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COHOMOLOGY OF JACOBI FORMS

A. ZUEVSKY

Abstract. We define and compute a cohomology of the space of Jacobi forms

based on precise analogues of Zhu reduction formulas derived in [Zhu, BKT,

MTZ]. A counterpart of the Bott-Segal theorem for the reduction cohomology of
Jacobi forms on the torus is proven. It is shown that the reduction cohomology

for Jacobi forms is given by the cohomology of n-point connections over a de-

formed vertex algebra bundle defined on the torus. The reduction cohomology for
Jacobi forms for a vertex algebra is determined in terms of the space of analytical

continuations of solutions to Knizhnik-Zamolodchikov equations.

1. Introduction

The natural problem of computation of continuous cohomologies for non-commutative
structures on manifolds has proven to be a subject of great geometrical interest
[BS, Fei, Fuks, Wag]. For Riemann surfaces, and even for higher dimension com-
plex manifolds, the classical cohomology of holomorphic vector fields is often triv-
ial [Kaw, Wag]. In [Fei] Feigin has obtained various results concerning (co)-homology
of cosimplicial objects associated to holomorphic vector fields LiepMq. Vertex alge-
bra [BZF, FHL, K] theory of automorphic forms [Fo] goes back to celebrated Moon-
shine problem [MT]. Most of n-point characteristic functions [FS, FHL, KZ, MT, Zhu]
for vertex algebras deliver examples of modular forms with respect to appropriate
groups attached to geometry of corresponding underlying manifolds. n-point func-
tions are subject to action of differential operators with specific analytical behav-
ior [BKT, GK, GN, Ob]. In this paper we develop ideas and previous results on
cohomology of Jacobi forms originating from algebraic and geometrical procedures in
conformal field theory [FS, TUY]. This paper aims at developing algebraic, differen-
tial geometry, and topological methods for the investigation of cohomology theories
of Jacobi forms generated by vertex algebras, with applications in algebraic topology,
number theory and mathematical physics.

In most cases of lower genera Riemann surfaces, there exist algebraic formulas re-
lating n-point functions with n ´ 1-point functions in a linear way for fixed genus
g [Zhu, MT, MTZ]. The reduction cohomology is defined via reduction formu-
las [Zhu, BKT] relating n-point characteristic functions with pn ´ 1q-functions. Our
new algebraic and geometrical approach for computation of reduction (co)homology
involves vertex algebras and applications of techniques [Huang, Y] used in conformal
field theory. Computation of moduli forms reduction cohomology is useful in further

Key words and phrases. Cohomology; Jacobi forms; Vertex algebras; Knizhnik-Zamolodchikov

equations.
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2 A. ZUEVSKY

studies of constructions in algebraic topology, analytical and geometrical structure of
spaces of modular forms originating from the description of vertex algebras by means
of characteristic functions on manifolds. The main aim of the reduction cohomology is
to describe non-commutative structures in terms of commutative ones. In contrast to
more geometrical methods in classical cohomology for Lie algebras [Fuks], the reduc-
tion cohomology pays more attention to the differential, analytical, and automorphic
structure of chain complex elements constructed by means of characteristic functions
for non-commutative elements of vertex algebras with complex parameters. Compu-
tational methods involving reduction formulas proved their effectiveness in conformal
field theory [KMI, KMII, MT, MT1, MTZ, TZ, DLM, Miy]. Though the Zhu reduc-
tion formulas were obtained for odrinary n-point functions of vertex operators, it also
works for multi-parametric automorphisms inserted into traces written for the torus
case. Then coefficients in the reduction formulas are expressed in terms of quasi-
modular forms. Since quasi-modular forms are holomorphic on the complex upper
half-plane H, then it follows that n-point Jacobi functions are also holomorphic. The
plan of this paper is the following. We define the reduction cohomology, chain con-
dition, and co-boundary operator for complexes of Jacobi forms. Specific examples
of coboundary operators are provided subject to various conditions on vertex algebra
elements. A statement relating n-th reduction cohomology with analytic extensions
of solutions to a counterpart of Knizhnik–Zamolodchikov equation is proven, and its
geometrical meaning is found. In appendixes we recall the notions of quasi-modular
forms, reduction formulas for Jacobi functions, and vertex algebras. Quasi-Jacobi
forms have found applications in vertex algebra theory in [HE], for characteristic
functions of topological N “ 2 vertex algebras, Gromov-Witten potentials [Kaw],
computation of elliptic genera [Lib]related to Jacobi zero-point functions, Landau-
Ginzburg orbifolds [KYY].

2. Chain complex for vertex algebra n-point functions

In this section we will give definition of a chain complex associated to the space of
Jacobi forms [BKT] defined by vertex algebras.

2.1. Spaces of n-point Jacobi functions via vertex operators. Let us fix a
vertex algebra V . We denote by vn “ pv1, . . . , vnq P V

bn a tuple of vertex algebra
elements (see Appendix 3.4 for definition of a vertex algebra). Mark n points pn “
pp1, . . . , pnq on the torus T . Denote by zn “ pz1, . . . , znq local coordinates around
pn P T . Let us introduce the notation: xn “ pvn, znq.

In [MTZ] we considered the orbifold Jacobi n-point functions associated with a
vertex operator superalgebra [K] (see Appendix 3.4), with an automorphism inserted
in traces. Let σ P AutpV q denote the parity automorphism

σa “ p´1qppaqa. (2.1)

Let g P AutpV q denote any other automorphism which commutes with σ. Let W be
a V -module. Assume that W is stable under both σ and g, i.e., σ and g act on W .
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Definition 1. The n-point Jacobi function on W for xn P V
bnˆCn, and g P AutpV q

is defined by

ZJ
W px; g, τq “ STrW

´

YW

´

qLV p0qv,q
¯

n
g qLV p0q´c{24

¯

, (2.2)

q “ expp2πiτq, qi “ exppziq, 1 ď i ď n.

Here STrW denotes the supertrace defined by

STrW pXq “ TrW pσXq “ TrW0̄
pXq ´ TrW1̄

pXq. (2.3)

The orbifold Jacobi zero-point function for general g is then

ZW pg, τq “ STrW

´

g qLV p0q´c{24
¯

. (2.4)

In particular, when V is a vertex operator algebra with Virasoro vector ω of central
charge cV . Consider an element J P V1 such that Jp0q acts semisimply on V . For
vn P V

bn, on T , and a weak V -module W [MT], the Jacobi n ě 0-point function is

ZJ
W pxn;Bq “ TrW

´

Y
´

ez LV p0qv, ez
¯

n
ζJp0qqLp0q

¯

, (2.5)

where B denotes parameters of ZJ
W including z and τ , and

ζ “ qz “ e2πiz.

The Jacobi one-point function, for v P V , is given by

ZJ
W px1;Bq “ TrW

´

o 0pv1q ζ
Jp0q qLp0q

¯

,

which does not depend on z1. Here o 0pv1q “ v1pwt v1 ´ 1q (see Appendix 3.4), with
z P C, and τ being the modular parameter of T .

Definition 2. For a V -module W , we consider the spaces of n-point Jacobi forms

CnpW q “
 

ZJ
W pxn, ;Bq , n ě 0,

(

.

The coboundary operator δnpxn`1q on CnpW q-space is defined according to the
reduction formulas (see section 3 and Appendix 6) [BKT, MTZ] for V -module W
Jacobi forms.

Definition 3. For n ě 0, and any xn`1 P V ˆ C, define

δnpxn`1q : CnpW q Ñ Cn`1pW q, (2.6)

with non-commutative operators Tjpvrms.q, j ě 0, is given by the reduction formulas
(2.7)

δn pxn`1qZJ
W pxn;Bq “

n
ÿ

k“0
mě0

fk,mpxn`1;Bq Tkpvn`1rms.qZJ
W pxn;Bq , (2.7)

The operators Tkpvrms.q are insertion operators of vertex algebra modes vrms.,
m ě 0, into ZJ

W pxn;Bq at the k-th entry:

Tkpvrms.q ZJ
W pxn;Bq “ ZJ

W pTk pvrmsq .xn;Bq ,
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where we use the notation

pΓ.qk xn “ px1, . . . ,Γ.xk, . . . , xnq ,

for an operator Γ acting on k-th entry.

Remark 1. The reductions formulas have an interpretation in terms of torsors [BZF]
(Chapter 6). In such formulation xn is a torsor with respect to the group of transfor-
mation of the space V b n ˆ Cn. In particular, from (2.7) we see that Tk purms.q-
operators act on V b n-entries of xn, while fk,mpxn`1;Bq-functions act on zn of
ZJ
W pxn;Bq as a complex function.

For n ě 0, let us denote by Vn the subsets of all xn P V
bn ˆ Cn, such that the

chain condition

δn`1pxn`1q δ
npxnq ZJ

W pxn;Bq “ 0, (2.8)

for the coboundary operators (2.7) for complexes CnpW q is satisfied. Explicitly, the
chain condition (2.8) leads to an infinite n ě 0 set of equations involving functions
fk,m pxn`1;Bq and ZJ

W pxn;Bq:
¨

˚

˝

n`1,n
ÿ

k1,k“0

m1,mě0

fk1,m1 pxn`1;Bq fk,m pxn;BqTk1pvn`2rm
1s.q Tkpvn`1rms.q

˛

‹

‚

ZJ
W pxn;Bq “ 0.

(2.9)

Remark 2. (2.9) contain finite series and narrows the space of compatible n-point
functions. It follows from considerations of [BKT], the subspaces of CnpW q, n ě 0,
of n-point Jacobi forms such that the condition (2.9) is fulfilled for reduction coho-
mology complexes are non-empty. Indeed, the condition (2.9) represents an infinite
n ě 0 set of functional-differential equations (with finite number of summands) on
converging complex functions ZJ

W pxn;Bq defined for n local complex variables on
T with functional coefficients fk,m pxn`1;Bq (in our examples in subsection 3.1–3.4,
these are generalizations of elliptic functions) on T . Note that all vertex algebra ele-
ments of vn P V

bn, as non-commutative parameters are not present in final form of
functional-differential equations since they incorporated into either matrix elements,
traces, etc. According to the theory of such equations [FK, Gu], each equation in the
infinite set of (2.9) always have a solution in domains they are defined. Thus, there
always exist solutions of (2.9) defining ZJ

W P CnpW q, and they are not empty.

Definition 4. The spaces with conditions (2.9) constitute a semi-infinite chain com-
plex

0 ÝÑ C0 δ0
px1q
ÝÑ C1 δ1

px2q
ÝÑ . . .

δn´2
pxn´1q
ÝÑ Cn´1 δn´1

pxnq
ÝÑ Cn

δnpxn`1q
ÝÑ . . . . (2.10)

For n ě 1, we call corresponding cohomology

Hn
J pW q “ Ker δnpxn`1q{Im δn´1pxnq, (2.11)

the n-th reduction cohomology of a vertex algebra V -module W on T .
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3. Reduction formulas and examples of coboundary operators for
Jacobi n-point functions

3.1. The main formula for coboundary operator. In this subsection, using
Propositions 5 and 6 of [BKT] (see Appendix 6), we introduce the definition of a
coboundary operator associated to the most general (up to certain assumptions) re-
duction formulas available for Jacobi forms. Recall the definition of square bracket
vertex operators from Appendix 6.4. Summing (6.10) over l multiplied by zl´1

n`1,

ZJW pvn`1r´ls.x1,x2,n;Bq. and using associativity of vertex operators we formulate
the following definition of the coboundary operator

Definition 5. Let vn`1 P V such that

vn`1rls.vk “ 0,

for l ě 1, 1 ď k ď n, and such that

Jp0qvn`1 “ αvn`1.

with α P C. Then the coboundary operator is given by (2.7) with the summation over
l P Z, i.e.,

δn pxn`1qZJ
W pxn; z, τq “

n
ÿ

lPZ
mě0,
k“0

fk,mpxn`1;Bq Tkpvn`1rms.q ZJ
W pxn; z, τq , (3.1)

f0pxn`1;Bq T0pvrms.q “
ÿ

lPZ
p´1ql`1 δαz,Zτ`Z

λl´1

pl ´ 1q!
zl´1
n`1 T0poλpvn`1qq,

fk,mpxn`1;Bq “
ÿ

lPZ
p´1qm`1

ˆ

m` l ´ 1

m

˙

zl´1
n`1 Fk,mpxn`1; l, αz, τq, (3.2)

where

Fk,mpxn`1; l, αz, τq “ δ0,m T 1´δαz,Zτ`Z . rEm`l,λ pp1´ δαz,Zτ`Zq αz, τq

`T 1´δαz,Zτ`Z . rPm`l,p1´δαz,Zτ`Zqλ

ˆ

z1 ´ zk
2πi

, p1´ δαz,Zτ`Zq αz, τ

˙

,

with tilde applying operator T , i.e.,

T.Em`l,λ “ rEm`l,λ,

T.Pm`l,λ “ rPm`l,λ, (3.3)

and rEm`k,λpαz, τq, rPm`l,λpz
1, αz, τq given by (5.6) and (5.5) correspondingly.

3.2. The simplest coboundary operator. For certain further restriction on vn`1,
we are able to define the simplest version of coboundary operator for the reduction
cohomology. Using propositions 3 and 4 proven in [BKT] (see Appendix 6), we obtain
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Definition 6. For vn`1, with Jp0qvn`1 “ αvn`1, α P C, the coboundary operator is
defined by (2.7) with

f0pxn`1;αz, τq T0pvn`1rmsq “ δαz,λτ`µPZτ`Z e
´zn`1λ T0poλpvn`1qq,

fk,mpzn`1;λ, k, αz, τq “ T 1´δαz,λτ`µPZτ`ZPm`1,λ

ˆ

zn`1 ´ zk
2πi

, p1´ δαz,λτ`µPZτ`Zq αz, τ

˙

,

(3.4)

with rPm`1,λ pzn`1, αz, τq defined in (5.5).

3.3. Coboundary operator for a shifted Virasoro vector. Suppose that Jp0qa “
αa for α R Zzt0u, and define a V -automorphism g P AutpV q by

g “ e2πi µαJp0q,

for µ P Z for which ga “ a. Then Corollary 2 follows from Proposition 6 of [MTZ]
which states that

n
ÿ

k“1

TrW

´

Tkpar0s.qY
´

ezLV p0qv, ez
¯

n
g qLp0q

¯

“ 0. (3.5)

For
Jp0qvk “ αkvk,

for k “ 1, . . . , n, For the case of shifted Virasoro vector [MTZ] (see Appendix 3.4)
we find In a similar fashion, we can relate Proposition 4 to Theorem 2 of [MTZ] for

the above shifted Virasoro grading Lhp0q and with g “ e2πi µαJp0q. Using Theorem 2
of [MTZ] we give the following

Definition 7. The shifted coboundary operator for the shifted Jacobi form

ZJ
W pxn`1;h, µ, α, z, τq “ TrW

ˆ

Y
´

ez Lhp0qv, ex
¯

n`1
g qLhp0q

˙

, (3.6)

is given by (2.7) with

f0pxn`1;Bq T0pvn`1rms.q “ T0pohpvn`1qq, (3.7)

fk,mpxn`1;Bq “ Pm`1

ˆ

zn`1 ´ zk
2πi

, τ

˙

(3.8)

and Tkpvn`1rmsh.q, where

ohpvn`1q “ vn`1pwthpvn`1q ´ 1q “ vn`1pwtpvn`1q ´ 1` µq “ oµpvn`1q. (3.9)

3.4. Vertex operator superalgebra case. For the case of orbifold Jacobi n-point
functions, we have the following. Let vn`1 be homogeneous of weight wtpvn`1q P R
and define φ P Up1q by

φ “ expp2πi wtpvn`1qq. (3.10)

We also take vn`1 to be an eigenfunction under g with

gvn`1 “ θ´1vn`1 (3.11)

for some θ P Up1q so that

g´1vn`1pkqg “ θvn`1pkq. (3.12)
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Then we have Let v, θ and φ be as as above. Then the coboundary operator is defined
by

f0pxn`1;Bq T0pvn`1rmsq “ δθ,1δφ,1T0po0pvn`1qq,

fk,mpxn`1;Bq “ ppvn`1,vk´1q Pm`1

„

θ
φ



pzn`1 ´ zk, τq (3.13)

where the deformed Weierstrass functions are defined in (5.9)) (see Appendix 5.2).
Note that, as it was shown in [MTZ], the orbifold Jacobi function case is related

to the shifted Virasoro vector case above.

4. Cohomology

In this section we compute the reduction cohomology defined by (2.10)–(2.11).

4.1. The n-th cohomology and analytic extensions of solutions to Knizhnik-
Zamolodchikov equations. The main result of this paper is the following.

Proposition 1. Under assumptions of subsections 3.1–3.4, the n-th reduction coho-
mology of the space of Jacobi forms for V -module W is given by space of analytical
continuations of solutions ZJ

W pxn;Bq to the Knizhnik-Zamolodchikov equation

n
ÿ

k“0

ÿ

mě0

fk,m pxn;BqTkpvn`1rmsβ .q ZJ
M pxn;Bq “ 0, (4.1)

with xi R Vi, β “ h for a shifted Virasoro element and zero otherwise, for 1 ď i ď n.
These are given by the spaces of quasi-modular forms in terms of series of deformed
Weierstrass functions, defined in Appendix 5.2, recursively generated by reduction
formulas (2.7).

Proof: The n-th reduction cohomology is defined by the subspace of CnpW q of func-
tions ZJ pxn;Bq satisfying (4.1), modulo the subspace of CnpW q n-point functions
ZJ
W px

1
n;Bq resulting from:

ZJ
W

`

x1n;B
˘

“

˜

n´1
ÿ

k“1

ÿ

mě0

fk,m pxn;Bq T
pgq
k pv1nrmsβq

¸

ZJ
W

`

x1n´1;B
˘

.

(4.2)

Subject to other fixed parameters, n-point functions are completely determined by all
choices xn P V

bnˆCn which does not belong to V. Thus, the reduction cohomology
can be treated as depending on set of xn only with appropriate action of endomor-
phisms generated by xn`1. Consider a non-vanishing solution ZJ

W pxn;Bq to (4.1) for
some xn. Let us use the reduction formulas (2.7) recursively for each xi, 1 ď i ď n of
xn in order to express ZJ

W pxn;Bq in terms of the partition function ZJ
W pBq, i.e., we

obtain

ZJ
W pxn;Bq “ Dpxn;Bq ZJ

W pBq , (4.3)

as in [MT, MTZ, TZ]. Thus, xi R Vi for 1 ď i ď n, i.e., at each stage of the recursion
procedure reproducing (4.3), otherwise ZJ

W pxn;Bq is zero. Therefore, ZJ
W pxn;B, q
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is explicitly known and is repsented as a series of auxiliary functions Dpxn;Bτq de-
pending on V . Consider now ZJ

W px
1
n;Bq given by (4.2). It is either vanishes when

vn´i P Vn´i, 2 ď i ď n, or given by (4.3) with x1n arguments.
The way the reduction relations (2.7) were derived in [Y] is exactly the same as

for the vertex algebra derivation [KZ, TK] for the Knizhnik-Zamolodchikov equa-
tions. Namely, one considers a double integration of ZJ

W pxn;Bq along small circles
around two auxiliary variables with the action of appropriate reproduction kernels in-
serted. Then, these procedure leads to recursion formulas relating ZJ

W pxn`1;Bq and
ZJ
W pxn;Bq with functional coefficients depending on the nature of the vertex algebra

V . Thus, (4.1) can be seen as a version of the Knizhnik-Zamolodchikov equation.
In [Y, MT, MTZ, BKT] formulas for n-point functions in various specific examples of
V and configuration of Riemann surfaces were explicitly obtained.

In terms of xn`1, by using (6.11), one transfers in (4.1) the action of vn`1-modes
into an analytical continuation of ZJ

W pxn;Bq multi-valued holomorphic functions to
domains Tn Ă T with zi ‰ zj for i ‰ j. Namely, in (4.1), the operators Tkpvn`1rmsβ .q
act by certain modes vn`1rms. of a vertex algebra element vn`1 on vn P V

bn. Using
vertex algebra associativity we express the action of of operators Tkpvn`1rms.q in
terms of modes vn`1rms inside vertex operators in actions of V -modes on the whole
vertex operator at expense of a shift of their formal parameters zn by zn`1, i.e.,
z1n “ zn ` zn`1. Note that under such associativity transformations v-part of xn,
i.e., vn do not change. Thus, the n-th reduction cohomology of a V -module W is
given by the space of analytical continuations of n-point functions ZJ

W pxn;Bq with
xn´1 R Vn´1 that are solutions to the Knizhnik-Zamolodchikov equations (4.1). The
above analytic extensions for the Knizhnik-Zamolodchikov equations generated by
xn`1 and with coefficients provided by functions fk,m pxn`1;Bq on T . �

One can make connection with the first cohomology of grading-restricted vertex al-
gebras in terms of derivations, and to the second cohomology in terms of square-zero
extensions of V by W [Huang]. In certain cases of coboundary operators, we are able
to compute the n-th cohomology even more explicitly by using reduction formulas
in terms of generalized elliptic functions In particular, for orbifold n-point Jacobi
functions associated to a vertex operator superalgebra described in Appendix 3.4, we
obtain from [MTZ]

Corollary 1. For vn R Vn, the n-th cohomology is given by the space of determinants
of n ˆ n-matrices containing deformed elliptic functions depending on zi ´ zj, 1 ď
i, j ď n, for all possible combinations of vn-modes.

4.2. Geometrical meaning of reduction formulas and conditions (2.9). In this
section we show that the Jacobi forms reduction formulas (2.7) appear as of multipoint
connections on a vector bundle over T generalizing ordinary holomorphic connections
on complex curves [BZF]. Let us recall the notion of a multipoint connection which
will be useful for further identifying reduction cohomology in this subsection. Moti-
vated by the definition of a holomorphic connection for a vertex algebra bundle (cf.
Section 6, [BZF] and [Gu]) over a smooth complex curve, we introduce the definition
of the multiple point connection over T .
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Definition 8. Let V be a holomorphic vector bundle over T , and T0 Ă T be its
subdomain. Denote by SV the space of sections of V. A multi-point connection G on
V is a C-multi-linear map

G : T ˆn ˆ V bn Ñ C,
such that for any holomorphic function f , and two sections φppq and ψpp1q of V at
points p and p1 on T0 Ă T correspondingly, we have

ÿ

q,q1PT0ĂT
G
`

fpψpqqq.φpq1q
˘

“ fpψpp1qq G pφppqq ` fpφppqq G
`

ψpp1q
˘

, (4.4)

where the summation on left hand side is performed over locuses of points q, q1 on
T0. We denote by Conn the space of n-point connections defined over T .

Geometrically, for a vector bundle V defined over T , a multi-point connection (4.4)
relates two sections φ and ψ at points p and p1 with a number of sections on T0 Ă T .

Definition 9. We call

Gpφ, ψq “ fpφppqq G
`

ψpp1q
˘

` fpψpp1qq G pφppqq ´
ÿ

q,q1PT0ĂT
G
`

fpψpq1qq.φpqq
˘

, (4.5)

the form of a n-point connection G. The space of n-point connection forms will be
denoted by Gn.

Here we prove the following

Lemma 1. Jacobi n-point forms (2.2) generated by reduction formulas (2.7) are n-
point connections on the space of automorphisms g deformed sections of the vertex
algebra bundle V associated to V . For n ě 0, the n-th reduction cohomology of Jacobi
forms is given by

Hn
J pW q “ Hn

J pSVgq “ Conn{Gn´1, (4.6)

is isomorphic to the cohomology of the space of deformed V-sections.

Remark 3. Proposition 1 is a deformed section vertex algebra version of the main
proposition of [BS, Wag], i.e., the Bott–Segal theorem for Riemann surfaces.

Proof: In [BZF] (Chapter 6, subsection 6.5.3) the vertex operator bundle V was
explicitly constructed. It is easy to see that n-point connections are holomorphic
connection on the bundle V with the following identifications. For non-vanishing
fpφppqq let us set

G “ ZJ
W pxn;Bq ,

ψpp1q “ pxn`1q ,

φppq “ pxnq ,

G pfpψpqqq.φpq1qq “ Tkpvrmsβ .q ZJ
W pxn;Bq ,

´
fpψpp1qq
fpφppqq G pφppqq “ f0 pxn`1;Bq T0poλpvn`1qq ZJ

W pxn;Bq ,

f´1pφppqq
ř

qn,q1n
PT0ĂT

G pfpψpqqq.φpq1qq “
n
ř

k“1
mě0

fk,m pxn`1;BqTkpvrmsβ .q ZJ
W pxn;Bq .

(4.7)
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Thus, the formula (4.7) gives (2.7). Recall [BZF] the construction of the vertex
algebra bundle V. Here we use a Virasoro vector shifred version of it. According to
Proposition 6.5.4 of [BZF], one canonically (i.e., coordinate independently) associates
End V-valued sections Yp of the g-twisted bundle V˚ (the bundle dual to V). The
intrinsic, i.e., coordinate independent, vertex algebra operators are defined by [BZF]

xu,
`

Y˚ppipvnqq
˘

n
g vy “ xu,Ypxnqvy.

to matrix elements of a number of vertex operators on appropriate punctured disks
around points with local coordinates zn on Σpgq. The spaces of such V-sections for
each n of is described by identifications (4.7). Taking into account the construction of
Section 6 (subsection 6.6.1, in particular, construction 6.6.4, and Proposition 6.6.7)
of [BZF], we see that n-point functions are connections on the space of sections of V,
and the reduction cohomology (2.11) is represented by (4.6). �

The geometrical meaning of (2.9) consists in the following. Since in (2.7) operators act
on vertex algebra elements only, we can interpret it as a relation on modes of V with
functional coefficients. In particular, all operators T change vertex algebra elements
by action either of opvq “ vwtv´1, or positive modes of vrms., m ě 0. Recall that
for n-point Jacobi forms are quasi-modular forms. Moreover, the reduction formulas
(2.7) can be used to prove modular invariance for higher n Jacobipoint functions.
Due to automorphic properties of n-point functions, (2.9) can be also interpreted
as relations among modular forms. It also defines a complex variety in zn P Cn
with non-commutative parameters vn P V bn. As most identities (e.g., trisecant
identity [Fay, Mu] and triple product identity [K, MTZ]) for n-point functions (2.9)
has its algebraic-geometrical meaning. The condition (2.9) relates finite series of
vertex algebra correlations functions on T with elliptic functions [Zhu, MT, MTZ].
Since n-point Jacobi forms are quasi-modular forms, we treat (2.9) as a source of new
identities on such forms.

Acknowledgments
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5. Appendix: Quasi-Jacobi forms

In this appendix we recall definitions and properties of Jacobi and quasi-Jacobi
forms [BKT]. First, we provide the definition of ordinary Jacobi forms [EZ]. Let H
be the upper-half plane.

Definition 10. Let k, m P N0, and χ be a rational character for a one dimensional
representation of the Jacobi group SLp2,Zq˙Z2. A holomorphic Jacobi form of weight
k and index m on SL2pZq with rational multiplier χ is a holomorphic function

φ : CˆHÑ C,

and

γ.τ “
aτ ` b

cτ ` d
,
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which satisfies the following conditions. Let γ P SL2pZq,

γ “
`

a b
c d

˘

.

Then, for pλ, µq P Zˆ Z,

φ
ˇ

ˇ

ˇ

k,m
pγ, pλ, µqq “ χ pγ, pλ, µqqφ, (5.1)

where for a function

φ : CˆHÑ C,

φ
ˇ

ˇ

ˇ

k,m
pγ, pλ, µqq pz, τq

“ pcτ ` dq´ke

ˆ

´
cmpz ` λτ ` µq2

cτ ` d
`m

`

λ2τ ` 2λz
˘

˙

φ

ˆ

z ` λτ ` µ

cτ ` d
, γ.τ

˙

.

with epwq “ e2πiw. For a multiplier χ,

χ

ˆ

a b
c d

˙

“ χ

ˆˆ

a b
c d

˙

, p0, 0q

˙

, χpλ, µq “ χ

ˆˆ

1 0
0 1

˙

, pλ, µq

˙

,

and N1, N2 P N uniquely defined by

χ

ˆ

1 1
0 1

˙

“ e2πi
a1
N1 , χp0, 1q “ e2πi

a2
N2 ,

where for aj P N, gcdpaj , Njq “ 1. The function φ has a Fourier expansion of the
form with q “ epτq, ζ “ epzq,

φ pz, τq “
ÿ

nPN0`ρ1

ÿ

rPZ`ρ2
r2ď4nm

cpn, rqqnζr, (5.2)

where ρj “
aj
Nj

pmod Zq with 0 ď ρj ă 1.

We next consider quasi-Jacobi forms as introduced in [Lib].

Definition 11. An almost meromorphic Jacobi form of weight k, index 0, and depth
ps, tq is a meromorphic function in Ctq, ζurz´1, z2τ2 ,

1
τ2
s with z “ z1` iz2, τ “ τ1` iτ2)

satisfying (5.1), and which has degree at most s, t in z2
τ2

, 1
τ2

, respectively.

Definition 12. A quasi-Jacobi form of weight k, index 0, and depth ps, tq is defined
by the constant term of an almost meromorphic Jacobi form of index 0 considered as
a polynomial in z2

τ2
, 1
τ2

.

5.1. Modular and elliptic functions. For a variable x, set

Dx “
1

2πi

B

Bx
,

and qx “ e2πix. Define for

m P N “ t` P Z : ` ą 0u,
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the elliptic Weierstrass functions

P1pw, τq “ ´
ÿ

nPZzt0u

qnw
1´ qn

´
1

2
,

Pm`1pw, τq “
p´1q

m

m!
Dm
w pP1pw, τqq “

p´1qm`1

m!

ÿ

nPZzt0u

nmqnw
1´ qn

.

(5.3)

Next, we have

Definition 13. The modular Eisenstein series Ekpτq, defined by Ek “ 0 for k for
odd and k ě 2 even

Ekpτq “ ´
Bk
k!
`

2

pk ´ 1q!

ÿ

ně1

nk´1qn

1´ qn
,

where Bk is the k-th Bernoulli number defined by

pez ´ 1q´1 “
ÿ

kě0

Bk
k!
zk´1.

It is convenient to define E0 “ ´1. Ek is a modular form for k ą 2 and a quasi-
modular form for k “ 2. Therefore,

Ekpγτq “ pcτ ` dq
kEkpτq ´ δk,2

cpcτ ` dq

2πi
.

Definition 14. For w, z P C, and τ P H let us define

rP1pw, z, τq “ ´
ÿ

nPZ

qnw
1´ qzqn

.

We also have

Definition 15.

rPm`1pw, z, τq “
p´1qm

m!
Dm
w

´

rP1pw, z, τq
¯

“
p´1qm`1

m!

ÿ

nPZ

nmqnw
1´ qzqn

. (5.4)

It is thus useful to give

Definition 16. For m P N0, let

Pm`1,λ pw, τq “
p´1qm`1

m!

ÿ

nPZzt´λu

nmqnw
1´ qn`λ

. (5.5)

On notes that
P1,λ pw, τq “ q´λw pP1pw, τq ` 1{2q,

with

Pm`1,λ pw, τq “
p´1qm

m!
Dm
w pP1,λ pw, τqq .

We also consider the expansion

P1,λpw, τq “
1

2πiw
´

ÿ

kě1

Ek,λpτqp2πiwq
k´1,
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where we find [Zag]

Ek,λpτq “
k
ÿ

j“0

λj

j!
Ek´jpτq. (5.6)

Definition 17. We define another generating set rEkpz, τq for k ě 1 together with
E2pτq given by [Ob]

rP1pw, z, τq “
1

2πiw
´

ÿ

kě1

rEkpz, τqp2πiwq
k´1, (5.7)

where we find that for k ě 1,

rEkpz, τq “ ´ δk,1
qz

qz ´ 1
´
Bk
k!
`

1

pk ´ 1q!

ÿ

m,ně1

`

nk´1qmz ` p´1qknk´1q´mz
˘

qmn,

(5.8)

and rE0pz, τq “ ´1.

5.2. Deformed elliptic functions. In this subsection we recall the definition of
deformed elliptic functions [DLM, MTZ]. Let pθ, φq P Up1q ˆ Up1q denote a pair of
modulus one complex parameters with φ “ expp2πiλq for 0 ď λ ă 1.

Definition 18. For z P C, τ P H we define deformed Weierstrass functions for k ě 1
as

Pk

„

θ
φ



pz, τq “
p´1qk

pk ´ 1q!

1
ÿ

nPZ`λ

nk´1qnz
1´ θ´1qn

, (5.9)

for q “ q2πiτ where
1
ř

means we omit n “ 0 if pθ, φq “ p1, 1q.

The functions (5.9) converge absolutely and uniformly on compact subsets of the
domain |q| ă |qz| ă 1 [DLM]. For k ě 1,

Pk

„

θ
φ



pz, τq “
p´1qk´1

pk ´ 1q!

dk´1

dzk´1
P1

„

θ
φ



pz, τq. (5.10)

6. Appendix: Reduction formulas for Jacobi n-point functions

In this subsection we recall the reduction formulas derived in [MTZ, BKT].

6.1. Vertex operator superalgebra case. Recall [MTZ], the following

Proposition 2. Suppose that vn`1 P V is homogeneous of integer weight wtpvn`1q P

Z. Then we have
n
ÿ

k“1

ppvn`1,vk´1q ZJ
w ppvr0s.qkvn, Bq “ 0, (6.1)

with ppvn`1,vk´1q given by

ppA,B1 . . . Br´1q “

"

1 for r “ 1

p´1qppAqrppB1q`...`ppBr´1qs for r ą 1
. (6.2)
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Let vn`1 be homogeneous of weight wtpvn`1q P R and define φ P Up1q by

φ “ expp2πi wtpvn`1qq. (6.3)

We also take vn`1 to be an eigenfunction under g with

gvn`1 “ θ´1vn`1 (6.4)

for some θ P Up1q so that

g´1vn`1pkqg “ θvn`1pkq. (6.5)

Then we obtain the following generalization of Zhu’s Proposition 4.3.2 [Zhu] for the
n-point function:

Theorem 1. Let vn`1, θ and φ be as as above. Then for any vn P V
bn we have

ZJ
W pxn`1;Bq “ δθ,1δφ,1STrW

´

opvn`1q YW

´

qLV p0qv,q
¯

n
g qLp0q´c{24

¯

`

n
ÿ

k“1
mě0

ppvn`1,vk´1q Pm`1

„

θ
φ



pzn`1 ´ zk, τqZJ
W ppvn`1rmsqk.vn;Bq. (6.6)

The deformed Weierstrass function is defined in (5.9)).

6.2. The first reduction formula. Suppose that vn`1 P V with

Lp0qvn`1 “ wtpvn`1qvn`1,

Jp0qvn`1 “ αvn`1,

for α P C. The simplest case of reduction formulas for modes

vn`1pwtpvn`1q ´ 1` βq “ oβpvn`1q,

by β P Z, is given in [BKT]:

Lemma 2. For all k P C, we have
`

1´ ζ´αqβ
˘

T0poβpvn`1qq ZJ
W pxn, Bq

“

n
ÿ

k“1

ÿ

mě0

ZJ
M

ˆˆ

ezkβ
βm

m!
vn`1rms.

˙

k

xn;B

˙

.

Lemma 2 implies the following corollary.

Corollary 2. Let Jp0qvn`1 “ αvn`1. If αz “ λτ ` µ P Zτ ` Z, then
n
ÿ

k“1

ÿ

mě0

ZJ
M

ˆˆ

ezkλ
λm

m!
vn`1rms.

˙

k

vn;B

˙

“ 0. (6.7)

We now provide the following reduction formula for formal Jacobi n-point functions
[BKT]. For eigenstates vn`1 with respect to Jp0q we obtain:

Proposition 3. Let xn`1 P V
bpn`1q ˆ Cn`1, with Jp0qvn`1 “ αvn`1, α P C. For

αz R Zτ ` Z, we have

ZJ
M pxn`1;Bq “

n
ÿ

k“1

ÿ

mě0

rPm`1

ˆ

zn`1 ´ zk
2πi

, αz, τ

˙

ZJ
W ppvn`1rms.qk xn;Bq . (6.8)
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Proposition 4. Let xn`1 P V
bpn`1q ˆ Cn`1, with Jp0qvn`1 “ αvn`1. For αz “

λτ ` µ P Zτ ` Z, we have

ZJ
W pxn`1;Bq

“ e´zn`1λTrW

´

vn`1pwtpvn`1q ´ 1` λq Y
´

ezLp0qv, ex
¯

n
ζJp0qqLp0q

¯

`

n
ÿ

k“1

ÿ

mě0

Pm`1,λ

ˆ

zn`1 ´ zk
2πi

, τ

˙

ZJ
M ppvn`1rms.qkxnq;Bq , (6.9)

with Pm`1,λ pw, τq defined in (5.5).

Next we provide the reduction formula for Jacobi n-point functions.

Proposition 5. Let xn`1 P V
bpn`1qˆCn`1, with Jp0qvn`1 “ αvn`1. For l ě 1 and

αz R Zτ ` Z, we have

ZJ
W pvn`1r´ls.x1,x2,nq;Bq

“
ÿ

mě0

p´1qm`1

ˆ

m` l ´ 1

m

˙

rGm`lpαz, τqZJ
W pvn`1rms.x1q,x2,n;Bq

`

n
ÿ

k“2

ÿ

mě0

p´1ql`1

ˆ

m` l ´ 1

m

˙

rPm`l

ˆ

z1 ´ zk
2πi

, αz, τ

˙

ZJ
W pvn`1rms.xn;Bq .

(6.10)

Propositions 4 and 5 imply the next result [BKT]:

Proposition 6. Let xn`1 P V
bpn`1qˆCn`1, with Jp0qvn`1 “ αvn`1. For l ě 1 and

αz “ λτ ` µ P Zτ ` Z, we have

ZJ
W pvn`1r´ls.x1,x2,nq;Bq

“ p´1ql`1 λl´1

pl ´ 1q!
TrW

´

vn`1pλ` wtpvn`1q ´ 1qY
´

exLV p0qv, ex
¯

n
ζJp0qqLp0q

¯

`
ÿ

mě0

p´1qm`1

ˆ

m` l ´ 1

m

˙

Em`l,λpτq ZJ
W pvn`1rms.x1,x2,n;Bq

`

n
ÿ

k“2

ÿ

mě0

p´1ql`1

ˆ

m` l ´ 1

m

˙

Pm`l,λ

ˆ

x1 ´ xk
2πi

, τ

˙

ZJ
W pvn`1rms.xn;Bq ,

for Ek,λ given in (5.6).

Remark 4. In the case α “ 0 we have that λ “ µ “ 0 and Propositions 4 and 6 imply
the standard results of [Zhu] or [MTZ] with apλ` wtpaq ´ 1q “ opaq.

6.3. Vertex operator (super)algebras. In this subsection we recall the notion of
vertex operator (super)algebras [B, FHL, FLM, K, MN]. Let V be a superspace, i.e.,
a complex vector space

V “ V0̄ ‘ V1̄ “ ‘αVα,

with index label α in Z{2Z so that each a P V has a parity ppaq P Z{2Z.
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An C-graded vertex operator superalgebra is defined by pV, Y,1V , ωq where V is a
superspace with a C-grading where

V “ ‘rěr0Vr,

for some r0 and with parity decomposition

Vr “ V0̄,r ‘ V1̄,r.

1V P V0̄,0 is the vacuum vector and ω P V0̄,2 the conformal vector with properties
described below. The vertex operator Y is a linear map

Y : V Ñ pEndV qrrz, z´1ss,

for formal variable z, so that for any vector x “ pa, vq P V ˆ C,

Y pxq “
ÿ

nPZ
apnqz´n´1. (6.11)

The component operators (modes) apnq P EndV are such that

apnq1V “ δn,´1a,

for n ě ´1 and

apnqVα Ă Vα`ppaq, (6.12)

for a of parity ppaq.
The vertex operators satisfy the locality property for all xi “ pvi, ziq P V ˆ C,

i “ 1, 2,

pz1 ´ z2q
N rY px1q, Y px2qs “ 0, (6.13)

for N " 0, where the commutator is defined in the graded sense, i.e.,

rY px1q, Y px2qs “ Y px1qY px2q ´ p1q
ppv1qppv2qY px2qY px1q.

The vertex operator for the vacuum is

Y p1V , zq “ IdV ,

whereas that for ω is

Y pω, zq “
ÿ

nPZ
Lpnqz´n´2, (6.14)

where Lpnq forms a Virasoro algebra for central charge c

rLV pmq, LV pnqs “ pm´ nqLV pm` nq `
c

12
pm3 ´mqδm,´nIdV . (6.15)

LV p´1q satisfies the translation property

Y pLV p´1qxq “
d

dz
Y pxq. (6.16)

LV p0q describes the C-grading with

LV p0qa “ wtpaqa,

for weight wtpaq P C and

Vr “ ta P V |wtpaq “ ru. (6.17)
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We quote the standard commutator property of vertex operator superalgebra, e.g.,
[K, FHL, MN], for x1 “ pa, z1q, x “ pb, z2q

rapmq, Y pxqs “
ÿ

jě0

ˆ

m

j

˙

Y papjq.xqzm´j1 . (6.18)

Taking a “ ω this implies for b of weight wtpbq that

rLV p0q, bpnqs “ pwtpbq ´ n´ 1qbpnq, (6.19)

so that
bpnqVr Ă Vr`wtpbq´n´1. (6.20)

In particular, we define for a of weight wtpaq the zero mode

oλpaq “

"

apwtpaq ´ 1` λq, for wtpaq P Z
0, otherwise,

(6.21)

which is then extended by linearity to all a P V .

6.4. Square bracket formalism. Define the square bracket operators for V by

Y rxs “ Y
´

ez Lp0qv, ez ´ 1
¯

“
ÿ

nPZ
vrnsz´n´1. (6.22)

For v of weight wtpvq and k P Z (see [Zhu, Lemma 4.3.1]), we have

ÿ

jě0

ˆ

k ` wtpvq ´ 1

j

˙

vpjq “
ÿ

mě0

km

m!
vrms. (6.23)

The square bracket operators form an isomorphic vertex operator algebra with Vira-
soro vector

rω “ ω ´
c

24
1V .

Let us now introduce [DMs] the shifted Virasoro vector

ωh “ ω ` hp´2q1V ,

where

h “ ´
λ

α
J,

for λ P Z. Then the shifted grading operator is

Lhp0q “ Lp0q ´ hp0q “ Lp0q `
λ

α
Jp0q.

Denote the square bracket vertex operator for the shifted Virasoro vector by

Y rxsh “ Y
´

ez Lhp0qv, ez ´ 1
¯

“
ÿ

nPZ
vrnsh z

´n´1,

Therefore,
Y ra, zsh “ ezλY ra, zs,

or equivalently,

arnsh “
ÿ

mě0

λm

m!
arn`ms. (6.24)
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