
INSTITUTE OF MATHEMATICS
TH

E
CZ
EC
H
AC

AD
EM

Y
O
F
SC
IE
NC

ES Weak-strong uniqueness property
formodels of compressible viscous fluids

near vacuum

Eduard Feireisl

Antonín Novotný

Preprint No. 19-2021

PRAHA 2021





Weak–strong uniqueness property for models of
compressible viscous fluids near vacuum

Eduard Feireisl ∗ Antońın Novotný †

Institute of Mathematics of the Academy of Sciences of the Czech Republic;
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Abstract

We extend the weak–strong uniqueness principle to general models of compressible viscous
fluids near/on the vacuum. In particular, the physically relevant case of positive density with
polynomial decay at infinity is considered.
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1 Introduction

The motion of a compressible viscous fluid in the barotropic regime is described by the time
evolution of the mass density % = %(t, x) and the velocity field u = u(t, x), t > 0, x ∈ Ω ⊂ Rd,
d = 1, 2, 3, satisfying the equation of continuity

∂t%+ divx(%u) = 0, (1.1)

and the momentum balance

∂t(%u) + divx(%u⊗ u) +∇xp(%) = divxS + %f . (1.2)

∗The work of E.F. was supported by the Czech Sciences Foundation (GAČR), Grant Agreement 21–02411S.
†The work of A.N. was partially supported by the Eduard Čech visiting program at the Mathematical Institute

of the Academy of Sciences of the Czech Republic.
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Here, p = p(%) is the pressure, f the external driving force, and S the viscous stress. To close the
system, we suppose that S is related to the symmetric part of the velocity gradient

Dxu ≡
1

2

(
∇xu +∇t

xu
)

through a general rheological law

F (Dxu) + F ∗(S) = S : ∇xu ⇔ S ∈ ∂F (Dxu) ⇔ Dxu ∈ ∂F ∗(S), (1.3)

where
F : Rd×d

sym → [0,∞] is a convex l.s.c. function.

The best known example is the isentropic Navier–Stokes system, where

p(%) = a%γ, a > 0, γ > 1, F =
µ

2

∣∣∣∣∇xu +∇t
xu−

2

d
divxuI

∣∣∣∣2 +
λ

2
|divxu|2, µ > 0, λ ≥ 0. (1.4)

The “implicit” rheological law (1.3) covers the class of power law fluids as well as other non-
Newtonian fluids, see e.g. Buĺıček et al. [2].

Our goal is to study stability of strong solutions of the problem in the regime when the fluid
density either vanishes or approaches asymptotically the vacuum state. To begin, we point out
that the model has been derived for non–dilute fluids out of vacuum. In particular, as strong
solutions satisfy the equation of continuity

∂t%+ u · ∇xu + %divxu = 0,

the density will always remain positive unless the vacuum state is artificially imposed through the
initial or boundary data. However, allowing % ≈ 0 is still physically relevant at least in certain
asymptotic regimes:

• Solutions of (1.1)–(1.3) with f = ∇xG, G = G(x) approach an equilibrium state % = %̃, u = 0
as t→∞, see [7], where

∇xp(%̃) = %̃∇xG. (1.5)

It is a simple observation that %̃ may vanish on a non–void subset of the physical domain, in
particular if the total mass of the fluid is small enough.

• In models of gaseous stars in astrophysics, the physical domain Ω is exterior to a rigid object,
while

%→ 0, u→ 0 as |x| → ∞. (1.6)

Thus the density is close to zero at least in the far field. Note that, on the one hand, the
isentropic Navier–Stokes system (1.1), (1.2), (1.4) is globally well posed in this regime if the
total energy is small enough, see Huang, Li, and Xin [9], and also Fang, Zhu, and Guo [5]
for a similar result in the non-Newtonian case and d = 1. On the other hand, Rozanova [15]
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and Xin [17] showed that fast decay of solutions as |x| → ∞ is not compatible with global
existence. More recently, Merle et al. [14] obtained blow–up results in a similar regime for
radially symmetric solutions with certain profiles and certain values of the adiabatic exponent
γ.

• Last but not least, the problem with vanishing initial density is mathematically challenging
and has been considered in a large number of recent studies, see Gong et al. [8], Li and Xin
[11], Liang [12], to name only a few.

Our aim is to clarify in which way the strong solutions obtained in the above references can
coexist/coincide with the weak solutions in the sense of P.-L.Lions [13] or even more general
dissipative solutions introduced in [1]. More specifically, we establish the weak–strong strong
uniqueness principle: A weak solution of the problem (1.1)–(1.3) coincides with the strong one
with the same initial/boundary data as long as the strong solution exists. As shown in [1, Theorem
6.3], the weak–strong uniqueness principle holds for the problem (1.1)–(1.3) in the class of strong
solutions away from vacuum, and for Ω ⊂ Rd a bounded domain with general in/out flow boundary
conditions:

u|∂Ω = uB, %|Γin
= %B, Γin ≡

{
x ∈ ∂Ω

∣∣∣ uB · n < 0
}
, (1.7)

where n is the outer normal vector to ∂Ω. We show that this result can be extended to the class
of strong solutions near/with the vacuum as long as:

1. The potential F is uniformly strictly convex in Rd×d
sym,0.

2. The pressure p is strictly convex in [0,∞)loc.

3. The density component %̃ of the strong solution satisfies

∇xP
′(%̃) ∈ L2(0, T ;Lq(Ω)), q = q(d),

where P is the pressure potential,

P ′(%)%− P (%) = p(%).

4. If Ω is unbouded, the initial density must decay sufficiently fast as |x| → ∞.

Conditions 1, 2 are constitutive. Condition 1 holds in particular for the Newtonian stress in
the Navier–Stokes system. Condition 2 is satisfied for p = a%γ as long as 1 < γ ≤ 2, which is
physically relevant in the isentropic regime. Condition 3 is associated to the flow. If the velocity
field ũ is smooth enough, the Sobolev regularity of P ′(%̃) is propagated along streamlines. It is
therefore enough to impose 3 on the data only. We point out that

∇xP
′(%̃) ≈ %̃γ−2∇x%̃
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becomes singular near the vacuum if γ < 2. Condition 4 is relevant if the physical domain is
unbounded. Here again, the decay may be inherited from the initial/boundary data if the velocity
field is sufficiently regular.

Our method is based on a general relative energy inequality obtained in [1] that must be adapted
to the vanishing density regime. The most delicate issue is the behavior of the fluid velocity on or
near the vacuum region. As a matter of fact, the concept of velocity in the absence of matter is
meaningless, however, the velocity can be recovered as a solution of an elliptic equation in the whole
physical space. This paradox can be seen as a consequence of the infinite speed of propagation
due to the viscous stress with constant viscosity coefficients. By the same token, the decay of
the velocity for |x| → ∞ is not expected to be faster than that of the Dirichlet kernel at least
in the linearly viscous case. This fact makes the analysis on unbounded domains rather delicate
and requires certain decay properties of the initial density profile. Seen from this perspective, the
hypothesis u(t, ·) ∈ W 1,2 assumed sometimes in the literature is not very realistic.

The paper is organized as follows. We begin by recalling the basic concepts of strong as well as
weak (dissipative) solution in Section 2. In Section 3, we introduce the relative energy functional.
The main results are stated and proved in Section 4. We distinguish three cases: Bounded domain,
general unbounded domain, and the whole space R3 with compactly supported density or rapidly
decaying density.

2 Strong and weak solutions

We recall the definition of strong and weak (dissipative) solutions to the problem (1.1)–(1.3), with
the boundary conditions (1.7), and with the far field conditions (1.6) if the domain Ω is unbounded.
For the sake of simplicity, we assume that the boundary data uB, %B are independent of t. First,
extend the function uB to be smooth in Ω and

uB(x) = 0 for |x| > R (2.1)

if Ω is unbounded. To avoid technical difficulties, we suppose that the outer normal is defined
whenever uB · n 6= 0. Moreover, we consider the pressure in the isentropic form

p(%) = a%γ, a > 0, γ > 1. (2.2)

Finally, we impose certain growth restrictions on the dissipation potential F ,

0 ≤ F (D)
<∼ |D|2, (2.3)

F (D + Q)− F (D)− S : Q >∼ |Q− βtr[Q]I|2 , β =
1

d
if d = 2, 3, β = 0 if d = 1, (2.4)

for any D,Q ∈ Rd×d
sym , S ∈ ∂F (D). Note that both (2.3) and (2.4) are compatible with the Newtonian

potential (1.4). The condition (2.3) can be relaxed at the expense of several technical difficulties
in the proofs. The coercivity assumption (2.4), reflecting non-degeneracy of the viscous stress, is
essential.
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2.1 Strong solutions

The goal is to identify the largest possible class of strong solutions. Inspired by the existence result
by Cho, Choe, Kim [3] we consider the velocity ũ in the class

(ũ− uB) ∈ C([0, T ];D1,2
0 (Ω;Rd) ∩ L2(0, T ;D2,q(Ω;Rd)), ∂tũ ∈ L2(0, T ;Lq(Ω;Rd)) (2.5)

for some q > d. Here, Dk,q denotes the space of locally integrable functions v with Dk
xv ∈ Lq(Ω),

D1,2
0 is the closure of C∞c (Ω) in D1,2(Ω). If Ω is bounded, Dk,p coincide with the standard Sobolev

spaces W k,p. Unbounded domains will be considered only for d = 3. Note that the class (2.5)
includes the case q = 6, d = 3 considered in [3]. In particular, by interpolation and the standard
embedding D1,q ↪→ C, q > d,

ũ ∈ C([0, T ];D1,q ∩D1,2
0 (Ω;Rd)) ↪→ BC([0, T ]× Ω;Rd),

where BC(Q) is the Banach space of bounded continuous functions on Q. Similarly, we deduce
from (2.5) ∫ T

0

‖ũ‖2
W 1,∞(Ω;Rd) dt

<∼ 1 (2.6)

if either Ω is bounded or d = 3.
In particular, given the velocity field ũ, the initial state and the boundary data

%̃(0, ·) = %0 ∈ L1
loc(Ω), %̃|Γin

= %B ∈ L1(∂Ω),

the density %̃ is uniquely determined by the equation of continuity (1.1) and can be computed
explicitly via the method of characteristics. More specifically, supposing Ω has a compact Lipschitz
boundary, we may extend ũ outside Ω to remain in the class

ũ ∈ L2(0, T ;D2,q(Rd;Rd)) ∩BC([0, T ]×Rd;Rd).

Then we define the characteristic curves

d

dt
X(t, x) = ũ(t,X(t, x)), X(0, x) = x.

For any t > 0, x ∈ Ω, there is a unique characteristic satisfying

X(t, x0) = x.

Let τ = inf
{
s ∈ [0, t]

∣∣∣X(z, x0) ∈ Ω for all z ∈ (s, t)
}

. If τ = 0, we set

%̃(t, x) = %0(x0) exp

(
−
∫ t

0

divxũ(s,X(s, x0))ds

)
. (2.7)
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If τ > 0, then necessarily
xτ = X(τ, x0) ∈ Γin,

and we set

%̃(t, x) = %B(xτ ) exp

(
−
∫ t

τ

divxũ(s,X(s, xτ ))ds

)
. (2.8)

To avoid jumps in the resulting density, the above procedure requires an obvious compatibility
condition

%0 ∈ BC(Ω), %0|Γin
= %B.

Still the construction via characteristic lines may give rise to ambiguous results as soon as part of
the boundary is tangent to the characteristic curves. To avoid this problem, several non–degeneracy
conditions on Γin are usually imposed in the literature to eliminate ingoing characteristics ema-
nating from ∂Γin, cf. e.g. Valli and Zajaczkowski [16]. The density %̃ ∈ BC([0, T ]× Ω) associated
to ũ is then well defined through formulae (2.7), (2.8). As a direct consequence, we obtain the fol-
lowing standard result concerning propagation of Sobolev regularity. To avoid the afore mentioned
technical problems and also because the available regularity of ∂tũ is rather limited, we restrict
ourselves to the case Γin = ∅.

Lemma 2.1. Let Ω ⊂ Rd be a domain with compact (possibly empty) Lipschitz boundary. Let a
vector field ũ be given in the class

ũ ∈ L2(0, T ;D2,q(Ω;Rd)) ∩BC([0, T ]× Ω;Rd), d < q ≤ ∞

and such that ũ · n|∂Ω ≥ 0. Suppose that

%0 ∈ BC(Ω), %0 ≥ 0, ∇x(%
γ−1
0 ) ∈ Lq(Ω;Rd) for some 1 < γ ≤ 2.

Then the unique solution %̃ of the equation of continuity (1.1) determined by (2.7) satisfies

‖∇x(%̃
γ−1)(t, ·)‖Lq(Ω;Rd) ≤ c(T, %0, ũ) for any t ∈ [0, T ].

Proof. Extending ũ and %0 outside Ω as the case may be, we may assume Ω = Rd. As Γin = ∅,
the solution %̃ is given by formula (2.7). In particular,

%̃(t, x) = %0(X−1(t, x)) exp

(
−
∫ t

0

divxũ(s,X(s,X−1(t, x)))ds

)
,

%̃γ−1(t, x) = %γ−1
0 (X−1(t, x)) exp

(
(1− γ)

∫ t

0

divxũ(s,X(s,X−1(t, x)))ds

)
.

Thus the desired result follows by direct differentiation of the above formula.
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If the exponent γ remains in the range 1 < γ ≤ 2, differentiablity of %̃γ−1 implies differentiablity
of %̃ and of %̃γ. In particular, the equation of continuity (1.1) can be interpreted in the strong sense.
Similarly, the left hand side of the momentum equation can be written in the form

%̃∂tũ + %̃ũ · ∇xũ + %̃∇x%̃
γ−1

Thus for ũ belonging to the class (2.5), the system (1.1)–(1.3) can be written as

∂t%̃+ ũ · ∇x%̃+ %̃divxũ = 0,

%̃∂tũ + %̃ũ · ∇xũ + %̃∇x%̃
γ−1 = divxS̃ + %̃f ,

(2.9)

with
S̃ ∈ ∂F (Dxũ) for a.a. t ∈ (0, T ). (2.10)

2.2 Dissipative (weak) solutions

The dissipative solutions to the system (1.1)–(1.3) were introduced in [1]. We denoteM+(Ω;Rd×d
sym)

the set of positively semi–definite finite tensorial measures on Ω. Specifically, R ∈ M+(Ω;Rd×d
sym)

if R is a tensor valued finite measure satisfying

R : (ξ ⊗ ξ) ≥ 0 for any ξ ∈ Rd.

Definition 2.2 (Dissipative solution). The functions (%,u) represent dissipative solution of the
problem (1.1)–(1.3), with the boundary conditions (1.7), the far field conditions (1.6), and the
initial conditions

%(0, ·) = %0, (%u)(0, ·) = m0,

if the following holds:

• Integrability.

% ≥ 0, % ∈ Cweak([0, T ];Lγ(Ω)) ∩ Lγ((0, T );Lγ(∂Ω, |uB · n|dσ)),

(u− uB) ∈ L2(0, T ;D1,2
0 (Ω;Rd)), %u ∈ Cweak([0, T ];L

2γ
γ+1 (Ω;Rd)),

S ∈ L2(0, T ;L2(Ω;Rd×d
sym)).

• Equation of continuity. The integral identity[∫
Ω

%ϕ dx

]t=τ
t=0

+

∫ τ

0

∫
∂Ω

ϕ%[uB · n]+ d Sx +

∫ τ

0

∫
∂Ω

ϕ%B[uB · n]− d Sx

=

∫ τ

0

∫
Ω

[
%∂tϕ+ %u · ∇xϕ

]
dx dt, %(0, ·) = %0

(2.11)

holds for any 0 ≤ τ ≤ T , and any test function ϕ ∈ C1
c ([0, T ]× Ω).
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• Momentum equation. There exists

R ∈ L∞weak(∗)(0, T ;M+(Ω;Rd×d
sym))

such that[∫
Ω

%u ·ϕ dx

]t=τ
t=0

=

∫ τ

0

∫
Ω

[
%u · ∂tϕ + %u⊗ u : ∇xϕ + p(%)divxϕ− S : ∇xϕ + %f ·ϕ

]
dx

+

∫ τ

0

∫
Ω

∇xϕ : d R(t) dt, %u(0, ·) = m0

(2.12)

holds for any 0 ≤ τ ≤ T and any test function ϕ ∈ C1
c ([0, T ]× Ω;Rd), ϕ|∂Ω = 0.

• Energy inequality. There exists

E ∈ L∞weak(∗)(0, T ;M+(Ω))

such that[∫
Ω

[
1

2
%|u− uB|2 + P (%)

]
dx

]t=τ
t=0

+

∫ τ

0

∫
Ω

[
F (Dxu) + F ∗(S)

]
dx dt

+

∫ τ

0

∫
∂Ω

P (%)[uB · n]+ dSx dt+

∫ τ

0

∫
∂Ω

P (%B)[uB · n]− dSx dt+

∫
Ω

d E(τ)

≤−
∫ τ

0

∫
Ω

[%u⊗ u + p(%)I] : ∇xuB dx dt+

∫ τ

0

1

2

∫
Ω

%u · ∇x|uB|2 dx dt

+

∫ τ

0

∫
Ω

[
S : ∇xuB + %f · (u− uB)

]
dx dt

−
∫ τ

0

∫
Ω

∇xuB : d R(t) dt, P (%) ≡ a

γ − 1
%γ

(2.13)

for a.a. 0 ≤ τ ≤ T .

• Defect compatibility.

dE ≤ tr[R] ≤ dE, for certain constants 0 < d ≤ d. (2.14)

Remark 2.3. The hypothesis
S ∈ L2(0, T ;L2(Ω;Rd×d

sym))

is pertinent to the class of the dissipative potentials F with at most quadratic growth (2.3).
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3 Relative energy

The relative energy reads:

E
(
%,u

∣∣∣ %̃, ũ) =
1

2
%|u− ũ|2 + P (%)− P ′(%̃)(%− %̃)− P (%̃).

The relative energy inequality associated to the problem (1.1)–(1.3), (1.7) was derived in [1, Section
5, formula (5.5)]. Its generalization to the case of unbounded domain is straightforward (cf. also
[6]): [∫

Ω

E
(
%,u

∣∣∣ %̃, ũ) dx

]t=τ
t=0

+

∫ τ

0

∫
Ω

[
F (Dxu) + F ∗(S)

]
dx dt−

∫ τ

0

∫
Ω

S : ∇xũ dx dt

+

∫ τ

0

∫
∂Ω

[P (%)− P ′(%̃)(%− %̃)− P (%̃)] [uB · n]+ dSx dt

+

∫ τ

0

∫
∂Ω

[P (%B)− P ′(%̃)(%B − %̃)− P (%̃)] [uB · n]− dSx dt+

∫
Ω

1d E(τ)

≤−
∫ τ

0

∫
Ω

%(ũ− u) · (ũ− u) · ∇xũ dx dt

−
∫ τ

0

∫
Ω

[
p(%)− p′(%̃)(%− %̃)− p(%̃)

]
divxũ dx dt

+

∫ τ

0

∫
Ω

%(ũ− u) ·
[
∂tũ + ũ · ∇xũ +∇xP

′(%̃)
]

dx dt−
∫ τ

0

∫
Ω

%(ũ− u) · f dx dt

+

∫ τ

0

∫
Ω

p′(%̃)

(
1− %

%̃

)[
∂t%̃+ divx(%̃ũ)

]
dx dt

−
∫ τ

0

∫
Ω

∇xũ : d R(t) dt for a.a. τ ∈ (0, T ),

(3.1)

for a.a. 0 < τ < T , and any pair of “test functions”

ũ ∈ C1
c ([0, T ]× Ω;Rd), ũ|∂Ω = uB,

%̃ ∈ C1([0, T ]× Ω), %̃ > 0, (%̃− ε) ∈ Cc([0, T ]× Ω) for some ε > 0.
(3.2)

Our goal is to extend validity of (3.1) to the class of test functions containing (%̃+ ε, ũ), where
(%̃, ũ) is a strong solution. Using the standard regularization by a convolution kernel in time, we
first observe that the class of test functions can be extended to

ũ ∈ Cc([0, T ]× Ω;Rd), ũ|∂Ω = uB, ∂tũ ∈ L2(0, T ;Cc(Ω)), ∇xũ ∈ L2(0, T ;Cc(Ω;Rd×d))

(%̃− ε) ∈ Cc([0, T ]× Ω), %̃ > 0, ∂t%̃ ∈ L∞weak−(∗)(0, T ;Cc(Ω)), ∇x%̃ ∈ L∞weak−(∗)(0, T ;Cc(Ω;Rd))

(3.3)

for some ε > 0.
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The class (3.3) covers all interesting cases if Ω is bounded. If Ω is an exterior domain or Ω = Rd,
integrability for |x| → ∞ is relevant. In this case, we consider d = 3 only, where we consider the
class:

ũ ∈ BC([0, T ]× Ω;R3), ũ|∂Ω = uB, ∇xũ ∈ L2(0, T ;BC ∩ L2(Ω;Rd×d)),

∂tũ ∈ L2(0, T ;BC ∩ L6(Ω;R3)),

%̃ ∈ BC([0, T ]× Ω), inf %̃ > 0, ∇x%̃ ∈ L∞weak−(∗)(0, T ;BC ∩ L6(Ω;R3))

∂t%̃ ∈ L∞weak−(∗)(0, T ;BC ∩ L6(Ω)).

(3.4)

The extension to this class can be justified by the standard cut-off procedure as long as all integrals
in (3.1) are finite. Extensions to other classes of test functions can be obtained in a similar manner
as the case may be.

4 Weak strong uniqueness

We are ready to establish the main results. We distinguish the cases of Ω bounded, unbounded,
or Ω = R3. For the sake of simplicity, we suppose here and hereafter that

f = 0.

4.1 Weak–strong uniqueness–bounded domain

We start with our main result concerning bounded domains, where inflow is absent.

Theorem 4.1 (Weak–strong uniqueness, bounded domain, no inflow). Suppose that Ω ⊂
Rd, d = 1, 2, 3 is a bounded Lipschitz domain. Let the boundary velocity uB be a twice continuously
differentiable function satisfying

uB · n ≥ 0 on ∂Ω.

Let (%̃, ũ) be a strong solution of the problem (1.1), (1.2), (1.7) in (0, T )×Ω in the sense specified
in Section 2.1 (see (2.9),(2.10)) belonging to the class

ũ ∈ C([0, T ]× Ω;Rd), %̃ ∈ C([0, T ]× Ω), %̃ ≥ 0,

∇2
xũ ∈ L2(0, T ;Lq(Ω;Rd×d×d)), ∂tũ ∈ L2(0, T ;Lq(Ω;Rd)),

(4.1)

where

1 < γ ≤ 2, q ≥ 2γ

γ − 1
. (4.2)

Let (%,u) be a weak solution of the same problem in the sense of Definition 2.2 such that

%(0, ·) = %̃(0, ·) = %0, (%u)(0, ·) = (%̃ũ)(0, ·) = m0,u|∂Ω = ũ|∂Ω = uB,
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where
(%0)γ−1 ∈ W 1,q(Ω;Rd). (4.3)

Then
% = %̃, u = ũ in (0, T )× Ω.

Remark 4.2. In the Newtonian case, the local in time existence of strong solutions with vacuum
in the case uB = 0 (no in/outflow) on smooth bounded domains, say Ω ∈ C3, with the pressure law
(2.2) was proved in Cho, Kim [4, Theorem 3]. The solutions belong to a regularity class included
in (2.4) if q = 6. Local existence for general non-Newtonian viscous stress was recently established
by Kalousek, Mácha, and Nečasová [10] on periodic spatial domains.

Proof. The strategy is to apply the relative energy inequality (3.1) to (%̃, ũ). This cannot be done
in a direct manner as the latter requires inf %̃ > 0. Thus we start with the choice (%̃+ ε, ũ), ε > 0,
obtaining∫

Ω

E
(
%,u

∣∣∣ %̃+ ε, ũ
)

(τ, ·) dx+

∫
Ω

1d E(τ)

+

∫ τ

0

∫
Ω

[
F (Dxu) + F ∗(S)

]
dx dt−

∫ τ

0

∫
Ω

S : ∇xũ dx dt

≤
∫

Ω

P (%0) + εP ′(%0)− P (%0 + ε) dx

−
∫ τ

0

∫
Ω

%(ũ− u) · (ũ− u) · ∇xũ dx dt

−
∫ τ

0

∫
Ω

[
p(%)− p′(%̃+ ε)(%− %̃− ε)− p(%̃+ ε)

]
divxũ dx dt

+

∫ τ

0

∫
Ω

%(ũ− u) ·
[
∂tũ + ũ · ∇xũ +∇xP

′(%̃+ ε)
]

dx dt

+ ε

∫ τ

0

∫
Ω

p′(%̃+ ε)

(
1− %

%̃+ ε

)
divxũ dx dt−

∫ τ

0

∫
Ω

∇xũ : d R(t) dt for a.a. τ ∈ (0, T ),

Moreover, as ũ belongs to the class (4.1) and q ≥ 4, we get ‖∇xũ‖L∞(Ω;Rd×d) ∈ L2(0, T ), and the

11



above inequality reduces to∫
Ω

E
(
%,u

∣∣∣ %̃+ ε, ũ
)

(τ, ·) dx+

∫
Ω

1d E(τ)

+

∫ τ

0

∫
Ω

[
F (Dxu) + F ∗(S)

]
dx dt−

∫ τ

0

∫
Ω

S : ∇xũ dx dt

≤
∫

Ω

P (%0) + εP ′(%0)− P (%0 + ε) dx+

∫ τ

0

χ(t)

[∫
Ω

E
(
%,u

∣∣∣ %̃+ ε, ũ
)

(t, ·) dx+

∫
Ω

1d E(t)

]
dt

+

∫ τ

0

∫
Ω

%(ũ− u) ·
[
∂tũ + ũ · ∇xũ +∇xP

′(%̃+ ε)
]

dx dt

+ ε

∫ τ

0

∫
Ω

p′(%̃+ ε)

(
1− %

%̃+ ε

)
divxũ dx dt, with χ ∈ L2(0, T ).

(4.4)

Next, we let ε→ 0 in (4.4). Obviously,∫
Ω

E
(
%,u

∣∣∣ %̃+ ε, ũ
)

(τ, ·) dx→
∫

Ω

E
(
%,u

∣∣∣ %̃, ũ) (τ, ·) dx as ε→ 0 uniformly in τ ∈ (0, T ),

∫
Ω

P (%0) + εP ′(%0)− P (%0 + ε) dx→ 0 as ε→ 0,

and

ε

∫ τ

0

∫
Ω

p′(%̃+ ε)divxũ dx→ 0 as ε→ 0.

In addition,

ε%
p′(%̃+ ε)

%̃+ ε

<∼ ε%(%̃+ ε)γ−2 ≤ εγ−1%→ 0 in Lγ(Ω) as ε→ 0.

Finally, by virtue of Lemma 2.1 and hypotheses (4.1), (4.3), we have

∇x(%̃)γ−1 ∈ L∞(0, T ;Lq(Ω;Rd)). (4.5)

Seeing that

%u ∈ L∞(0, T ;L
2γ
γ+1 (Ω;R3))

we may use hypothesis (4.2) to conclude∫ τ

0

∫
Ω

%(ũ− u) · ∇xP
′(%̃+ ε) dx dt→

∫ τ

0

∫
Ω

%(ũ− u) · ∇xP
′(%̃) dx dt as ε→ 0.

12



Performing the limit ε→ 0 in (4.1) we may infer that∫
Ω

E
(
%,u

∣∣∣ %̃, ũ) (τ, ·) dx+

∫
Ω

1d E(τ)

+

∫ τ

0

∫
Ω

[
F (Dxu) + F ∗(S)

]
dx dt−

∫ τ

0

∫
Ω

S : ∇xũ dx dt

≤
∫ τ

0

χ(t)

[∫
Ω

E
(
%,u

∣∣∣ %̃, ũ) (t, ·) dx+

∫
Ω

1d E(t)

]
dt

+

∫ τ

0

∫
Ω

%(ũ− u) ·
[
∂tũ + ũ · ∇xũ +∇xP

′(%̃)
]

dx dt.

(4.6)

Now, as (%̃, ũ) is a strong solution, we have

%̃∂tũ + %̃ũ · ∇xũ + %̃∇xP
′(%̃) = divxS̃. (4.7)

Consequently, we may add the integral∫ τ

0

∫
Ω

(u− ũ) · divxS̃ dx dt =

∫ τ

0

∫
Ω

Dx(ũ− u) : S̃ dx dt

to both sides of the inequality (4.6). Regrouping terms on the left–hand side we get∫ τ

0

∫
Ω

[
F (Dxu) + F ∗(S)− S : Dxũ + S̃ : (Dxũ− Dxu)

]
dx dt

=

∫ τ

0

∫
Ω

[
F (Dxu)− F (Dxũ)− S̃ : (Dxu− Dxũ)

]
dx,

where we have used Fenchel–Young inequality

F (Dxũ) + F ∗(S) ≥ S : Dxũ.

As S̃ ∈ ∂F (Dxũ) we can apply hypothesis (2.4) for D = Dxũ, S = S̃, Q = Dxu− Dxũ to obtain∫ τ

0

∫
Ω

∣∣∣∣(Dxu− Dxũ)− 1

d
tr[(Dxu− Dxũ)]I

∣∣∣∣2 dx

<∼
∫ τ

0

∫
Ω

[
F (Dxu) + F ∗(S)− S : Dxũ + S̃ : (Dxũ− Dxu)

]
dx dt.

Finally, using the traceless version of Korn’s inequality, we may rewrite (4.6) in the form∫
Ω

E
(
%,u

∣∣∣ %̃, ũ) (τ, ·) dx+

∫
Ω

1d E(τ) +

∫ τ

0

∫
Ω

|∇xu−∇xũ|2 dx dt

<∼
∫ τ

0

χ(t)

[∫
Ω

E
(
%,u

∣∣∣ %̃, ũ) (t, ·) dx+

∫
Ω

1d E(t)

]
dt

+

∫ τ

0

∫
Ω

(%− %̃)(ũ− u) ·
[
∂tũ + ũ · ∇xũ +∇xP

′(%̃)
]

dx dt.

(4.8)
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Thus it remains to control the last integral in (4.8). Let % be a positive constant chosen so that
%̃ ≤ 1

2
% in (0, T )× Ω. We consider two complementary cases. Suppose first that % ≥ %. By virtue

of hypotheses (4.1) – (4.3), we get∫
Ω

1%≥%(%− %̃)(ũ− u) ·
[
∂tũ + ũ · ∇xũ +∇xP

′(%̃)
]

dx

≤
∥∥1%≥%(%− %̃)1/2

∥∥
L2γ(Ω)

∥∥1%≥%(%− %̃)1/2(u− ũ)
∥∥
L2(Ω;Rd)

‖∂tũ + ũ · ∇xũ +∇xP
′(%̃)‖Lq(Ω;Rd)

<∼ ‖∂tũ + ũ · ∇xũ +∇xP
′(%̃)‖Lq(Ω;Rd)

∫
Ω

E
(
%,u
∣∣∣%̃, ũ) dx.

(4.9)

If 0 ≤ % ≤ %, then∫
Ω

1%≤%(%− %̃)(ũ− u) ·
[
∂tũ + ũ · ∇xũ +∇xP

′(%̃)
]

dx

≤ ‖1%≤%(%− %̃)‖L2(Ω) ‖u− ũ‖L2γ(Ω;Rd) ‖∂tũ + ũ · ∇xũ +∇xP
′(%̃)‖Lq(Ω;Rd)

≤ δ‖u− ũ‖2
L2γ(Ω;Rd) + c(δ) ‖1%≤%(%− %̃)‖2

L2(Ω) ‖∂tũ + ũ · ∇xũ +∇xP
′(%̃)‖2

Lq(Ω;Rd) .

(4.10)

for any δ > 0. As γ ≤ 2, the standard Poincaré–Sobolev inequality yields

δ‖u− ũ‖2
L2γ(Ω;Rd) ≤

1

2

∫
Ω

|∇xu−∇xũ|2 dx (4.11)

for a suitably small δ > 0. By the same token P is strictly convex on the compact interval [0, %];
whence

‖1%≥%(%− %̃)‖2
L2(Ω)

<∼
∫

Ω

E
(
%,u
∣∣∣%̃, ũ) dx. (4.12)

In view of hypothesis (4.1), and (4.5), we have

‖∂tũ + ũ · ∇xũ +∇xP
′(%̃)‖Lq(Ω;Rd) ∈ L

2(0, T ).

Thus plugging (4.9)–(4.12) in (4.8) we may use the standard Gronwall argument to conclude∫
Ω

E
(
%,u
∣∣∣%̃, ũ) (τ, ·) dx = 0, τ ∈ (0, T ),

∫ T

0

∫
Ω

|∇xu−∇xũ|2 dx dt = 0.

The extension of the above result to more general viscous potentials still satisfying the coercivity
condition (2.4) is straightforward, see [1]. The major drawback of Theorem 4.1 is the absence of
inflow. If Γin 6= ∅, a slight modification of the above arguments yields a positive result provided
the boundary density %B is bounded below away from vacuum.
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Theorem 4.3 (Weak–strong uniqueness, bounded domain, int/out flow). Suppose that
Ω ⊂ Rd, d = 1, 2, 3 is a bounded Lipschitz domain. Let the boundary conditions be determined by
%B ∈ C1

c (Rd), uB ∈ C2
c (Rd;Rd), where

%B(x) ≥ % > 0 for any x ∈ Γin. (4.13)

Let (%̃, ũ) be a strong solution of the problem (1.1), (1.2), (1.7) in (0, T )×Ω in the sense specified
in Section 2.1 belonging to the class

ũ ∈ C([0, T ]× Ω;Rd), %̃ ∈ C([0, T ];W 1,q(Ω)), %̃ ≥ 0,

∇2
xũ ∈ L2(0, T ;Lq(Ω;Rd×d×d)), ∂tũ ∈ L2(0, T ;Lq(Ω;Rd)),

(4.14)

where

1 < γ ≤ 2, q ≥ 2γ

γ − 1
.

Let (%,u) be a weak solution of the same problem in the sense of Definition 2.2 such that

%(0, ·) = %̃(0, ·) = %0, (%u)(0, ·) = (%̃ũ)(0, ·) = m0,

u|∂Ω = ũ|∂Ω = uB, (%u) · n|Γin
= (%̃ũ) · n|Γin = %BuB · n,

where
(%0)γ−1 ∈ W 1,q(Ω;Rd). (4.15)

Then
% = %̃, u = ũ in (0, T )× Ω.

Remark 4.4. The class (4.14) is slightly smaller than (4.1) in Theorem 4.1 but still large enough
to accommodate the strong solutions obtained in the Newtonian non–degenerate case by Valli and
Zajaczkowski [16]. Note, however, that quite severe restrictions are imposed on Γin in [16].

Proof. The proof can be done following the same arguments as in Theorem 4.1 as soon as we
observe that

%̃γ−1 ∈ L∞(0, T ;W 1,q(Ω)).

To see this, write

%̃γ−1 = r1 + r2, r1 = δ + [%̃γ−1 − δ]+, r2 = [%̃γ−1 − δ]− for a suitable δ > 0,

where a+ = max{a, 0}, a− = min{a, 0}. Consequently, it is enough to show

∇xri ∈ L∞(0, T ;Lq(Ω;Rd)), i = 1, 2.

As for r1, we have

∇xr1 = ∇x[%̃
γ−1 − δ]+ = (γ − 1)sgn+[%̃γ−1 − δ]%̃γ−2∇x%̃,
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so the desired conclusion follows from the hypothesis (4.14) as long as δ > 0.
To obtain a similar estimate for r2, we first extend the velocity field ũ and the initial density

%0 outside Ω so that they satisfy the hypotheses (4.14), (4.15) on Rd. Accordingly, the equation
of continuity (1.1) endowed with the extended velocity field ũ admits a solution r determined
uniquely through formula (2.7). By virtue of Lemma 2.1, we have

rγ−1 ∈ L∞(0, T ;W 1,q(Rd)). (4.16)

We say that a point (t, x) ∈ [0, T ]×Ω is regular, if the value of %̃(t, x) is determined by formula
(2.7), otherwise (t, x) is singular. Clearly the backward characteristic curve emanating from a
singular point reaches the boundary ∂Ω at a positive time, and %̃(t, x) is then given by (2.8).
Obviously,

%̃(t, x) = r(t, x) whenever (t, x) is regular.

As stated in (4.13), %B is bounded below away from zero. Consequently, there exists ε =
ε(T, ũ) > 0 such that

%̃γ−1(t, x) ≥ ε > 0 whenever (t, x) is singular.

Consequently, for 0 < δ < ε
2

and any fixed t ∈ [0, T ], the set {x ∈ Ω
∣∣∣ %̃γ−1(t, x) ≤ δ} admits and

open neighbourhood in Ω that consists of regular points. Consequently,

∇xr2 = ∇x[%̃
γ−1 − δ]− = (γ − 1)sgn−[%̃γ−1 − δ]∇xr

γ−1,

and the desired conclusion follows from (4.16).

5 Weak–strong uniqueness, unbounded domains

The main difficulty when extending the previous results to unbounded domains is the lack of
Poincaré–Sobolev inequality. For this reason, we consider only the case d = 3, where Sobolev’s
inequality is available, namely

‖v‖L6(Ω)
<∼ ‖∇xv‖L2(Ω,R3) for any v ∈ D1,2

0 (Ω). (5.1)

For simplicity, we restrict ourselves to the case uB = 0.

5.1 General exterior domain

We look for strong solutions (%̃, ũ) belonging to the class introduced by Huang et al. [9]. In
particular,

ũ ∈ C([0, T ];D1,2
0 ∩D3,2(Ω;R3)) ∩ L2(0, T ;D4,2(Ω;R3)),

∂tũ ∈ L∞(0, T ;D1,2
0 (Ω, R3)) ∩ L2(0, T ;D2,2(Ω;R3)),

%̃, p(%̃) ∈ C([0, T ];W 3,2(Ω)).

(5.2)
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We point out that the class is pertinent to the Newtonian case, where the momentum equation
can be differentiated with respect to time to obtain higher order estimates on ∂tũ.

In addition, similarly to Theorem 4.1, we impose the condition

(%0)γ−1 ∈ W 1,6 ∩W 1,∞(Ω;R3). (5.3)

As shown in Lemma 2.1, this regularity will propagate in time; whence we get

sup
t∈(0,T )

‖∇x(%̃)γ−1(t, ·)‖L6∩L∞(Ω;R3) ≤ c. (5.4)

Now, following step by step the proof of Theorem 4.1 we arrive at the inequality (4.8), specifi-
cally, ∫

Ω

E
(
%,u

∣∣∣ %̃, ũ) (τ, ·) dx+

∫
Ω

1d E(τ) +

∫ τ

0

∫
Ω

|∇xu−∇xũ|2 dx dt

<∼
∫ τ

0

χ(t)

[∫
Ω

E
(
%,u

∣∣∣ %̃, ũ) (t, ·) dx+

∫
Ω

1d E(t)

]
dt

+

∫ τ

0

∫
Ω

(%− %̃)(ũ− u) · b dx dt,

(5.5)

where, by virtue of (5.2), (5.4),

b = ∂tũ + ũ · ∇xũ +∇xP
′(%̃) ∈ L2(0, T ;L6 ∩ L∞(Ω;R3)). (5.6)

Similarly to the preceding section, we write∫ τ

0

∫
Ω

(%− %̃)(ũ− u) · b dx dt

=

∫ τ

0

∫
Ω

1%≥%(%− %̃)(ũ− u) · b dx dt+

∫ τ

0

∫
Ω

1%<%(%− %̃)(ũ− u) · b dx dt,

where, exactly as in (4.9),∫ τ

0

∫
Ω

1%≥%(%− %̃)(ũ− u) · b dx dt

≤
∥∥1%≥%(%− %̃)1/2

∥∥
L2(Ω)

∥∥1%≥%(%− %̃)1/2(u− ũ)
∥∥
L2(Ω;R3)

‖b‖L∞(Ω;R3)

<∼ ‖b‖L∞(Ω;R3)

∫
Ω

E
(
%,u
∣∣∣%̃, ũ) dx.

(5.7)

The integral ∫ τ

0

∫
Ω

1%<%(%− %̃)(ũ− u) · b dx dt (5.8)
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is more difficult to handle. Indeed, in order to mimick the arguments leading to (4.10), we would
need

b bounded in L2(0, T ;L3(Ω;R3)),

which does not follow from (5.2) if Ω is an exterior domain and must be imposed as an extra
hypothesis.

Theorem 5.1 (Weak–strong uniqueness, unbounded domains). Suppose that Ω ⊂ R3,
d = 1, 2, 3 is an exterior domain with compact Lipschitz boundary. Let (%̃, ũ) be a strong solution
of the problem (1.1), (1.2), (1.7) with uB = 0 in (0, T ) × Ω in the sense specified in Section 2.1
belonging to the class (5.2). In addition, suppose that

∂tũ ∈ L2(0, T ;L3(Ω;R3)). (5.9)

Let (%,u) be a weak solution of the same problem in the sense of Definition 2.2 such that

%(0, ·) = %̃(0, ·) = %0, (%u)(0, ·) = (%̃ũ)(0, ·) = m0,

where
(%0)γ−1 ∈ W 1,3 ∩W 1,∞(Ω;R3). (5.10)

Then
% = %̃, u = ũ in (0, T )× Ω.

The result extends easily to general in/out flow boundary conditions exactly as in Theorem
4.3.

5.2 Compactly supported density

In view of the existence class (5.2) identified in [9], the hypothesis (5.9) does not seem very realistic,
in particular in the presence of vacuum. To handle the general case, we restrict ourselves to the
initial data with compactly supported initial density %0 considered in [9] or [17]. Moreover, we
restrict ourselves to the class of Newtonian fluids, where

S(∇xũ) = µ

(
∇xũ +∇t

xũ−
2

3
divxũI

)
+ λdivxũI, µ > 0, λ ≥ 0.

In view of Lemma 2.1, there exists R > 0 sufficiently large such that

%̃(t, x) = 0 for all t ∈ [0, T ], |x| ≥ R. (5.11)

Going back to the integral (5.8), we get∫ τ

0

∫
Ω

1%<%(%− %̃)(ũ− u) · b dx dt

=

∫ τ

0

∫
x∈Ω,|x|≤R

1%<%(%− %̃)(ũ− u) · b dx dt+

∫ τ

0

∫
|x|>R

1%<%%(ũ− u) · b dx dt,

18



where∫
x∈Ω,|x|≤R

1%<%(%− %̃)(ũ− u) · b dx ≤ ‖1%≤%(%− %̃)‖L2(Ω) ‖u− ũ‖L6(Ω;R3)‖b‖L3(Ω∩{|x|≤R}).

Seeing that
‖b‖L3(Ω∩{|x|≤R;R3}) ≤ c(R)‖b‖L6(Ω;R3)

the above integral is controlled by (5.6).
Finally,∫

|x|>R
1%<%%(ũ− u) · b dx ≤ δ‖u− ũ‖2

L6(Ω;R3) + c(δ)‖1%≤%%‖2
Lγ(Ω)‖b‖2

Lq(|x|≥R) (5.12)

for any δ > 0, where
1

q
=

5

6
− 1

γ
.

Suppose that 1 < γ ≤ 2. Consequently,

‖1%≤%%‖2
Lγ(Ω) ≤ c(%)‖1%≤%%‖γLγ(Ω)

<∼
∫

Ω

E
(
%,u

∣∣∣%̃, ũ) dx.

Thus, to close the estimates, we need to control∫ T

0

‖b‖2
Lq(|x|≥R) dt ≤ c(q) for any q > 3. (5.13)

To see (5.13), we realize that
b = ∂tũ + ũ · ∇xũ if |x| > R.

If the fluid is Newtonian, we get immediately from (4.7) that

µdivx

(
∇x∂tũ +∇t

x∂tũ−
2

3
divx∂tũI

)
+ λ∇xdivx∂tũ = 0 for |x| > R,

where, in view of (5.2)

∂tũ ∈ D1,2 ∩ L6(|x| > R), ∂tũ ∈ Cα(|x| = R) for some α > 0 and a.a. t ∈ (0, T ).

Using the standard elliptic estimates, we get

|∂tũ(t, x)| <∼ 1

|x|
‖∂tũ(t, ·)‖C(|x|=R) for all |x| ≥ R,

which, together with (5.2), yields (5.13). Thus we are able to control the integral (5.12) as soon
as 1 < γ < 2.

We have shown the following result.
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Theorem 5.2 (Weak–strong uniqueness, compactly supported density). Suppose that
Ω ⊂ R3 is a Lipschitz exterior domain, uB = 0, and 1 < γ < 2. In addition, let S be Newtonian,

S = µ

(
∇xu +∇t

xu−
2

3
divxuI

)
+ λdivxuI, µ > 0, λ ≥ 0. (5.14)

Let (%̃, ũ) be a strong solution of the problem (1.1), (1.2) in (0, T ) × Ω in the sense specified in
Section 2.1 belonging to the class (5.2). Let (%,u) be a weak solution of the same problem in the
sense of Definition 2.2 such that

%(0, ·) = %̃(0, ·) = %0, (%u)(0, ·) = (%̃ũ)(0, ·) = m0,

where
%0 ∈ Cc(Ω), (%0)γ−1 ∈ W 1,6 ∩W 1,∞(Ω;R3).

Then
% = %̃, u = ũ in (0, T )× Ω.

Remark 5.3. Local existence of strong solutions as well as global existence for small initial data
in the class included in (5.2) was proved by Huang et al. [9, Lemma 2.1], see also Cho and Kim
[4, Theorem 3] for local existence in the class of more regular solution.

The result can be extended to the case of general in/out flow boundary conditions in the spirit
of Theorem 4.3. The hypothesis of Newtonian viscous stress is however necessary.

5.3 Positive density

Finally, we consider the physically relevant case Ω = R3,

0 < %0(x) ≤ %,

|∇x(%0)γ−1(x)| <∼ 1

1 + |x|α
, α = α(γ) > 0,

(5.15)

meaning vacuum is not present but %0 decays to zero as |x| → ∞. We consider the Newtonian
viscous stress (5.14) and restrict slightly the class (5.2) of strong solutions

ũ ∈ C([0, T ];D1,2
0 ∩D3,2(R3;R3)) ∩ L2(0, T ;D4,2(R3;R3)),

∂tũ ∈ L∞(0, T ;D1,2
0 (R3, R3)) ∩ L2(0, T ;D2,2(R3;R3)),

%̃, p(%̃) ∈ C([0, T ];W 3,2(R3)),
√
%∂2

t,tũ ∈ L2(0, T ;L2(R3;R3)).

(5.16)

introduced by Cho and Kim [4].
The first observation is that any solution belonging to (5.16) satisfies

ũ ∈ C([0, T ];BC1(R3;R3)), ∇2ũ ∈ L2(0, T ;BC(R3;R9)).
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Thus a direct inspection of formula (2.7) reveals that the decay properties of the initial density
propagate in time. More specifically, we have

|∇x(%0)γ−1(x)| <∼ 1

1 + |x|α
⇒ (%0)γ−1(x)

<∼ 1

1 + |x|α−1
⇒ %γ−1(t, x)

<∼ 1

1 + |x|α−1

⇒ |∇x(%(t, x))γ−1| <∼ 1

1 + |x|α−1

In particular, we get

∇xP
′(%̃) ∈ L∞(0, T ;L1 ∩ L∞(R3;R3)) provided α > 2, (5.17)

and

%̃(t, x) ≈ 1

1 + |x|β
, |∇x%̃(t, x)| <∼ 1

1 + |x|β
for all t ∈ [0, T ], x ∈ R3, β =

α− 1

γ − 1
. (5.18)

Consequently, all steps in Section 5.1 up to formula (5.7) can be performed and we are left
with the integral (5.8)∫ τ

0

∫
R3

1%≤%(%− %̃)(u− ũ) ·
(
∂tũ + ũ · ∇xũ +∇xP

′(%̃)
)

dx dt. (5.19)

We proceed in several steps:
Step 1.
As ũ ∈ L∞((0, T )×R3;R3), ∇xũ ∈ L∞ ∩ L2((0, T )×R3;R9), we get, by interpolation,

u · ∇xũ ∈ L2(0, T ;L3(R3, R3))

Similarly, it follows from (5.18) that

∇xP
′(%̃) ∈ L∞(0, T ;L3 ∩ L∞(R3;R3)). (5.20)

Consequently, ∫
R3

1%≤%(%− %̃)(u− ũ) ·
(
ũ · ∇xũ +∇xP

′(%̃)
)

dx dt

≤ ‖%− %̃‖L2(R3)‖u− ũ‖L6(R3;R3)‖ũ · ∇xũ +∇xP
′(%̃)‖L3(R3;R3)

,

and we may use the arguments of Section 5.1 to control the expression on the right–side. Thus
(5.19) reduces to ∫ τ

0

∫
R3

1%≤%(%− %̃)(u− ũ) · ∂tũ dx dt. (5.21)

Step 2. To control ∂tũ, we differentiate the momentum equation with respect to time obtaining

L[∂tũ] = ∂2
t,t(%̃ũ) + divx(∂t(%̃ũ⊗ ũ)) +∇x∂tp(%̃), (5.22)
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where L denotes the Lamé elliptic operator

L[v] = µdivx

(
∇xv +∇xv

t − 2

3
divxvI

)
+ λ∇xdivxv. (5.23)

Now,

∂t(%̃ũ⊗ ũ) = ∂t%̃(ũ⊗ ũ) + %̃(∂tũ⊗ ũ) + %̃(ũ⊗ ∂tũ)

= −ũ · ∇x%̃(ũ⊗ ũ)− %̃divxũ(ũ⊗ ũ) + %̃(∂tũ⊗ ũ) + %̃(ũ⊗ ∂tũ).

By Hölder’s inequality

‖ũ · ∇x%̃(ũ⊗ ũ)‖
L

3
2 (R3;R3)

≤ ‖ũ‖3
L6(R3;R3)‖∇x%̃‖L6(R3;R3).

Similarly
‖%̃divxũ(ũ⊗ ũ)‖

L
3
2 (R3;R3)

≤ ‖%̃‖L∞(R3)‖divxũ‖L2(R3)‖ũ‖2
L6(R3),

and
‖%̃(∂tũ⊗ ũ) + %̃(ũ⊗ ∂tũ)‖

L
3
2 (R3;R3)

≤ 2‖%̃‖L3(R3)‖ũ‖L6(R3;R3)‖∂tũ‖L6(R3;R3).

As (%̃, ũ) belongs to the class (5.16) and %̃ satisfies (5.20), it is easy to check that

∂t(%̃ũ⊗ ũ) ∈ L2(0, T ;L
3
2 (R3;R9)). (5.24)

Next,

∂tp(%̃) = −p′(%̃)
(
∇x%̃ · ũ− %̃divxũ

)
,

where
‖p′(%̃)∇x%̃ · ũ‖L 3

2 (Ω)

<∼ ‖%̃‖L6(R3)‖∇xP
′(%̃)‖L3(R3)‖ũ‖L6(R3)

Similarly to the above, we conclude

∂tp(%̃) ∈ L∞(0, T ;L
3
2 (R3)). (5.25)

Going back to the equation (5.22), we get

L[∂tũ] = ∂2
t,t(%̃ũ) + divxB

where
B ∈ L2(0, T ;L

3
2 (R3;R9)).

In view of the standard elliptic estimates, we may write

∂tũ = z + v,

where
L[z] = ∂2

t,t(%̃ũ), (5.26)
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while
v ∈ L2(0, T ;D

1, 3
2

0 (R3;R3)) ↪→ L2(0, T ;L3(R3;R3)).

In view of the arguments employed in Step 1, our task reduces to controlling the integral∫ τ

0

∫
R3

1%≤%(%− %̃)(u− ũ) · z dx dt. (5.27)

Step 3.
First, we write the right–hand side of the elliptic equation (5.26) in the form

∂2
t,t(%̃ũ) = ∂2

t,t%̃ũ + %̃∂2
t,tũ− 2divx(%̃ũ)∂tũ = −∂tdivx(%̃ũ)ũ + %̃∂2

t,tũ− 2%̃divx(ũ)∂tũ− 2∇x%̃ · ũ∂tũ

where, furthermore,
∂tdivx(%̃ũ)ũ = divx (∂t(%̃ũ)⊗ ũ)− ∂t(%̃ũ) · ∇xũ.

As the term divx (∂t(%̃ũ)⊗ ũ) can be handled exactly as in Step 2, our task reduces to estimating
the integral ∫ τ

0

∫
R3

1%≤%(%− %̃)(u− ũ) ·w dx dt, (5.28)

where w solves the elliptic system
L[w] = g, (5.29)

with the right–hand side

g = %̃∂tũ · ∇xũ− %̃divxũ(ũ · ∇xũ) + ũ∇x%̃ · ũ · ∇xũ + %̃∂2
t,tũ− 2%̃divx(ũ)∂tũ− 2∇x%̃ · ũ∂tũ. (5.30)

Our goal is to show that that function w decays to zero for large x, more specifically, we shall
see that

|w(t, x)| ≤ χ(t)
1

|x|
with χ ∈ L2(0, T ). (5.31)

Taking (5.31) for granted, we use Hardy’s inequality to estimate the integral (5.28),∫
R3

1%≤%(%− %̃)(u− ũ) ·w dx ≤ δ

∫
R3

|u− ũ|2

|x|2
dx+ c(δ)

∫
R3

χ21%≤%|%− %̃|2

<∼ δ

∫
R3

|∇xu−∇xũ|2 dx+ c(δ)

∫
R3

χ2E
(
%,u
∣∣∣%̃, ũ) , δ > 0 arbitrary.

Thus the proof of weak strong uniqueness can be completed via Gronwall’s argument exactly as
in Section 4.1.

It remains to show (5.31). As w solves the elliptic problem (5.29), we get

w(t, x) =

∫
R3

G(x, y) · g(t, y)dy,
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where G is the Green kernel associated to L. Writing∫
R3

G(x, y) · g(t, y)dy =
1

|x|

∫
R3

(|x| − |y|)G(x, y) · g(t, y)dy

+
1

|x|

∫
R3

|y|G(x, y) · g(t, y)dy

and using the fact

|G(x, y)| <∼ 1

|x− y|
,

we observe that (5.31) follows provided

‖g(t, ·)‖L1(R3;R3) + ‖|x|g(t, ·)‖Lq(R3;R3) ≤ χ(t) for some χ ∈ L2(0, T ), q ∈ (
3

2
− ε, 3

2
+ ε), ε > 0.

(5.32)
Thus our ultimate goal is to check (5.32) for all terms appearing on the right–hand side of

(5.30). First, we have

‖%̃∂tũ · ∇xũ‖L1(R3) ≤ ‖%̃‖L3(R3)‖∂tũ‖L6(R3)‖∇xũ‖L2(R3),

and
‖|x|%̃∂tũ · ∇xũ‖Lq(R3) ≤ ‖ |x|%̃ ‖Lq(R3)‖∂tũ‖L∞(R3)‖∇xũ‖L∞(R3).

In view of (5.16), the bound (5.32) holds as soon as β > 3. The same argument applies to the
terms %̃divxũ∂tũ, %̃divxũ(ũ · ∇xũ). Moreover, seeing that ∇x%̃ decays at least as fast as %̃, we can
handle ũ∇x%̃ · ũ · ∇xũ and ∇x%̃ · ũ∂tũ in the same manner. Here, we have used the fact that ũ is
uniformly bounded.

Finally,
‖%̃∂2

t,tũ‖L1(R3) ≤ ‖
√
%̃‖L2(R3)‖

√
%̃∂2

t,tũ‖L2(R3),

‖|x|%̃∂2
t,tũ‖Lq(R3) ≤ ‖|x|

√
%̃‖Lp(R3)‖

√
%̃∂2

t,tũ‖L2(R3),
1

p
=

1

q
− 1

2
.

Thus the choice β > 3 yields (5.32).
We have shown the following result:

Theorem 5.4 (Weak–strong uniqueness, positive density). Suppose that Ω = R3 and 1 <
γ ≤ 2. In addition, let S be Newtonian,

S = µ

(
∇xu +∇t

xu−
2

3
divxuI

)
+ λdivxuI, µ > 0, λ ≥ 0.

Let (%̃, ũ) be a strong solution of the problem (1.1), (1.2) in (0, T ) × R3 in the sense specified in
Section 2.1 belonging to the class (5.16). Let (%,u) be a weak solution of the same problem in the
sense of Definition 2.2 such that

%(0, ·) = %̃(0, ·) = %0, (%u)(0, ·) = (%̃ũ)(0, ·) = m0,
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where

0 < %0(x) ≤ %,

|∇x(%0)γ−1(x)| <∼ 1

1 + |x|α
, α > max {2; 3γ − 2} .

Then
% = %̃, u = ũ in (0, T )×R3.

Remark 5.5. Local existence of strong solutions in the class (5.16) was proved by Cho and Kim
[4, Theorem 3], see also Huang et al. [9, Lemma 2.1].

Similarly to the preceding results, Theorem (5.4) can be extended to exterior domains with
general in/out flow boundary conditions. Vacuum can be accommodated at the expense of various
technical difficulties. Finally, it is worth noting that the condition α > 3γ − 2 in Theorem 5.4 is
critical for the fluid to have finite mass, namely∫

R3

%̃ dx <∞.
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