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Abstract

A possibility of a relation between the Kolmogorov-Sinai entropy of a dynamical system and the
entropy rate of a Gaussian process isospectral to time series generated by the dynamical system is
numerically investigated using discrete and continuous chaotic dynamical systems. The results suggest
that such a relation as a nonlinear one-to-one function may exist when the Kolmogorov-Sinai entropy
varies smoothly with variations of system’s parameters, but is broken in critical states near bifurcation
points.

1 Entropy rates

Entropy rates will be considered as a tool for quantitative characterization of dynamic processes evolving in
time. Let {z;} be a time series, i.e., a series of measurements done on a system in consecutive instants of time
i =1,2,.... The time series {z;} can be considered as a realization of a stochastic process { X}, characterized
by the joint probability distribution function p(z1,...,z,), p(Z1,...,2,) = Pr{(X1,..., Xpn) = (z1,...,25) }-
The entropy rate of {X;} is defined as [1]:

h= lim LH(X,,...X,), (1)

n—oo N

where H(X;,...,Xy) is the entropy of the joint distribution p(z1,...,zy):

H(Xq,...,Xn) = —Z...Zp(wl,...,xn)logp(xl,...,xn). (2)

Alternatively, the time series {z;} can be considered as a projection of a trajectory of a dynamical system,
evolving in some measurable state space. As a definition of the entropy rate of a dynamical system, known
as the Kolmogorov-Sinai entropy (KSE) [2, 3, 4] we can consider the equation (1), however, the variables X;
should be understood as m-dimensional variables, according to a dimensionality of the dynamical system [5].
If the dynamical system is evolving in a continuous measure space, then any entropy depends on a partition
chosen to discretize the space and the KSE is defined as a supremum over all finite partitions [2, 3, 4].

The KSE is a topological invariant, suitable for classification of dynamical systems or their states, and is
related to the sum of the system’s positive Lyapunov exponents (LE) according to the theorem of Pesin [6].

A number of algorithms (see, e.g., [7, 8, 9, 10] and references therein) have been proposed for estimation
of the KSE from time series. Reliability of these estimates, however, is limited [11] by available amount of
data, finite precision measurements and noise always present in experimental data. No general approach
to estimating the entropy rates of stochastic processes has been established, except of simple cases such as
finite-state Markov chains [1]. However, if {X;} is a zero-mean stationary Gaussian process with spectral
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density function f(w), its entropy rate hg, apart from a constant term, can be expressed using f(w) as
[12, 13, 14]:

1 ™
hg = 5 _Wlog f(w)dw. (3)

Dynamics of a stationary Gaussian process is fully described by its spectrum. Therefore the connection (3)
between the entropy rate of such a process and its spectral density f(w) is understandable. The estimation
of the entropy rate of a Gaussian process is reduced to the estimation of its spectrum.

If a studied time series was generated by a nonlinear, possibly chaotic, dynamical system, its description
in terms of a spectral density is not sufficient. Indeed, realizations of isospectral Gaussian processes are
used in the surrogate-data based tests in order to discern nonlinear (possibly chaotic) processes from colored
noises [15, 16]. On the other hand, there are results indicating that some characteristic properties of nonlin-
ear dynamical systems may be “projected” into their “linear properties”, i.e., into spectra, or equivalently,
into autocorrelation functions: Sigeti [17] has demonstrated that there may be a relation between the sum of
positive Lyapunov exponents (KSE) of a chaotic dynamical system and the decay coefficient characterizing
the exponential decay at high frequencies of spectra estimated from time series generated by the dynamical
system. Asymptotic decay of autocorrelation functions of such time series is ruled by the second eigenvalue of
the Perron-Frobenius operator of the dynamical system [18, 19]. Lipton & Dabke [20] have also investigated
asyptotic decay of spectra in relation to properties of underlying dynamical systems.

2 Numerical study

A possibility of a relation between the KSE of a dynamical system and the entropy rate GPER of a Gaussian
process with the same spectrum as the time series, generated by the dynamical system is investigated in
this study. A formal application of formula (3) to a spectral density (periodogram) estimated from analyzed
time series cannot be considered as an estimate of the KSE of an underlying dynamical system, however, if
there was a one-to-one relation between the KSE and the GPER, the GPER could be used for a “relative
quantification” [11] of dynamic processes, in particular, it could distinguish and classify different states of
chaotic dynamical systems.

The numerical investigation of this hypothetical relationship was performed using these dynamical sys-
tems:

The baker transformation [5]:

1
(Tnt1,Yn+1) = (ATn, ayn)
for y, < a, or:

(Fnt1:9n41) = (054 Az, (3 — @) @

for y, > o
0<zh,yn <1,0<a<1, A=0.25
the logistic map [5]:
Tny1 = aZn(l —zp); (5)

and the continuous Lorenz system [21]:
(dz/dt,dy/dt,dz/dt) = (o(y —x),rz —y — zz,2Yy — b2), (6)

oc=16,b=4.

Each of the three systems has one positive Lyapunov exponent, equal to the system’s Kolmogorov-Sinai
entropy, therefore we will use the terms LE and KSE interchangeably.

Changing a parameter of a particular system («, a, r in the cases of the baker, logistic and Lorenz
systems, respectively), time series related to different system states were generated, GPER’s were estimated
and compared with LE (KSE) related to particular system states. In each system state studied, fifteen
time series of length 16,384 samples (the sampling interval was 0.002 in the case of the Lorenz system) were



recorded from the first component (z), linearly transformed in order to have zero mean and unit variance!

and their periodograms? computed using the fast Fourier transform (FFT) [22]. To prevent numerical
underflow, the periodograms were shifted® by +1, i.e., f(w) + 1 was used instead of f(w) in Eq. (3). For
each considered dynamical state, means and standard deviations (SD’s) of the GPER estimates, obtained
from the 15 realizations of 16k time series, are reported in this paper.*

The positive Lyapunov exponents were not estimated from time series, but computed as follows. The
KSE/LE of the baker map can be expressed analytically as the function of the parameter a [23, 24]:

h(a) = alogé + (1 —a)log (7)

1-a’
For the logistic map the LE was estimated according to its definition [5] as the averaged logarithm of the
absolute derivative of the function (5). A recent implementation [25] of the method proposed by Wolf et al.
[26] for estimation of the Lyapunov exponents from equations was used for the Lorenz system. The LE’s in
these two cases were estimated using 300,000 iterations in each state.

3 Results

In Figures la-c the results for the baker map (4) are presented: The LE as the analytic function (7) of the
parameter o (Fig. la), the GPER estimated from time series plotted against e (Fig. 1b), and the GPER
plotted against the LE (Fig. 1c). The latter plot demonstrates that in the case of the chaotic baker map (4)
the LE/KSE and the GPER are related by a nonlinear one-to-one function. Considering precision of the
GPER estimates, the same conclusion can be drawn for the Lorenz system (6) for the parameter r varying
from 34 to 65 (Figs. 1d-f).

The situation is different in the case of the logistic map (5) (Fig. 2): the basic trends in the dependences
of the LE and the GPER on the parameter a (Figs. 2a, 2b, respectively) agree, however, there are clear
discrepancies larger than the estimation errors and the functional relation between the GPER and the
LE/KSE is lost (Fig. 2c).

Comparing the plots in Fig. 1 and Fig. 2, one can see that in Fig. 1 the LE (KSE) varies smoothly
with variations of a system parameter, i.e., the systems change only quantitatively remaining in the chaotic
regime, while in the case of the logistic map in Fig. 2 bifurcations into periodic states interrupt the regime
of chaotic states. Similarly, the Lorenz system (6) with r > 65 enters the bifurcation region (Figs. 3a,b and
3d,e) and deviations from the bijective functional dependence between the KSE/LE and the GPER occur
in the LE values related to the bifurcation region (Fig. 3c and 3f).

When a system parameter exactly fits a periodic-state value, the periodic state with zero KSE and
negative LE occurs, which is indicated also by a very low (but positive) GPER value® (cf. plot a with plot
b, or plot d with plot e in Fig. 2 and Fig. 3). The functional relation between the KSE/LE and the GPER,
however, is broken not only in periodic states, but apparently also at any point near a bifurcation. Only
two bifurcations appeared in Fig. 2a, when the plot was obtained by increasing the parameter a from 3.857
to 4 by step Aa = 0.001. Using smaller step (Aa = 0.0003), seven periodic states were “hit” (Fig. 2d). In
fact, it is impossible to find any “bifurcation free” sub-interval of chaotic states of the logistic map. Note,
that there are no bifurcations in the case of the baker map studied in Fig. la-c. In the case of the Lorenz
system, both situations were observed: A chaotic region with smooth (“bifurcation free”) dependence of the
KSE/LE on the parameter r for r € [34,65] in which a one-to-one relation between the KSE/LE and the

INote, that the GPER (3) is variance-dependent. Therefore all analyzed time series were rescaled to have unit variance so
that the GPER should classify the series according to their dynamics, without the influence of the variance.

?T.e., discrete estimates of the spectral density obtained as squared magnitudes of the Fourier coefficients. The integral in
(3) is then computed as a sum over the 8192 periodogram bins.

3This shift is equivalent to an addition of white noise to the original time series and thus it could worsen distinction of
system states with similar spectra. On the other hand, presence of a few periodogram bins with magnitude close to zero could
bias the GPER estimate downwards and obscure the dependence of GPER on a system parameter.

4Stability of GPER. estimates obtained from shorter time series or from individual realizations and other technical questions
will be discussed elsewhere.

5Strictly speaking, the GPER is not defined for periodic states, and its formally estimated values do not reflect behaviour
of negative LE — see Fig. 5.



GPER exists (Fig. 1); and for r > 65 a regime of chaotic states suddenly interrupted by bifurcations into
periodic states, where digressions from the one-to-one functional dependence of the GPER on the KSE/LE
occur (Fig. 3).

4 Transients and critical behaviour

Solutions of dynamical systems in the vicinity of bifurcation may have longer transient times than solutions
in other states. Could the increased transient time be the reason for the digressions from the one-to-one
functional dependence of the GPER on the KSE/LE?® Using the logistic map in the range of the parameter
a considered in Fig. 2d-f, we have studied variances of the GPER estimates (using the 15 realizations of
16k time series) as well as variances of the LE estimates, after skipping out different numbers of initial
iterations considered as the transient time. In this case we used 15 LE estimates from 20,000 iterations
each (unlike in the previous section, where the LE estimates from whole 300,000 iterations were used). The
SD (standard deviations, square roots of the variances) of the GPER (Fig. 4a,c,e) and LE (Fig. 4b,d,f)
estimates as functions of the parameter a are plotted in Fig. 4. When no transient iterations were omitted
and the computation of the GPER and the LE started at the beginning of the iteration, the variances of the
GPER and LE estimates are very large due to the transients (Fig. 4a,b, note different scales). Starting the
LE/GPER estimation after skipping hundred thousand” initial iterations led to decrease of the variance of
the estimates — SD of LE (Fig. 4d) decreased several times and SD of GPER (Fig. 4c) decreased one order
of magnitude. The number of the “transient iterations”, i.e. the number of the skipped initial iterations was
further increased through 10¢, 107, 108, up to one billion (10°, Fig. 4e,f), however, no further changes in the
variance of the estimates were observed. Therefore we could conclude that omitting 10° initial iterations was
enough for transients to disappear and for the system to converge to the attractor in all considered states (all
considered values of the parameter a). Larger variances in the vicinity of bifurcations are probably due to
typical behaviour (fluctuations) of systems in critical states. Note that the intervals of the increased variance
of the GPER are limited to the points located immediately before and after bifurcations, while the variance
of the LE rises gradually in wider intervals surrounding the bifurcations. This phenomenon is illustrated in
detail in Fig. 5, where the LE, the GPER and their variances are plotted as functions of the parameter a,
depicting one of the bifurcations into periodic states.

The results presented above suggest that the discrepancies in the functional relation between the GPER
and the KSE (LE) at the vicinity of bifurcations are not due to transients, but probably due to critical
behaviour of the system near a bifurcation point. Therefore the linear description (based on the spectral
density) is inadequate for systems in critical states.

5 Conclusion

A possibility of a relation between the Kolmogorov-Sinai entropy (KSE) of a dynamical system and the en-
tropy rate (GPER) of a Gaussian process isospectral to time series generated by the dynamical system was
numerically investigated using three® well-known chaotic dynamical systems. The results obtained suggest
that such a relation as a nonlinear one-to-one function may exist when the Kolmogorov-Sinai entropy varies
smoothly with variations of system’s parameters, but is broken in critical states near bifurcation points.
Further theoretical and numerical studies are necessary to establish general conditions for validity of this
conclusion. These results could find applications in two areas of the analysis of complex time series: The
GPER itself could be used as a computationally cheap tool for classification of different chaotic states of
dynamical systems; while discrepancies in the relation between the GPER and the KSE/LE (or other non-
linear entropy-rate equivalent [11]) could be applied for detecting bifurcation onsets in structurally evolving
systems.

6The author is grateful to an anonymous referee for posing this interesting question.
"Hundred thousand initial iterations were skipped as transient time also in all numerical studies presented in previous section.
8Equivalent results have also been obtained from tent, tilted tent, Gaussian and Hénon maps [27].
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Figure 1: (a—c) Results for the baker map: a) The Lyapunov exponent as the analytic function of the
parameter o. b) The GP entropy rates estimated from 15 realizations of 16k time series (mean — thick
line, mean+SD - thin lines, coinciding with the mean) for different values of the parameter a varying from
0.01 to 0.49 by step 0.005. c¢) Plot of GPER (the same line codes as in b) vs. LE. (d-f) Results for the
Lorenz system: d) The positive Lyapunov exponents computed from the Lorenz equations for the parameter
r varying from 33.75 to 65 by step 0.25. e) The GP entropy rates estimated from 15 realizations of 16k time
series (mean — thick line, mean+SD — thin lines) for different values of the parameter r varying as in plot d.
f) Plot of GPER (the same line codes as before) vs. LE.
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Figure 2: Results for the logistic map: a) The Lyapunov exponents computed from the map for the parameter
a varying from 3.857 to 4 by step 0.001. b) The GP entropy rates estimated from 15 realizations of 16k
time series (mean — thick line, mean+SD — thin lines, coinciding with the mean) for different values of the
parameter a varying as in plot a. ¢) Plot of GPER (the same line codes as before) vs. LE. Plots d, e, f: The
same as the plots a, b, ¢, respectively, except of the parameter a varying by step 0.0003.
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Figure 3: Further results for the Lorenz system: a) The positive Lyapunov exponents computed from the
Lorenz equations for the parameter r varying from 33 to 120 by step 1. b) The GP entropy rates estimated
from 15 realizations of 16k time series (mean — thick line, mean+SD — thin lines, coinciding with the mean)
for different values of the parameter r varying as in plot a. c) Plot of GPER (the same line codes as before)
vs. LE. Plots d, e, f: The same as the plots a, b, c, respectively, except of the parameter r varying from 33
to 200 by step 1.
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Figure 4: Standard deviation (square root of variance) of the GPER (a,c,e) and LE (b,d,f) estimates com-
puted from the series generated by the logistic map after skipping zero (a,b), hundred thousand (c,d) and
one billion (e,f) initial iterations to avoid influence of transients; plotted as the functions of the parameter
a changing in the same range as in Fig. 2d-f.
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Figure 5: Detailed illustration of one of the bifurcations of the logistic map. Lyapunov exponent (a), GP
entropy rate (b,d,e), standard deviation of the GPER estimate (c) and standard deviation of the LE estimate
(f); plotted as functions of the parameter a. Upper and lower parts of the plot b are zoomed in the plots d
and e, respectively.
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