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Abstract— An information-theoretic approach for
studying synchronization phenomena in experimental
time series is presented and demonstrated in analysis
of EEG recordings of an epileptic patient. Two levels
of synchronization leading to seizures are quantified
and “directions of information flow” (drive-response
relationships) are identified.

I. Introduction

Synchronization on various levels of organization of
brain tissue, from individual pairs of neurons to much
larger scales — within one area of the brain or between
different parts of the brain — is one of the most im-
portant topics in neurophysiology. Some level of syn-
chrony is usually necessary in order to attain normal
neural activity, while too much synchrony may be a
pathological phenomenon such as epilepsy. Detection
of synchrony, or transient changes leading to a high
level of synchronization, and identification of causal re-
lations between driving (synchronizing) and response
(synchronized) components is a great challenge, since
it can help in anticipating epileptic seizures and in
localization of epileptogenic foci. Standard linear sta-
tistical methods have brought only a little success in
this area. New hopes appeared in the field of synchro-
nization of chaotic systems which has undergone very
important development recently [1]. Various measures
of synchronization have been proposed, however, the
problem of synchronization detection is far from be-
ing trivial and some claims of successful detection of
the causal relationships are based on contradictory as-
sumptions [2, 3]. Also, measures of synchronization
based on infinitesimal properties and well performing
on artificial systems can fail when applied on noisy ex-
perimental data. We propose to study synchronization
in such data using statistical, coarse-grained measures
with basis in information theory which could provide
an indication of synchronization as well as of causal
relationships if present in the scrutinized systems.
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I1. Entropy and information rates

Consider discrete random variables X and Y with sets
of values = and T, respectively, and probability dis-
tribution functions (PDF) p(z), p(y) and joint PDF
) of a single variable, say X,
is defined as
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and the joint entropy H(X,Y) of X and Y is
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The average amount of common information, con-
tained in the variables X and Y, is quantified by the
mutual information I(X;Y), defined as

I(X;Y)

=H(X)+HY)-HX,Y). ()

The conditional mutual information I(X;Y|Z) of the
variables X, Y given the variable Z is given as

I(X;Y|Z)=H(X|Z)+ HY|Z) - HX,Y|Z). (5)
For Z independent of X and Y we have
I(X;Y|Z2)=1(X;Y). (6)

Now, let {X;} be a stochastic process, i.e., an in-
dexed sequence of random variables. Its entropy rate

1
where H(X3, ..., X,) is the joint entropy of the n vari-
ables Xi,..., X, with the joint PDF p(zy,...,x,), is

a measure of “information creation” by the process



{X;}, or a rate how quickly the process “forgets” its
history. The entropy rate, in the case of dynamical
systems called Kolmogorov-Sinai entropy (KSE) is a
suitable tool for quantification of dynamics of systems
or processes, however, possibilities of its estimation
from experimental data are limited to a few excep-
tional cases [6]. Instead, Palug [6] has proposed to
compute “coarse-grained entropy rates” (CER’s) as
relative measures of “information creation” and of reg-
ularity and predictability of studied processes.

Let {«(t)} be a time series considered as a real-
ization of a stationary and ergodic stochastic process
{X()}, t=1,2,3,.... In the following we will mark
z(t) as ¢ and z(t + 7) as z,. For defining the sim-
plest form of CER we compute the mutual information
I(z;z,;) for all analyzed datasets and find such 7,4,
that for 7/ > 7400 I(z;2,+) = 0 for all the datasets.
Then we define the norm of the mutual information
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with 7pn = A7 = 1 sample as a usual choice. The
CER h! is then defined as h' = I(z,z,,) — ||I(z; z.)]|.
It has been shown that h' provides the same classifi-
cation of states of chaotic systems as the exact KSE
[6]. Since usually 7 = 0 and I(z;z) = H(X) which is
given by the marginal PDF p(z), the sole quantitative
descriptor of the underlying dynamics is the mutual
information norm (8) which we will call the coarse-
grained information rate (CIR) of the proces {X(t)}
and mark by i(X).

Now, consider two time series {z(t)} and {y(¢)}
regarded as realizations of two processes {X(t)}
and {Y(¢)} which represent two possibly linked
(sub)systems. These two systems can be character-
ized by their respective CIR’s 4(X) and i(Y"). In order
to characterize an interaction of the two systems, in
analogy with the above CIR we define their symmet-
ric mutual coarse-grained information rate (MCIR)
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Assessing the direction of coupling between the two
systems, we ask how is the dynamics of one of the
processes, say {X}, influenced by the other process,
{Y'}. For the quantitative answer to this question we
propose to evaluate the conditional CIR 4o(X|Y")
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considering the usual choice 7, = AT = 1 sample.
Recalling (6) we have io(X|Y) = i(X) for {X} inde-
pendent of {Y}, i.e., when the two systems are un-
coupled. Since we prefer a measure which vanishes for

uncoupled system (though then it can acquire both
positive and negative values), we define
i(X]Y) = io(X|Y) — i(X). (11)
For another approach to a directional information
rate let us consider the mutual information I(y;z;)
measuring the average amount of information con-
tained in the process {Y'} about the process {X} in its
future 7 time units ahead (7-future thereafter). This
measure, however, could also contain an information
about the 7-future of the process { X'} contained in this
process itself if the processes {X} and {Y'} are not in-
dependent, i.e., if I(z;y) > 0. In order to obtain the
“net” information about the 7-future of the process
{X?} contained in the process {Y'} we need the con-
ditional mutual information I(y;z,|z) which we sum
over T as above
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and, in order to obtain the “net asymmetric” informa-
tion measure, we subtract the symmetric MCIR (9):

i2(X,Y|X) =i(X,Y]X) —i(X,Y). (13)
Using a simple manipulation we find that i2(X,Y|X)
is equal to i(X|Y), defined in (11). By using two
different ways we have arrived to the same measure
which we will mark by ¢(X|Y) and call the coarse-
grained transinformation rate (CTIR) of {X} given
{Y}. It is the average rate of the net amount of in-
formation “transferred” from the process {Y'} to the
process {X}, or, in other words, the average rate of
the net information flow by which the process {Y'} in-
fluences the process {X}.

ITI. Application on numerically generated
data

Consider the unidirectionally coupled nonidentical
(by = 0.1 and by = 0.3) Henon maps (defined in [2, 7])
where the drive is marked by {X} and the response
by {Y}. For 101 values of the coupling strength e
we iterate the systems, compute their Lyapunov expo-
nents (LE) and CIR’s, MCIR and TCIR’s. The lat-
ter are computed using the simple box-counting based
on marginal equiquantization, i.e., a partition with
equiprobable marginal bins [6]. The results, obtained
using 8 marginal bins, Ty = A7 =1 and Ty = 15
samples are illustrated in Fig. 1. The positive LE
(Fig 1a) of the drive is constant, while the largest LE
of the response (LLE(Y)) decreases with increasing
€ and becomes negative at e = 0.38. After € = 0.6 it
rises and touches zero around € = 0.62 and then it falls
again into negative values which define synchronized
states. The CIR i(X) (Fig. 1b) is constant, while
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Figure 1: (a) The largest Lyapunov exponents of the
drive {X} (constant line) and the response {Y'} (de-
creasing line), (b) the CIR i(X) of the drive (dashed
line) and i(Y) of the response (dash-and-dotted line)
and the mutual CIR #(X,Y") (full line), (c) the coarse-
grained transinformation rates i(X|Y) (dashed line)
and (Y| X) (full line) for the unidirectionally coupled
nonidentical Henon systems.

i(Y) reflects the development of LLE(Y). The mu-
tual CIR i(X,Y) is zero for € < 0.2, then it rises with
LLE(Y) approaching zero and then (X, Y) reflects the
behavior of i(Y') and the state of generalized synchro-
nization [1, 2] is accompanied with #(X,Y") rising into
values min(i(X),i(Y)) < i(X,Y) < max(i(X),i(Y)).
The CTIR’s (Fig. 1c) indicate the correct causal re-
lation of {X} being a drive of {Y'} by their relation
i(X]Y) < i(Y|X), i.e., there is a larger flow of in-
formation from {X} to {Y'} than vice-versa. This is,
however, recognizable only before the synchronization
threshold. Consider a state of identical synchroniza-
tion, then one has two identical time series and it is
impossible to infer a causal relation just from the data.
This explanation can be generalized into time series
related by a one-to-one nonlinear function as is the
case of the generalized synchronization. In summary,
the above introduced CIR, MCIR and CTIR can indi-
cate synchronization and causal relation of drive and
response (sub)systems. The latter is possible to es-
tablish only in states in which the (sub)systems are
coupled, but not yet fully synchronized. For more de-
tails and other examples see [7].

IV. An EEG case study

A 30 months old male patient has been suffering
from epileptic seizures since the age of 8 months.
The Sturge-Weber syndrome has been diagnosed be-
cause of congenital periorbital hemangioma, and lep-
tomeningeal hemangiomas in the left temporooccip-
ital area revealed by the MRI scan. His first EEG

showed spiking in the left temporooccipital area. In
the beginning he had partial complex seizures, later
myoclonic-astatic seizures appeared. Recently two
long-term video/EEG monitoring sessions were per-
formed, the first one showed ictal onset in the left
temporal lobe, the second monitoring by scalp elec-
trodes 1.5 years later revealed mostly generalized spik-
ing with a slight excess in the right temporooccipital
lobe. Interictal PET showed glucose hypometabolism
in the left temporooccipital lobe. A part of the most
recent EEG recordings underwent the synchronization
analysis using the above CIR’s, MCIR and TCIR’s.
The latter were estimated from a 1024-sample mov-
ing window (moving step 128 samples, sampling fre-
quency 256 Hz), using 4 marginal equiquantal bins and
Tmin = AT = 1 and 7,4, = 50 samples. Signals form
reference and longitudinal (bipolar) montages have
been analyzed. The latter have brought more clear re-
sults in establishing “directions of information flow”,
i.e. the drive-response relations using TCIR. From a
segment with a short seizure, signals from the leads
TeO2 (Fig. 2a) and F4C4 (Fig. 2b) are illustrated
here. Before the seizure both i(TgO2) and i(F4Cs)
present occasional increases, however, develop inde-
pendently and the mutual CIR i(TO2,F4Cy4) keeps
on low values (Fig. 2c). At the edge of the seizure
(time 32 sec.) CIR’s and MCIR rise sharply, reflecting
an increase of both local synchrony (CIR) and synchro-
nization between different areas of the brain (MCIR).
The increased synchrony revealed by the increased in-
formation rates could also be indicated by decreased
entropy rates or decreased “dimensional complexity”
measures, e.g. by the correlation dimension. The
latter and related dimensional and entropy measures
(correlation integrals) has been recently used for an-
ticipating approaching seizures [4, 5]. For evaluating
predictive properties of CIR’s we do not have enough
data yet, thus we proceed to the TCIR to find that in
the presented segment i(F4C4|T602) > i(Tg02|F4Cy),
i.e., the information flow from TgO2 to F4Cs domi-
nates over the opposite flow, or, the subsystem (brain
area) represented by the signal from the lead TgO4
(signal TgO, for short) drives that from F4C4. For
comparison we present the same analysis of the same
signals but from a segment in an interictal (i.e., far
from seizures) recordings (Fig. 3). Both the CIR’s
i(T¢O2) and i(F4C4) fluctuate on the same level,
though the dependence of the signals, measured by
i(T6O02,F4Cy) is low (Fig. 3c). The drive-response
relation cannot be unambiguously defined, since the
CTIR’s Z(T602|F4C4) and Z(F4C4|T602) are either
approximately the same or mutually exchange their
dominance. These results suggest that transients to
seizures are characterized by increasing level of syn-
chronization (both local and between areas) and an
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Figure 2: (a) An EEG segment with a short seizure,
recorded from leads TgO» (a) and F4C4 (b). (c):
The CIR’s i(TgO2) (dashed line), i(F4C4) (das-and-
dotted line) and the mutual CIR 4(T¢O2,F4Cy) (full
line). (d): The coarse-grained transinformation rates
i(T6O02|F4Cy4) (dashed line) and i(F4Cy4|TeO2) (full
line).

asymmetry in information flow emerges or is amplified.
Considering the latter we have found that the signal
TgO2 drove all signals from the right hemisphere and
even some signals from the left central and frontal ar-
eas. Symmetrically the same has been found about
the signal T50;, however, there was no distinction of
causality between T50; and T5Ts. In fact, the latter
drove all the signals as T50; did. On the other hand,
there was no distinction of the information flow direc-
tion (although there is a nonzero dependence indicated
my MCIR) between laterally symmetrical leads such
as C3P3 — C4P4, with the one exception — T50; has
been found to drive TgOy. This analysis suggests that
the primary epileptogenic areas are the left temporal
and occipital region, which drive the rest of the left
hemisphere and the right temporal and occipital ar-
eas, which secondarily drives the rest of the right hemi-
sphere. This is in accordance with MRI and PET scan
results. The driving from left temporal/occipital to
right central/frontal areas, and the symmetrical one,
is probably a secondary interaction due to common
dynamical components in the signals from the left and
right temporal/occipital areas.

V. Conclusion

An information theoretic approach has been intro-
duced for study of synchronization phenomena in ex-
perimental time series. Preliminary but promising re-
sults from analysis of EEG recordings of an epileptic
patient have been presented. The method still requires
further development on both theoretical and technical
levels, however, we hope it will be helpful in neurology
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Figure 3: The same as in Fig. 2, but for an interictal
EEG segment.

research and clinical practice.
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