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Abstract.
We summarize the fall-off of electromagnetic and gravitational fields in n > 5 dimensional

Ricci-flat spacetimes along an asympotically expanding non-singular geodesic null congruence.

1. Introduction
Under suitable assumptions, the well-known peeling-off property characterizes the behavior
of the gravitational and electromagnetic fields at null infinity (see, e.g., [1, 2] and references
therein). It has been observed [3] that the Weyl tensor peels off differently in n > 4 dimensions.
Here, we summarize our recent results [4, 5] on the leading-order behavior of gravitational and
electromagnetic fields in higher dimensions. Ref. [4] partly recovers the results of [3] but uses
a different method and different assumptions. We restrict to Ricci-flat spacetimes with suitable
properties at null infinity (a cosmological constant can be included [4,5]), formulated in terms of
a geodesic null vector field ` = ∂r (r is an affine parameter) and of the Weyl tensor, using a “null”
frame [6] based on two null vectors m(0) = `, m(1) = n and n− 2 orthonormal spacelike vectors

m(i) (i, j, · · · = 2, . . . , n − 1). First, we assume that the optical matrix ρij = `a;bm
a
(i)m

b
(j) is

asymptotically non-singular and expanding [4,5] (this includes asymptotically flat spacetimes [3]
but also holds more generally – see [7] in four dimensions). Furthermore, we assume that the
boost-weight (b.w.) +2 Weyl components Ωij ≡ C0i0j = Cabcd`

amb
(i)`

cmd
(j) fall off as

Ωij = O(r−ν) (ν > 2). (1)

Again, this is satisfied in asymptotically flat spacetimes [3] (e.g., Ωij = O(r−5) in the 4D
spacetimes of [7]). Under the above conditions, one is able to determine how the Maxwell
and Weyl tensors fall off as r → ∞, as we summarize in sections 2 and 3. However, as an
intermediate step, one also needs the r-dependence of the Ricci rotation coefficients and of the
derivative operators [6], which is given in [4] (it follows from the Ricci identities [8], also using

the commutators [9] and the Bianchi identities [10]). For example, ρij =
δij
r + . . .. For brevity,

in this paper, we discuss only results in n > 5 dimensions – the case n ≥ 5 is studied in [4, 5].

2. Electromagnetic field
We start from the simpler case of test Maxwell fields in the background of an n-dimensional Ricci-
flat spacetime satisfying the assumptions of section 1 [5]. The gravitational field (Weyl tensor)



can be treated similarly, however, resulting in a larger number of possible cases (section 3).
In the frame of section 1, we assume that for r →∞ the Maxwell components have a power-

like behavior described by

F0i = O(rα), F01 = O(rβ), Fij = O(rγ), F1i = O(rδ). (2)

The empty-space Maxwell equations F ab;a = 0 = F[ab;c] (see [5,11] for their GHP and NP form)
determine the possible values of α, β, γ and δ. We assume that if a generic component f
behaves as f = O(r−ζ) then ∂rf = O(r−ζ−1) and ∂Af = O(r−ζ). As it turns out, α can be
chosen arbitrarily, giving raise to two main cases, α ≥ −2 or α < −2. In the latter, one needs to
choose whether γ ≥ −2 or γ < −2, and then specify more precisely the value of α, as we detail.

2.1. Case α ≥ −2.
In this case, all components fall off at the same speed, i.e.,

F0i = O(rα), F01 = O(rα), Fij = O(rα), F1i = O(rα). (3)

The electromagnetic field does not peel. This describes, e.g., a uniform magnetic field
permeating asymptotically flat black holes [12] (or black rings [13] if n = 5 is included, cf. [5]).

2.2. Case α < −2.
Generically, we have

F0i = O(rα), (4)

F01 = o(r−2), Fij = O(r−2), (5)

F1i = O(r−2). (6)

The above behavior includes the special case when ` is an aligned null direction of the Maxwell
field, i.e., F0i = 0 (in the formal limit α→ −∞). The leading term is of type II. Examples can
be obtained as a “linearized” Maxwell field limit of certain full Einstein-Maxwell solutions given
in [14] for even n. Several subcases are possible when γ < −2.

2.2.1. Subcase (a): γ < −2 with 1− n
2 ≤ α < −2. In this case, one has the same results as in

section 2.1 above. This subcase does not exist for n = 6.

2.2.2. Subcase (b): γ < −2 with −n
2 ≤ α < 1− n

2 . Here, we have

F0i = O(rα), (7)

F01 = O(rα), Fij = O(rα), (8)

F1i = O(r1−n/2). (9)

The leading term falls off as 1/r
n
2
−1 and is of type N. This is characteristic of radiative fields

(note that T11 ∝ F1iF1i ∼ 1/rn−2 and the energy flux along ` can be directly related to the
energy loss, at least in the case of asymptotically flat spacetimes – cf. [15–17] for n = 4). As
opposed to the well-known four-dimensional case, here, ` cannot be aligned with Fab if radiation
is present (since α ≥ −n

2 ). In the case α = −n
2 , if one assumes that F1i has a power-like behavior

also at the subleading order, from the Maxwell equations, one finds F1i = F
(0)
1i r

1−n
2 +O(r−n/2),

which gives the peeling-off behavior

Fab =
Nab

r
n
2
−1 +

Gab

r
n
2

+ . . .
(
α = −n

2

)
. (10)

The subleading term is algebraically general, which is qualitatively different from the 4D case
[1,2,16,17]. This resembles the behavior of the Weyl tensor of higher dimensional asymptotically
flat spacetimes [3]. See [5] for a possible different peeling-off in five dimensions.



2.2.3. Subcase (c): γ < −2 with 2− n ≤ α < −n
2 . The same results as in section 2.1 apply.

2.2.4. Subcase (d): γ < −2 with α < 2− n. We have

F0i = O(rα), (11)

F01 = O(r2−n), Fij = o(r2−n), (12)

F1i = O(r2−n). (13)

The leading term is of type II and falls off as 1/rn−2 (it is purely electric in the subcase
F1i = o(r2−n)). This behavior includes the Coulomb field of a weakly charged asymptotically
flat black hole [12, 18] (or black ring [13] if n = 5 is included [5]). In the special subcase
F01 = o(r2−n), the same results as in section 2.1 again apply (for example, for n = 5 and
α = −4, this is the case of the weak-field limit of the 5D dipole black rings of [19]).

Let us observe that in all cases, type N fields for which ` is aligned are not permitted [11,20].

2.3. The case of p-forms
The above results for a 2-form Fab can be extended easily [5] to p-form fields satisfying the
generalized Maxwell equations (given in [11] in the GHP notation). In even dimensions, the
special case p = n/2 (including n = 4, p = 2) has unique properties. It peels off as

Fa1...ap =
Na1...ap

r
n
2
−1 +

IIa1...ap

r
n
2

+ . . .
(
p =

n

2

)
. (14)

The (radiative) leading term is of type N and falls off as 1/r
n
2
−1. In contrast to the case p = 2

discussed above (or, in fact, any other p 6= n/2), Maxwell fields of type N aligned with ` are now
permitted [5] and the peeling (14) applies also in the presence of a cosmological constant [5].
Corresponding solutions of the full Einstein-Maxwell equations have recently been obtained [21].

3. Gravitational field
The method to be used for the Weyl tensor [4] is essentially similar, now −ν playing the role that
α played above. Instead of the Maxwell equations, one has to integrate the system “Bianchi-
Ricci-commutators”. However, there is now extra freedom in the choice of possible boundary
conditions. In particular, three possible choices for the behavior of b.w. +1 components Ψijk

are possible (cases (i), (ii) and (iii) below). Once the fall-off of Ωij and Ψijk has been specified,
the next step is to determine the fall-off of the b.w. 0 components Φijkl

Φijkl = O(rβc). (15)

The parameter βc can then be used to label various possible subcases, which we now present.

3.1. Case (i): Ωij = O(r−ν), Ψijk = O(r−ν)
In all cases given here, we have (this will not be repeated every time below)

Ωij = O(r−ν) (ν > 2), Ψijk = O(r−ν). (16)

3.1.1. Subcase (A): βc = −2. In this case, necessarily βc > −ν and we have the following
possible behaviors, depending on how ν is chosen (cf. [4] for a few further special subcases):



A1:

Φijkl = O(r−2), ΦS
ij = o(r−2), ΦA

ij = o(r−2) (2 < ν ≤ 3),

Ψ′ijk = O(r−2), (17)

Ω′ij = O(rσ) (−2 ≤ σ < −1);

A2:

Φijkl = O(r−2), ΦS
ij = O(r−3), Φ = O(r−ν), ΦA

ij = O(r−3) ( 3 < ν < 4),

Ψ′ijk = O(r−2), Ψ′i = O(r−3), (18)

Ω′ij = O(r−2);

A3:

Φijkl = O(r−2), ΦS
ij = O(r−3), Φ = O(r−4), ΦA

ij = O(r−3) (ν≥ 4),

Ψ′ijk = O(r−2), Ψ′i = O(r−3), (19)

Ω′ij = O(r−2),

with the further restrictions ΦS
ij = O(r1−ν) for 4 ≤ ν < 5 and ΦS

ij = O(r−4) for ν ≥ 5;

A4:

Φijkl = O(r−2), ΦS
ij = O(r1−ν), Φ = O(r−ν), ΦA

ij = O(r−ν) (ν ≥ 4, ν 6= n),

Ψ′ijk = O(r−2), Ψ′i = O(r1−ν), (20)

Ω′ij = O(r−2);

A5:

Φijkl = O(r−2), ΦS
ij = O(r1−n), ΦA

ij = O(r−n) (ν ≥ n),

Ψ′ijk = O(r−2), Ψ′i = O(r1−n), (21)

Ω′ij = O(r−2).

None of the above five cases can describe asymptotically flat spacetimes, cf. [3]. In cases
A2–A5, the leading term falls off as 1/r2 at infinity and it is of type II(abd). In cases A3–A5,
` can be a multiple WAND. Examples in case A5 are Robinson-Trautman spacetime [22].

When βc < −2, its precise value depends on the value of ν so that we have to consider the
following possible cases.

3.1.2. Subcase (B): βc < −2 with n
2 < ν ≤ 1 + n

2 . In this case, βc = −n
2 and we have

Φijkl = O(r−n/2), Φ = O(r−ν), ΦA
ij = O(r−ν)

(n
2
< ν ≤ 1 +

n

2

)
,

Ψ′ijk = O(r−n/2), (22)

Ω′ij = O(r1−n/2).

Here, ` cannot be a WAND. The leading term at infinity falls off as 1/rn/2−1 and it is
of type N. This includes radiative spacetimes [3] that are asymptotically flat in the Bondi



definition [23,24]. If one takes for b.w. +2 components ν = 1+ n
2 and additionally assumes that

Ωij = Ω
(0)
ij r
−n/2−1 + Ω

(1)
ij r
−n/2−2 + o(r−n/2−2), then one finds [4] the peeling-off behavior

Cabcd =
Nabcd

rn/2−1
+
IIabcd
rn/2

+ o(r−n/2). (23)

This agrees with [3] for asymptotically flat spacetimes. See [3, 4] for special properties of the
case n = 5. When βc < −2 but ν is not in the range n

2 < ν ≤ 1 + n
2 one has the following

subcases (B*) and (C).

3.1.3. Subcase (B*): βc < −2 with 2 < ν ≤ n
2 or 1 + n

2 < ν ≤ n− 1. In this case, βc = −ν and
we have (cf. section IV A 5 of [4])

Φijkl = O(r−ν), ΦA
ij = O(r−ν),

Ψ′ijk = O(r−2) if 2 < ν ≤ 3, Ψ′ijk = O(r−ν) if ν > 3, (24)

Ω′ij = o(r1−ν) if ν 6= n

2
, Ω′ij = O(r1−n/2) if ν =

n

2
.

Here, ` cannot be a WAND.

3.1.4. Subcase (C): βc < −2 with ν > n− 1. In this case, βc = 1− n and we have

Φijkl = O(r1−n), ΦA
ij = o(r1−n) (ν > n− 1),

Ψ′ijk = O(r1−n), (25)

Ω′ij = o(r2−n),

with ΦA
ij = O(r−ν) for n − 1 < ν < n and ΦA

ij = O(r−n) for ν ≥ n. Here, ` can become a
multiple WAND, cf. [25]. This includes asymptotically flat spacetimes in the case of vanishing
radiation [3], such as those for which ` is a multiple WAND [25], e.g., the Schwarzschild-
Tangherlini metric and Kerr-Schild spacetimes [26] with a non-degenerate Kerr-Schild vector.

3.2. Case (ii): Ωij = o(r−n), Ψijk = O(r−n)
3.2.1. Subcase βc = −2. Generically, one has

Ωij = o(r−n),

Ψijk = O(r−n),

Φijkl = O(r−2), ΦS
ij = O(r−4), ΦA

ij = O(r−3), (26)

Ψ′ijk = O(r−2), Ψ′i = O(r−3),

Ω′ij = O(r−2).

For Ψ
(n)
ijk = 0, this case reduces to (19) (with ν > n). See [4] for possible subcases.

3.2.2. Subcase βc = 1− n. When βc < −2 then necessarily βc = 1− n and generically, one has

Ωij = o(r−n),

Ψijk = O(r−n),

Φijkl = O(r1−n), ΦA
ij = O(r−n), (27)

Ψ′ijk = O(r1−n), Ψ′i = O(r1−n),

Ω′ij = o(r2−n).



This includes asymptotically flat spacetimes in the case of vanishing radiation [3]. For Ψ
(n)
ijk = 0,

this case reduces to (25) (with ν > n).

3.3. Case (iii): Ωij = o(r−3), Ψijk = O(r−3)
This case cannot represent asymptotically flat spacetimes [3]. Generically, βc = −2 and

Ωij = O(r−ν) (ν > 3),

Ψijk = O(r−3), Ψi = o(r−3),

Φijkl = O(r−2), ΦS
ij = O(r−3), Φ = o(r−3), ΦA

ij = O(r−3), (28)

Ψ′ijk = O(r−2), Ψ′i = O(r−3),

Ω′ij = O(r−2),

where Ψi = O(r−ν), Φ = O(r−ν) for 3 < ν ≤ 4 while Ψi = O(r−4), Φ = O(r−4) for ν > 4. Here,

` can be a single WAND and the asymptotically leading term is of type II(abd). For Ψ
(3)
ijk = 0,

this case reduces for 3 < ν < 4 to (18) (with ν > n), for 4 ≤ ν ≤ n to (19) and for ν > n to
(26). If βc < −2 then Φijkl = O(r−3) and the leading term at infinity becomes of type III(a).

Acknowledgments
The authors acknowledge support from research plan RVO: 67985840 and research grant GAČR
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[6] Ortaggio M, Pravda V and Pravdová A 2013 Class. Quantum Grav. 30 013001
[7] Newman E T and Penrose R 1962 J. Math. Phys. 3 566–578 see also E. Newman and R. Penrose (1963),

Errata, J. Math. Phys. 4:998.
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