to be studied has the following classical formulation:
Look for a displacement u such that the following conditions are satisfied

ü−Div(σ(u)) = f in Q = (0, T )×Ω,(6)

u = U on S1 = (0, T )× Γ1,(7)

σ(u)ν = b on S2 = (0, T )× Γ2,(8)

σν(u) + p(uν − g) = 0(9)

στ (u) = 0 on S3 = (0, T )× Γ3(10)

u(0,x) = u0(x), u̇(0, x) = u1(x) for a. e. x ∈ Ω.(11)

We assume that Γi for i = 1, 2, 3 are pairwise disjoint subsets of Γ = ∂Ω which are open in
the relative topology induced on the boundary and

⋃3
i=1 Γi = Γ . We assume that Γ3 has a

positive surface measure and that Γi for i = 1, ..., 3 have Lipschitz relative boundaries with
respect to the relative topology on Γ . With an abuse of notation we will extend function g
defined originally on Γ3 to S3 as g(t, x) = g(x) for all (t, x) ∈ S3.



4 JIŘÍ JARUŠEK AND JANA STARÁ

The nonlinear superposition operator p̃ generated by p is a mapping which is defined on a
set

dom(p̃) =

{
z ∈ H1/4, 1/2(S3) ; p(z) ∈ (H1/4, 1/2(S3))

∗
}

as

p̃(z)(w) =

∫

S3

p(z(t, x))w(t, x)dsxdt = 〈p(z(t, x)), w(t, x)〉S3 for w ∈ H1/4,1/2(S3).

By 〈f(t, x), g(t, x)〉G we denote the (L2(G) based) duality pairing on an indicated set G. As
we shall want to have the boundary tractions to solutions of the problem solved on the contact
zone to be functions at least in L1(S3), we shall assume that if Γ1 6= ∅, then dist(Γ1, Γ3) > 0.

Observe that unlike the static situation the acceleration prevents everytimes the semicoer-
cive phenomenon here, hence the nonemptiness of Γ1 is negligible.

We introduce the space H1
U (Ω) ≡ {w ∈ H1(Ω); w|Γ1 = U}. (Note that in case U ≡ 0 just

defined space H1
0(Ω) consists of functions having zero traces on Γ1 while space of functions

with zero traces on ∂Ω is denoted by H̊1(Ω).) The corresponding weak formulation of original
problem is given by

Find u ∈ L∞
(
I; H1

U (Ω)
)

with uν−g ∈ dom(p̃), u̇ ∈ L∞(I; L2(Ω))∩L2(I; H1(Ω)), u(0, ·) =
u0, and u̇(0, ·) = u1 in Ω such that for every v ∈ H1

0(Q)

〈u̇(T ), v(T )〉Ω − 〈u1,v(0)〉Ω − 〈u̇, v̇〉Q + 〈σ(u), ε(v)〉Q
+〈p(uν − g), vν〉S3 = 〈`, v〉Q.

(12)

Here 〈`, v〉 = 〈f ,v〉Q + 〈b, v〉S2 .
For f , b, U and g we will impose the requirements

f ∈ L2

(
I; H1(Ω)∗

)
such that f(t)|Γ = 0 in H1/2(Γ )∗ for a. e. t ∈ (0, T ),

b ∈ L2

(
I; H1/2(S2)

∗), g ∈ H1/2(S3),

U ∈ H1
(
I; H1(Ω)

) ∩H2(I; L2(Ω)), Uν = 0 a.e. on S3,

u0 ∈ H1(Ω) and u1 ∈ L2(Ω),

lim
t→0+

||U (t, .)− u0(.)||H1(Ω) = 0,

lim
t→0+

||U̇ (t, .)− u1(.)||L2(Ω) = 0.

(13)

For the precise meaning of the requirement for f see Appendix. We remark that it is
satisfied e.g. by any f ∈ L2(Q).

As in the static case [3] the first step of our analysis is the monotone approximation of p.
Let λn be a fixed sequence from (5). For n ∈ N let pn be family of functions approximating p
such that

(14) pn : z 7→
{

p(z), z ≤ β − λn

min
{
p(β − λn) + p′(β − λn)(z − β + λn), p(z)

}
, z > β − λn.

Then the approximate contact problem is given by the weak formulation (we denote its
solution un).
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Find un ∈ L∞
(
I; H1

U (Ω)
)

with u̇n ∈ L∞(I; L2(Ω)) ∩ L2(I; H1(Ω)), ün ∈ L2

(
I; H1

0(Ω)∗
)
,

un(0, ·) = u0, and u̇n(0, ·) = u1 in Ω such that for every v ∈ L2(I; H1
0(Ω))

〈ün,v〉Q + 〈σ(un), ε(v)〉Q + 〈pn((un)ν − g), vν〉S3 = 〈`, v〉Q.(15)

Observe that unlike to original problem no integration by parts in time has been performed
here as we prove that solutions of approximate problem have second time derivative ün ∈
L2(I; H1

0(Ω)∗). The classical formulation of this approximate problem differs from original one
only in (9), where p is replaced by pn.

We first prove the existence of a solution to the approximate problem.

Theorem 1 Let Ω be a bounded Lipschitz domain satisfying the requirements below formula
(11), let f , b, U , uι, ι = 0, 1, and g satisfy the requirements (13) and p satisfy the requirements
(4–5). Then problem (15) has a solution. This solution satisfies the a priori estimate

‖u̇n‖L2(I;H1(Ω)) + ‖un‖L∞(I;H1(Ω)) + ‖u̇n‖L∞(I;L2(Ω)) + ‖Pn((un)ν − g)‖L∞(I;L1(Γ3)) ≤ C,(16)

where Pn(z) =
∫ z

−∞ pn(y) dy and the constant C depends on Ω, Γj, j = 1, 2, 3, f , b, U , u0, u1

and g.

Proof The proof is done by a Galerkin approximation. To avoid the double indexation we
omit in this proof the index n connected with approximation of p by pn.

Let {v1,v2, . . .} be a basis of H1
0(Ω) and Vm = span{v1, . . . , vm}. For simplicity of the

presentation we assume that the basis is orthogonal with respect to the scalar products in
H1

0(Ω) and L2(Ω). (Such a basis can be constructed via the eigenfunctions of the corresponding
boundary value problem to the Laplace operator.) Then the orthogonal projection πm of H1

0(Ω)
to Vm is bounded in L2(Ω) and in H1(Ω) norms. The Galerkin approximation searches for a
function um with um−U : I → Vm, um(0, ·) = πmu0, and u̇m(0, ·) = πmu1 such that for every
v ∈ Vm and almost every time t ∈ I

〈üm,v〉Ω + 〈σ(um), ε(v)〉Ω + 〈pn(umν − g), vν〉Γ3 = 〈`, v〉Ω.(17)

This problem can be rewritten as a system of ordinary differential equations of second order
with globally Lipschitz lower order terms for the coefficients in the representation of um with
respect to the basis of Vm. (Note that the Lipschitz constants depend on the approximation
pn of p.) The existence and uniqueness of solutions to this system follow from the theory of
ordinary differential equations.

We now derive an energy estimate by inserting the test function v = u̇m − U̇ in the
discretized equations (17) and integrating with respect to t ∈ (0, t0). After standard calculation
we obtain

∫ t0

0

‖u̇m(t)‖2
E1

dt + 1
2
‖u̇m(t0)‖2

L2(Ω) + 1
2
‖um(t0)‖2

E0
+ ‖Pn(umν − g)(t0)‖L1(Γ3)

= 1
2
‖u̇m(0)‖2

L2(Ω) + 1
2
‖um(0)‖2

E0
+ ‖Pn(umν − g)(0)‖L1(Γ3)

+

∫ t0

0

[
〈`, u̇m − U̇〉Ω + 〈üm, U̇〉Ω + 〈σ(um), ε(U̇ )〉Ω

]
dt

with energy seminorms ‖v‖Eι =
√
〈A (ι)ε(v), ε(v)〉Ω, ι = 0, 1. Note that the last term

〈pn(umν − g), ġ − U̇ν〉Γ3 is zero because of assumption on g and U . We use the integration
by parts for the acceleration term on the right hand side

∫ t0

0

〈üm, U̇〉Ω dt = 〈u̇m(t0), U̇ (t0)〉Ω − 〈u̇m(0), U̇ (0)〉Ω −
∫ t0

0

〈u̇m, Ü〉Ω dt.
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The application of suitable Hölder inequalities and the Gronwall Lemma together with the
well-known coerciveness of strains (cf. [2], Thm.1.2.1) leads to the estimate

‖u̇m‖L2(I;H1(Ω)) + ‖u̇m‖L∞(I;L2(Ω)) + ‖um‖L∞(I;H1(Ω)) + ‖Pn(umν − g)‖L∞(I;L1(Γ3)) ≤ C(18)

with C independent of m and of n. The properties of pn yields the estimate for ‖üm‖L2(I;H1
0 (Ω)∗)

independent of m but dependent on n. As a consequence we have

um ⇀ u in L2

(
I; H1(Ω)

)
and strongly in L2(S3),

u̇m ⇀ u̇ in L2

(
I; H1(Ω)

)
,

üm ⇀ ü in L2(I; H1
0(Ω)∗),

um(T ) ⇀ u(T ) in H1(Ω),

u̇m(T ) ⇀ u̇(T ) in L2(Ω)

with the limit u ∈ L∞
(
I; H1

U (Ω)
) ∩ W 1

∞(I; L2(Ω)). Since pn for fixed n is continuous and
has linear growth, theorem on Nemytskii operators (see [12] Thm. A2) implies pn(umν − g) →
pn(uν − g) in L2(S3). Passing to the limit for m → +∞ we find that u is a solution to (15) for
all test functions v ∈ L2(I; Vm) with arbitrary m ∈ N. Since

⋃
m∈N Vm is dense in H1

0(Ω) and
u ∈ L∞

(
I; H1(Ω)

) ∩W 1
∞(I; L2(Ω)), equation (15) is satisfied for every v ∈ L2(I; H1

0(Ω)). 2

3 Further estimates of un

We proceed by proving further estimates. Let us return to the notation of the solution of the
problem with the approximate function pn by un. The original a priori estimates (16) yield
that there is a dual estimate of the acceleration equivalent to the estimate

(19) ‖u̇n‖H1(I;H−1(Ω)) ≤ C

which is independent of n. This is easily verified by taking an arbitrary v ∈ L2(I; H̊1(Ω)) as
a test function in (15) since then the contact term is zero. Interpolating this with the a priori
estimate (16), which can be written as

‖u̇n‖L2(I;H1(Ω)) ≤ C,

we get that

(20) ‖u̇n‖H1/2(I;L2(Ω)) ≤ C

with C independent of n. These interpolation results can be obtained by the extension technique
for Sobolev-Slobodetskii spaces from bounded domains to whole RN for any dimension N and
the partial Fourier transform in the time variable.

This technique allows to reformulate further the estimate (20) as

(21) ‖ün‖(H1/2(I;L2(Ω)))∗ ≤ C.

The contact term 〈pn(unν − g), vν〉S3 can be represented via equation (15) by

〈pn(unν − g), vν〉S3 = 〈`, v〉Q + 〈u̇n, v̇〉Q − 〈σ(un), ε(v)〉Q.

providing v ∈ H
1/2,1
0 (Q) ∩H

1/2
00 (I; L2(Ω)), n ∈ N. Due to (16) this implies

‖pn(unν − g)‖(H1/4,1/2(S3))∗ ≤ C(22)
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with a constant C independent of n. (We employ here the well-known fact that D(I) is dense
in H1/4(I).) Moreover, using in (15) a test function v ∈ L2

(
I; H1

0(Ω)
)

with vν = 1 on S3 and
the fact that pn(unν − g) is nonnegative proves

‖pn(unν − g)‖L1(S3) ≤ C

with C independent of n.

4 Solving the original problem

In this section we denote un solutions to the approximate problem with pn while u stands for
a solution to the original contact problem (12) with p and prove

Theorem 2 Let Ω be a bounded Lipschitz domain satisfying the requirements below formula
(11), let f , b, U , uι, ι = 0, 1, and g satisfy the requirements (13) and p satisfy the requirements
(4–5). Then problem (12) has a solution.

To prove it, we proceed to the convergence process for the index n → +∞. As a consequence
of all above estimates there is a subsequence which will be with an abuse of notation denoted
as the original sequence and which satisfies following convergences

un ⇀ u weakly in H3/2,1(Q), strongly in C(I; L2(Ω)) ∩H1/2(I; L2(Ω)),

un → u strongly in L2(S3) and a.e. on S3,

u̇n ⇀ u̇ weakly in H1/2,1(Q), and strongly in L2(Q),

u̇n(T ) ⇀ u̇(T ) weakly in L2(Ω)

pn(unν − g) ⇀ θ weakly in (H1/4,1/2(S3))
∗ and weakly∗ in L∗∞(S3)

(23)

with θ ∈ H1/4,1/2(S3)
∗ ∩ L∗∞(S3).

¿From the convergence unν → uν a.e on S3 and the fact that pn(unν − g) is bounded in
L1(S3) we prove (with the help of the Yegorov theorem as in [3]) that uν − g < β a.e. in S3.

In fact, denote for δ > 0 by Mδ set of points z = [t, x] ∈ S3 such that uν(z)− g(z) ≥ β − δ.
As the sequence of measures {mes Mδ} is non decreasing it is enough to prove that mes Mδ → 0
for δ → 0 + . Assume by contradiction that there is a positive η such that mes Mδ ≥ η for all
δ > 0. By Egorov theorem there is a set S3η ⊂ S3 such that mes S3 \ S3,η < η/2 and at the
same time unν → uν uniformly on S3,η. Thus we choose n1 so that |un,ν −uν | < δ on S3,η for all
n > n1 and n2 so that pn(y) = p(y) for all y ≤ β − 2δ and n ≥ n2. Thus for n ≥ max{n1, n2}
we have

C ≥ ‖pn(uν − g)‖L1(S3) ≥ ‖pn(uν − g)‖L1(Mδ∩S3η)

≥ mes(Mδ ∩ S3η))pn(β − 2δ) =
η

2
p(β − 2δ).

(24)

As limδ→0 p(β − 2δ) = ∞ it gives the contradiction and thus pn(unν − g) → p(uν − g) a.e.
in S3 for n →∞.

For any test function v ∈ H1/2(S3) with non negative vν we get

0 ≤ pn(unν − g)vν ≤ p(uν − g)vν

a.e. on S3 and from Fatou lemma
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〈θ, vν〉S3 = lim inf
n→∞

〈pn(unν − g), vν〉S3

≥ 〈lim inf
n→∞

pn(unν − g), vν〉S3 = 〈p(uν − g)vν〉S3 .
(25)

i.e θ ≥ p(uν − g) in the dual sense.
Using the integration by parts in the first term in (15) and passing to the limit n → +∞

there, we obtain

〈u̇(T ),v(T )〉Ω − 〈u1,v(0)〉Ω − 〈u̇, v̇〉Q
+ 〈σ(u), ε(v)〉Q + 〈θ, vν〉S3 = 〈`, v〉Q

(26)

Observe that it is valid also for such v ∈ H1/2,1(Q) which are continuous in the endpoints as
e.g. u̇.

Furthermore, by putting v = un in (15) and using convergences in (23), the lower semicon-
tinuity of the term 〈σ(un), ε(un)〉Q and the fact that the time level term, the linear part and
the 〈u̇n, u̇n〉Q tend to the corresponding limits due to (23) we get from (26)

(27) 〈θ, uν〉S3 ≥ lim sup
n→+∞

〈pn(unν − g), unν〉S3 .

Then the monotonicity of functions pn yields that for any w ∈ H1/2,1(Ω) such that its trace is
in dom p̃ it holds

(28) 〈θ − p(wν − g), uν − wν〉S3 ≥ 0.

Denote
dom(P̃ ) =

{
w ∈ H1/4,1/2(S3); P (w) ∈ L1(S3)

}

and for w ∈ dom P̃ by

P̃ (w) =

∫

S3

P (w(z))dsxdt

and extend P̃ outside dom(P̃ ) by +∞. Then P̃ is convex with non empty domain dom(P̃ ),
lower semicontinuous, and for all v ∈ dom(p̃) we have that operator vν 7→ p̃(vν−g) is the deriva-
tive, hence the subdifferential of the functional P̃ . Moreover the norm of the space H1/4,1/2(Γ3)
is of the Hilbert type, hence it is Fréchet differentiable everywhere outside 0. The space is also
uniformly convex, hence its dual is uniformly smooth. By Theorem 5.1.7 of the monograph
[1] p̃ is maximal monotone, uν ∈ dom p̃ and the identity θ = p(uν − g) holds.1 This identity
finishes the proof.

5 Relation to the Signorini contact

Next we turn to solutions of Signorini problem. Let us have a sequence βk ↘ 0. Assume
the system of functions pk such that they satisfy all the requirements of (4–5) with β = βk,
respectively and the additional requirement

(29) pk ≡ 0 on [−∞, 0], k ∈ N.

1The authors are deeply indebted to Jǐŕı Outrata for indicating them this result.
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Let uk be respective solutions of the problem (12) with p = pk. It is not difficult to prove
that the estimates (18–22) hold for the sequence {uk} independently of k ∈ N. Hence there is
u such that the convergences in (23) to it are satisfied for an appropriate subsequence of the
sequence {uk} with θ ≥ 0 in the dual sense. Moreover, since ukν < g + βk a.e. on S3, the limit
u belongs to the cone Kg defined as

(30) Kg := {v ∈ H
1/2,1
0 (Q); vν ≤ g on S3}.

Observe that for v ∈ Kg the identity pk(vν − g) = 0 holds for any k ∈ N. Then for Θ ≡
lim

k→+∞
〈pk(ukν), ukν〉S3 the monotonicity of pk yields that Θ ≥ 〈θ, uν〉S3 . If we pass to the limit

in (12) with the test function w = v − uk in the problem for β = βk and put v = u in the
limit variational equation, we get the oposite inequality, hence Θ = 〈θ, uν〉S3 . This yields that
for any v ∈ Kg the variational inequality

〈u̇(T ),v(T )− u(T )〉Ω − 〈u1,v(0)− u0〉Ω − 〈u̇, v̇ − u̇〉Q
+〈σ(u), ε(v − u)〉Q ≥ 〈`, v − u〉Q.

(31)

holds, hence the limit u is a solution of the appropriate unilateral contact problem without
interpenetration (the Signorini contact problem). We had proved

Theorem 3 Let us have a sequence of problems (12) satisfying all assumption of Theorem 2
such that the corresponding limits of interpenetration βk ↘ 0 and the requirement (29) holds.
Then there is a subsequence of the respective solutions tending to a solution of the appropriate
Signorini contact problem.

Observe that no uniqueness of solutions of the problem (31) can be expected due to the
well-known lack of condition ensuring the energy conservation. The uniqueness of solutions to
our problem (12) remains open.

6 Conclusion

The existence of a solution of a rational contact model with limited interpenetration in vis-
coelastodynamics has been proved here. We hope that this result will draw attention both of
numerical analysts to study it and of engineers to apply it.

7 Appendix - decomposition of the space H1(Ω)∗

Let A be a fixed linear Lamé operator (e.g. our operator A (0)). Define the operator B :
H1/2(Γ ) → H1(Ω) as B : w 7→ v, where the equation

A v = 0 on Ω,

v = w on Γ
(32)

is satisfied. Let T : H1(Ω) → H1/2(Γ ) be the trace operator. Let v ∈ H1(Ω) is arbitrary. We
decompose it as B ◦ T v + ṽ, where ṽ ≡ (v −B ◦ T v) ∈ H̊1(Ω). Let ϕ ∈ H1(Ω)∗, let ϕ0 ∈
H−1(Ω) is such that ϕ0 = ϕ on H̊1(Ω). Then we have the decomposition ϕ = [ϕ0,ϕ| Im B],

ϕ| Im B ◦B ∈ H−1/2(Γ ). With an abuse of notation we denote ϕ|Γ = 0 if for any v ∈ H1/2(Γ )
〈ϕ| Im B ◦B,v〉Γ = 0. The definition does not depend on the choice of A .



10 JIŘÍ JARUŠEK AND JANA STARÁ
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