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ERRATUM AND ADDENDUM TO
‘RECOVERING A COMPACT HAUSDORFF SPACE X
FROM THE COMPATIBILITY ORDERING ON CpXq’

TOMASZ KANIA, DENNY H. LEUNG, AND MARTIN RMOUTIL

Abstract. It was kindly pointed out by L. G. Cordeiro as well as independently by
T. Bice and W. Kubiś that the proof of Theorem 1.1 from the paper ‘Recovering a compact
Hausdorff space X from the compatibility ordering on CpXq’, Fund. Math. 242 (2018),
187–205 is flawed. We demonstrate that not only is the proof of the said statement erro-
neous but that there is indeed a counterexample to it; Theorems 1.2–1.3 remain unaffected
though. We salvage the result in the class of totally disconnected compact spaces and we
propose an amendment by a suitable modification of the compatibility ordering that yields
the conclusion of Theorem 1.1 for arbitrary compact spaces.

It is most unfortunate that the statement recorded as [2, Theorem 1.1] is erroneous. In
the present note we

‚ salvage the result for totally disconnected compact spaces by appealing to [1, The-
orem 1.17] (Theorem 1.5),

‚ provide a counterexample to [2, Theorem 1.1] by constructing a compatibility iso-
morphism between the spaces of continuous functions on the unit disc and a closed
annulus in the plane (Theorem 1.6),

‚ discuss a minor modification of the compatibility ordering which yields the conclu-
sion of [2, Theorem 1.1] in full generality (Theorem 1.8), and

‚ present a cleaner argument for [2, Proposition 4.1] (Proposition 1.3) to ensure that
[2, Theorems 1.2–1.3] are valid; this proposition is also required for the first clause
presented above.

We refer to [2] for all unexplained notation and terminology. Let X be a topological
space. For f P CpXq we set σpfq “ int supp f “ int tx P X : fpxq ‰ 0u. Given a fixed
compatibility isomorphism T : CpXq Ñ CpY q, we define the mapping

(1.1) τ : tσpfq : f P CpXqu Ñ tσpgq : g P CpY qu by τpσpfqq “ σpTfq.

In [2, Proposition 3.8] it was proved that when X and Y are completely regular spaces,
τ is a well-defined inclusion-preserving bijection. (A generalisation of this result may be
found in [1, Theorem 1.16].)
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Moreover, the following lemma was proved ([2, Lemma 3.1])

Lemma 1.1. Let X and Y be topological spaces. Suppose that T : CpXq Ñ CpY q is
a compatibility isomorphism and f, g P CpXq. Consider the following conditions:
(i) f and g are orthogonal,
(ii) Tf and Tg are orthogonal,
(iii) T pf ` gq “ Tf ` Tg.
Then (i) and (ii) are equivalent and imply (iii).

Lemma 1.1 has a natural converse, which was not included in [2]. We record it here as
it will be required in the proof of Theorem 1.6.

Lemma 1.2. Let X and Y be topological spaces. Suppose that T : CpXq Ñ CpY q is
a bijection such that
(i) for f, g P CpXq, fg “ 0 if and only if pTfqpTgq “ 0,
(ii) for f, g P CpXq, if fg “ 0, then T pf ` gq “ Tf ` Tg,
(iii) for f, g P CpY q, if fg “ 0, then T´1pf ` gq “ T´1f ` T´1g.
Then T is a compatibility isomorphism.

Proof. Let f, g P CpXq. Without loss of generality f ‰ 0. Suppose that f ď g, that is
fg “ f 2. We have fpg ´ fq “ 0, which (by (i)) implies pTfqpT pg ´ fqq “ 0, and (by (ii))
Tf ` T pg ´ fq “ Tg, so pTfq2 “ TfTf ` pTfqpT pg ´ fqq “ pTfqpTgq. Consequently
Tf ď Tg. The proof for T´1 is completely analogous. �

1.1. Clarification of the proof of Proposition 4.1. [2, Proposition 4.1] is correct, yet
its proof presented in [2] may leave a doubt due to the sentence ‘By applying the closure
and interior operations. . . ’.) Below we present a complete proof of this key lemma.

Proposition 1.3 ([2, Proposition 4.1]). Let X and Y be completely regular spaces such
that there exists a compatibility isomorphism T : CpXq Ñ CpY q. If U Ď X is clopen, then
τpXzUq “ Y zτpUq. In particular, τpUq is clopen.

Proof. Let us first observe that for h “ T´1p1Y q P CpXq it is true that σphq “ X. Indeed,
assume σphq ‰ X. This, of course, means, that suppphq ‰ X, and (by complete regularity
of X) there is a non-zero function k P CpXq orthogonal to h. By Lemma 1.1, 0 “ T0 ‰ Tk
is orthogonal to Th “ 1Y , which is impossible.

Having established σphq “ X, we now define f “ h ¨ 1U and g “ h ¨ 1XzU . Since h is
continuous and U is clopen, the functions f, g are continuous, orthogonal and h “ f ` g.
Thus, by Lemma 1.1, 1Y “ Th “ Tf`Tg, with Tf, Tg continuous and orthogonal. Setting

A “ ty P Y : Tfpyq ‰ 0u and B “ ty P Y : Tgpyq ‰ 0u,

it follows that A Y B “ Y and the union is disjoint. Since, by continuity, A and B are
open in Y , they are clopen. Thus

σpTfq “ intA “ A and σpTgq “ intB “ B.
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But σpfq “ U and σpgq “ XzU as U is clopen and σphq “ X; we therefore have
τpUq “ τpσpfqq “ σpTfq “ A and τpXzUq “ τpσpgqq “ σpTgq “ B,

whence τpUq is clopen and Y zτpUq “ Y zA “ B “ τpXzUq. �

In order to state and prove [2, Theorem 1.1] restricted to the class of totally disconnected
compact spaces, we require a piece of terminology. Let X be a compact space. Cordeiro
calls a family A Ă CpXq weakly regular ([1, Definition 1.5(ii)]) when tσpfq : f P Au is
a base for the topology on X.

Theorem 1.4 ([1, Theorem 1.17]). Let X and Y be compact Hausdorff spaces. Suppose
that ApXq Ă CpXq,ApY q Ď CpY q are weakly regular families. If T : ApXq Ñ ApBq is
a bijection such that

supp f X supp g “ ∅ ðñ suppTf X suppTg “ ∅ pf, g P ApXqq,

then there exists a unique homeomorphism ψ : Y Ñ X such that ψpσpTfqq “ σpfq for
every f P ApXq.

We are now ready to state and prove [2, Theorem 1.1] in the totally disconnected setting.

Theorem 1.5. Let X and Y be totally disconnected compact Hausdorff spaces. If there
exists a compatibility isomorphism T : CpXq Ñ CpY q, then X and Y are homeomorphic.

Proof. Since X and Y are compact and totally disconnected, the clopen subsets thereof
form open bases for their topologies. Consequently, the families

ApXq “ tf P CpXq : σpfq is clopenu, ApY q “ tf P CpY q : σpfq is clopenu
are weakly regular. We claim that T pApXqq “ ApY q. For this, let us take arbitrary f in
ApXq, i.e., f P CpXq such that σpfq is clopen. Then, by Proposition 1.3, σpTfq “ τpσpfqq
is clopen, and so Tf P ApY q. To prove the converse inclusion, note that [2, Proposition
3.8] states that τ given by (1.1) is a (well-defined) bijection; thus for any f P CpXq we have
τ´1pσpTfqq “ σpfq, in particular, τ´1pσpgqq “ σpT´1pgqq for any g P ApY q. Since T´1
is, by definition, also a compatibility isomorphism, another application of Proposition 1.3
yields that T´1 maps ApY q into ApXq, and we conclude that T |ApXq : ApXq Ñ ApY q is
a bijection. We have σpfq “ supp f for f P ApXq Y ApY q, since σpfq is clopen. Conse-
quently, we notice that T |ApXq meets the hypothesis of Theorem 1.4, hence X and Y are
homeomorphic. �

1.2. A counterexample to Theorem 1.1 in the connected case. Even though in the
totally disconnected case compatibility isomorphisms do recover the underlying spaces, this
need not be so for compact, connected metric spaces.

Theorem 1.6. There exists a compatibility isomorphism between the spaces of continuous
functions on the closed unit disc and the annulus tz P C : 1{2 ď |z| ď 1u.

We shall divide the proof of Theorem 1.6 into a sequence of independent, more digestible
claims. As in [2], we denote by ROpXq the lattice of regularly open subsets of a topological
space X with the operations U _ro V “ intU Y V and U ^ro V “ U X V.
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Proof of Theorem 1.6. Let

A “ tz P C : 1{2 ă |z| ď 1u and P “ tz P C : 0 ă |z| ď 1u.

The map h : AÑ P defined by

hpzq “ p2|z| ´ 1q
z

|z|
pz P Aq

is a homeomorphism from A onto P . Let

X “ tz P C : 1{2 ď |z| ď 1u and Y “ tz P C : |z| ď 1u.

Define ϕ : ROpXq Ñ ROpY q and ψ : ROpY q Ñ ROpXq by

ϕpUq “ inthpU X Aq and ψpV q “ inth´1pV X P q,

where the closures and interiors are taken in X and Y respectively.

Claim 1. ϕ is an order-preserving lattice isomorphism with inverse ψ.

Proof of Claim 1. It is clear that ϕ is order-preserving. By [2, Lemma 3.12], it is sufficient
to show that ϕ is bijective.

Let U P ROpXq. We then have hpU X Aq Ď ϕpUq since hpU X Aq is open in Y . Thus

ψpϕpUqq “ inth´1rϕpUq X P s Ě inth´1rhpU X Aqs “ intU X A “ intU “ U.

Conversely, let clA and clP denote the closure operations in A and P , respectively. Then

h´1rhpU X Aq X P s “ h´1rclP phpU X Aqqs “ clApU X Aq Ď U.

Hence
h´1pϕpUq X P q Ď h´1rhpU X Aq X P s Ď U.

It follows that
ψpϕpUqq “ inth´1pϕpUq X P q Ď intU “ U.

This proves that ψpϕpUqq “ U . Similarly, ϕpψpV qq “ V for every V P ROpY q. Con-
sequently, ϕ : ROpXq Ñ ROpY q is an order-preserving bijection. Hence ϕ is a lattice
isomorphism. �

Claim 2. U P ROpXq is non-empty and connected if and only if ϕpUq P ROpY q is non-
empty and connected.

Proof of Claim 2. Let U P ROpXq be non-empty and connected. Obviously ϕpUq is non-
empty. Since U is open in X, it is in fact path-connected. If x1, x2 P U X A, there is
a continuous path in U that runs from x1 to x2. A slight perturbation yields a path in
U XA that also runs from x1 to x2. Thus U XA is path-connected. As a result hpU XAq
is path-connected. Thus it is open and connected in P and hence in Y too. Since

hpU X Aq Ď ϕpUq Ď hpU X Aq,

ϕpUq is connected in Y . A similar argument shows that if V “ ϕpUq P ROpY q is non-empty
and connected, then U “ ψpV q is non-empty and connected. �
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A function f P CpXq is said to be decomposable if it can be written as a sum of two orthog-
onal non-zero functions in CpXq. A function that is not decomposable is indecomposable.

For f P CpXq, let Cpfq “ tx P X : fpxq ‰ 0u. Since X is locally connected, the connected
components of Cpfq are open in X. We can then infer from the separability of Cpfq that
it has at most countably many connected components. Denote the connected components
of Cpfq by pUnqnPJ , where J is either a finite set or N.

Claim 3. If Cpfq is connected, then f is indecomposable.

Proof of Claim 3. If we had f “ f1 ` f2 with non-zero, orthogonal, continuous functions
f1, f2, then Cpfq would be the union of two non-empty, disjoint, open sets Cpf1q and Cpf2q,
which is impossible due to its connectedness. �

Claim 4. Let f P CpXq be a non-zero function and let pUnqnPJ be the enumeration of the
connected components of Cpfq. Set fn “ f ¨ 1Un for each n P J . Then fn P CpXq. Each
fn is indecomposable. Furthermore, if J “ N, then }fn} Ñ 0 as nÑ 8.

Proof of Claim 4. Let U be a connected component of Cpfq. We first show that we have
f ¨ 1U P CpXq and that f ¨ 1U is indecomposable.

Denote g :“ f ¨ 1U . Then clearly f |U “ g|U , so g is continuous in U in the relative
topology of U . On the other hand, g|XzU “ 0 in, so it is continuous in the relative topology
of XzU . In particular, g is continuous at all points of BU “ U XpXzUq; at all other points
g is continuous trivially.

It follows from Claim 3 that g is indecomposable.
It remains to show the final assertion. If J “ N and }fn} Ñ 0, we may choose an infinite

subset J 1 of J and ε ą 0 so that }fn} ě ε for all n P J 1. For each n P J 1, there exists
xn P Un so that ε ď }fn} “ |fnpxnq| “ |fpxnq|. Replace J 1 by a further infinite subset if
necessary to assume that pxnqnPJ 1 converges to some x0 P X. If x0 P Cpfq, then x0 P Un0

for some n0 P J . Since Un0 is an open set, xn P Un0XUn for all sufficiently large n P J 1. But
this means that n “ n0 for all sufficiently large n P J 1, which is absurd. Thus x0 R Cpfq.
We now have

lim
nPJ 1

}fn} “ lim
nPJ 1

|fpxnq| “ |fpx0q| “ 0,

contrary to the choice of J 1. This completes the proof. �

Let f P CpXq be a non-zero function. We say that
ř

nPJ fn is an irreducible decomposition
of f if J is either finite or N, pfnqnPJ is a sequence of pairwise orthogonal functions in CpXq,
each fn is indecomposable and non-zero, and f “

ř

nPJ fn, where the sum converges in
CpXq unformly if J “ N.

Claim 5. Every non-zero function f P CpXq (and in CpY q) has an irreducible decomopo-
sition. The decomposition is unique in the sense that if f “

ř

nPJ fn “
ř

nPJ 1 gn are two
irreducible decompositions, then there is a bijection π : J 1 Ñ J so that gn “ fπpnq for all
n P J 1.



6 T. KANIA, D. H. LEUNG, AND M. RMOUTIL

Proof of Claim 5. Let pUnqnPJ be an enumeration of the connected components of Cpfq.
It follows from Claim 4 that if we set fn “ f ¨ 1Un , n P J , then each fn P CpXq is
indecomposable and non-zero. Furthermore, if J “ N, the sum f “

ř

nPJ fn converges in
CpXq since pfnq8n“1 is a sequence pairwise orthogonal functions and }fn} Ñ 0 as nÑ 8.

Suppose that f admits another irreducible decomposition f “
ř

nPJ 1 gn. Let n P J 1. If
Cpgnq were not connected, we could find two non-empty disjoint open sets V1, V2 so that
Cpgnq “ V1 Y V2. As in the proof of Claim 4, one can verify that gn1Vi P CpXq, i “ 1, 2.
Then gn “ gn1V1`gn1V2 shows that gn is decomposable, contrary to its choice. Hence, each
Cpgnq is connected. Therefore, Cpfq “

Ť

nPJ 1 Cpgnq expresses Cpfq as a union of disjoint
open connected non-empty sets. Thus, each set Cpgnq (n P J 1) must be a connected
component of Cpfq. So there is a bijection π : J 1 Ñ J so that Cpgnq “ Uπpnq “ Cpfπpnqq.
Finally,

gn “ f ¨ 1Cpgnq “ f ¨ 1Uπpnq “ fπpnq. �

Similarly, every non-zero function g P CpY q has a unique (up to permutation) irreducible
decomposition.

Denote the set of all indecomposable functions on X and Y , by IpXq and IpY q, respec-
tively. For a connected non-empty set U P ROpXq and r ě 0, let IpU, rq be the set of
functions f P IpXq such that σpfq “ U and }f} “ r. Similarly define IpV, rq for connected
non-empty V P ROpY q and r ě 0.

Claim 6. Let U P ROpXq or U P ROpY q be non-empty and connected. If r ą 0, then the
set IpU, rq has cardinality c, of the continuum.

Proof of Claim 6. One can readily find a P U , δ ą 0, and K ą 0 such that the function
αpxq “ mintK ¨dpx, U cq, r{2u satisfies for each x P Bpa, δq Ď U , αpxq “ r{2. Clearly r0, r{2s
is the range of α and Cpαq “ U (as U is open). Next, for each z P Bpa, δq, we find a function
βz P CpXq with range r0, r{2s such that supp βz Ď Bpa, δq and pβzq´1pr{2q “ tzu; it is
obvious from these conditions that βz ‰ βy whenever z ‰ y, z, y P Bpa, δq. Setting, for each
z P Bpa, δq, γz “ α ` βz, we see that |tγz : z P Bpa, δqu| “ |Bpa, δq| “ c. But γz P IpU, rq
for each z P Bpa, δq. Indeed, γzpzq “ αpzq ` βzpzq “ r{2 ` r{2 “ r, so r0, rs is the range
of γz. Moreover, we have Cpγzq “ U (by Cpαq “ U and the non-negativity of both α and
βz), so according to Claim 3 connectedness of U implies that γz is indecomposable.

Similarly, the set IpV, rq has cardinality c for every non-empty connected set V P ROpY q
and r ą 0. �

Construction of a norm-preserving bijection between the indecomposables. By Claim 2, if
U P ROpXq is non-empty and connected, so is ϕpUq P ROpY q. Thus, for each non-empty
connected U P ROpXq, there is a bijection

SU :
ď

rą0

IpU, rq Ñ
ď

rą0

IpϕpUq, rq
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such that SU maps each IpU, rq onto IpϕpUq, rq (r ą 0). Indeed, by Claim 6, for each r ą 0
we may fix a bijection SrU : IpU, rq Ñ IpϕpUq, rq and define SUf “ SrUf when f P IpU, rq.
SU is well-defined as the sets IpU, rq (r ą 0) are pairwise disjoint.

Remark. Let f P CpXq be a non-zero function; we write f “
ř

nPJ fn in terms of its
irreducible decomposition. By the construction of the irreducible decomposition in Claim 4
and the uniqueness proved in Claim 5, all sets Cpfnq (n P J) must be connected components
of Cpfq. Since Cpfnq Ď σpfnq Ď Cpfnq, σpfnq is connected (and non-empty).

Construction of the sought compatibility isomorphism. We define T : CpXq Ñ CpY q in the
following manner: T0 “ 0 and

Tf “
ÿ

nPJ

Sσpfnqfn pf P CpXq, f ‰ 0q.

Claim 7. T : CpXq Ñ CpY q is a well defined mapping. Moreover, if for f, g P CpXq we
have fg “ 0, then Tf ¨ Tg “ 0 and T pf ` gq “ Tf ` Tg.

Proof of Claim 7. For the well definedness, it is required to show that for f P CpXq we
have Tf P CpY q. If J is finite, then assertion is trivial, so we may suppose that J “ N.
Since pfnq8n“1 is a sequence of pairwise orthogonal functions and

ř

fn converges in CpXq,
lim }fn} “ 0. Thus fn P IpUn, rnq, where Un “ σpfnq and rn “ }fn} ą 0.

By the very definition of SUn , SUnfn P IpϕpUnq, rnq. Since pUnq8n“1 is a sequence of
pairwise disjoint sets in ROpXq and ϕ : ROpXq Ñ ROpY q is an order-preserving isomor-
phism, by Claim 1, pϕpUnqq8n“1 is a sequence of pairwise disjoint sets. Thus pSUnfnq8n“1 is
a sequence of pairwise orthogonal functions in CpY q with }SUnfn} “ rn for all n. Since
rn Ñ 0, it is now clear that

ř

SUnfn converges in CpY q.
Let f, g P CpXq be such that fg “ 0. If one of them is the zero function, then obviously

Tf ¨Tg “ 0 and T pf`gq “ Tf`Tg. Suppose that both f, g are non-zero. Let f “
ř

nPJf
fn

and g “
ř

nPJg
gn be their respective irreducible decompositions. For each n P Jf ,

σpSσpfnqfnq “ ϕpσpfnqq Ď ϕpσpfqq.

Thus

σpTfq “ σ
´

ÿ

nPJf

Sσpfnqfn

¯

“ int
ď

nPJf

CpSσpfnqfnq Ď int
ď

nPJf

σpSσpfnqfnq Ď ϕpσpfqq,

where the last inclusion holds as
Ť

nPJf
σpSσpfnqfnq Ď ϕpσpfqq and ϕpσpfqq P ROpY q.

Similarly, σpTgq Ď ϕpσpgqq. Since fg “ 0, σpfqXσpgq “ H, and so ϕpσpfqqXϕpσpgqq “ H.
Therefore, Tf ¨ Tg “ 0.

Finally, it is clear that
f ` g “

ÿ

nPJf

fn `
ÿ

nPJg

gn

is the irreducible decomposition of f ` g. By definition

T pf ` gq “
ÿ

nPJf

Sϕpfnqfn `
ÿ

nPJg

Sϕpgnqgn “ Tf ` Tg.
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This completes the proof of the statement. �

If g P CpY q is a non-zero function, let g “
ř

nPJ gn be its irreducible decomposition.
Then Cpgnq, n P J , are the connected components of Cpgq. Thus σpgnq is connected (and
non-empty). By Claim 2, ϕ´1pσpgnqq is connected and non-empty.
Construction of the inverse to T . We define a map rT : CpY q Ñ CpXq as follows: rT0 “ 0
and

rTg “
ÿ

nPJ

S´1ϕ´1pσpgnqq
gn pg P CpY q, g ‰ 0q.

Claim 8. If f, g P CpY q and fg “ 0, then rTf ¨ rTg “ 0 and rT pf ` gq “ rTf ` rTg.

Proof of Claim 8. The proof is completely analogous to the proof of Claim 7. �

Claim 9. T and rT are mutual inverses.

Proof of Claim 9. We have T rT0 “ 0 and rTT0 “ 0. Let f P CpXq be a non-zero function
written in terms of its irreducible decomposition: f “

ř

nPJ fn. Then Tf “
ř

nPJ Sσpfnqfn.
Set gn “ Sσpfnqfn. By the very definition, σpgnq “ ϕpσpfnqq. By Claim 2, the set σpgnq is
connected. Since the sequence pσpfnqqnPJ comprises pairwise disjoint sets, by Claim 1, so
does the sequence pϕpσpfnqqqnPJ “ pσpgnqqnPJ

Thus the sequence pSσpfnqfnqnPJ comprises pairwise orthogonal functions, each of which
is indecomposable by definition. Therefore,

ř

nPJ Sσpfnqfn is the irreducible decomposition
of Tf . Let gn “ Sσpfnqfn (n P J). Since S´1ϕ´1pσpgnqq

“ S´1σpfnq,

rTTf “ rT
´

ÿ

nPJ

gn

¯

“
ÿ

nPJ

S´1ϕ´1pσpgnqq
gn “

ÿ

nPJ

S´1σpfnqgn “
ÿ

nPJ

fn “ f.

The proof for T rTg “ g for all g P CpY q is similar. �

It follows from Claims 7–9 that T is bijective, both T and T´1 preserve orthogonality
and both are orthogonality additive. By Lemma 1.2, T is a compatibility isomorphism. �

1.3. A modification of the compatibility ordering. Let X be a compact Hausdorff
space and let f, g be scalar-valued continuous functions on X. We define the order relation
f Ď g whenever there exists an open set U Ď X such that

‚ supp f Ď U ,
‚ gpxq “ fpxq for all x P U .

Let us call a (possibly non-linear) bijection T : CpXq Ñ CpY q a Ď-isomorphism whenever

f Ď g ðñ Tf Ď Tg pf, g P CpXqq.

Lemma 1.7. Let X and Y be compact Hausdorff spaces and let T : CpXq Ñ CpY q be a Ď-
isomorphism. If the functions f1, f2 P CpXqzt0u have disjoint supports, so have Tf1, T f2.
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Proof. Let us set f “ f1 ` f2, g1 “ Tf1, g2 “ Tf2, and g “ Tf . By the assumption
supp f1 X supp f2 “ ∅, and using normality of X, we easily see that f1 Ď f and f2 Ď f ;
it follows that g1 Ď g and g2 Ď g. Hence there exist open sets U1, U2 Ď Y such that
supp gi Ď Ui and gi “ g in Ui, i “ 1, 2.

Assume, for a contradiction, that supp g1Xsupp g2 ‰ ∅. Then U1 Ě supp g1Xsupp g2, so
U1 X supp g2 ‰ ∅. Since U1 is open, U1 X Cpg2q ‰ ∅ (where Cpg2q “ ty P Y : g2pyq ‰ 0u).
But g “ g1 in U1 and g “ g2 in U2 Ě Cpg2q. Therefore g1 “ g “ g2 in U1XU2 Ě U1XCpg2q,
and since g2 is non-zero in this non-empty set, all the functions are.

Thus we have obtained that C :“ Cpg1qXCpg2q ‰ ∅ and g1 “ g2 “ g in V :“ U1XU2 Ě

C. Note also that ∅ ‰ C Ď supp g1 X supp g2 Ď U1 X U2 “ V . Setting h :“ g ¨ 1V , it is
clear that h also equals gi ¨ 1V , i “ 1, 2. More importantly, h P CpY q. Indeed, we have
g1 “ g2 “ g in V , so (also by openness of V ) supp g X V “ supp g1 X supp g2 X V , but this
equals supp g1 X supp g2 as the last set is contained in V . Thus supp g X V is compact,
and it easily follows that h is indeed continuous (and non-zero as C ‰ ∅). Observe that
constant zero functions on X and Y are the least elements in pCpXq,Ďq and pCpY q,Ďq
respectively, so it is clear that T p0q “ 0; in particular, T´1phq ‰ 0.

We have supph Ď V , V is open and, for i “ 1, 2, h “ gi in V , i.e. 0 ‰ h Ď gi, whence 0 ‰
T´1phq Ď T´1pgiq “ fi. This is a contradiction with our assumption supp f1Xsupp f2 “ ∅,
and the proof is complete. �

Theorem 1.8. Let X and Y be compact Hausdorff spaces. Suppose that there exists a Ď-
isomorphism T : CpXq Ñ CpY q. Then X and Y are homeomorphic.

Proof. Let T : CpXq Ñ CpY q be a Ď-isomorphism. By Lemma 1.7, it has the property

supp f X supp g “ ∅ ðñ suppTf X suppTg “ ∅ pf, g P CpXqq.

That X and Y are homeomorphic now follows from Theorem 1.4. �

Remark 1.9. Theorem 1.6 demonstrates that even though compatibility isomorphisms have
the property f Ď g ñ Tf ď Tg for f, g in the domain of a compatibility isomorphism T ,
they need not preserve the relation Ď.
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