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I. INTRODUCTION

The most used types of air quality models are ei-
ther deterministic models or models given by simple
regression-based statistics. Their success, however, is
limited either by their failure to capture the nonlin-
ear behaviour of air pollutants, or our incomplete un-
derstanding of the physical and chemical processes in-
volved. The APPETISE project (Air Pollution ePisodes:
modElling Tools for Improved Smog managEment, see
http://www.uea.ac.uk/env/appetise/) aims to de-
velop and test the suitability of novel nonlinear statisti-
cal methods to improve our ability to accurately forecast
variations in air quality. The work is being carried out
over a period of 2 years by a consortium from 9 insti-
tutions from 5 European countries and is founded under
the European Union Fifth Framework Programme. The
project will work towards the construction of a prototype
air quality prediction and warning system and is concen-
trated on 4 key pollutants: nitrogen oxides, particulates,
sulphur dioxide and ground level ozone. The latter is the
main research topic for the group of investigators repre-
sented by the authors of this paper.

Before trying to enhance the existing linear models by
nonlinear ones it is suitable to test a presence of nonlin-
earity in the dynamics of time series of the ground level
ozone (GLO) concentration as well as in relations of these
data to time series of the most influential meteorological
variables and to concentrations of other pollutants.

II. TESTING NONLINEARITY

In this section we briefly review a method for detec-
tion and characterization of nonlinear relations in multi-
variate as well as in univariate time series. The method
employs the technique of uni- and multivariate surrogate
data and information-theoretic functionals called redun-
dancies. The test for nonlinearity based on the redun-
dancy — linear redundancy approach, combined with the
surrogate data is described in detail in Ref. [3], its multi-
variate version in Ref. [4]. The surrogate data have been

introduced in Ref. [6], and their multivariate version in
Ref. [5]. More details about the information-theoretic
functionals can be found in Ref. [1].

Consider n discrete random variables Xi,..., X,
with sets of values =,,...,=Z,, and probability distri-
bution functions (PDF) p(z1),...,p(x,), respectively,
and the joint PDF p(z1,...,z,). The redundancy
R(Xy;...;X,), in the case of two variables also known
as mutual information (MI) I(Xj;X2), quantifies aver-
age amount of common information, contained in the n
variables Xi,...,X,:

R(Xy;...5 Xp) = (1)

< p(z1)...p(xn)

Now, let the n variables X1,. .., X,, have zero means, unit
variances and correlation matrix C. Then, we define the
linear redundancy L(Xy;...;X,) of X1,X,,..., X, as

n

L(X05 5 Xa) = 5 > log(on), 2)
i=1

where o; are the eigenvalues of the n x n correlation ma-

trix C.

If Xj,...,X, have an n-dimensional Gaussian distri-
bution, then L(Xy;...;X,) and R(Xy;...;X,) are the-
oretically equivalent (see [3] and references therein). The
general redundancies R detect all dependences in data
under study, while the linear redundancies L are sensi-
tive only to linear structures [3].

The basic idea in the surrogate-data based nonlinearity
test is to compute a nonlinear statistic from data under
study and from an ensemble of realizations of a linear
stochastic process, which mimics “linear properties” of
the studied data. If the computed statistic for the origi-
nal data is significantly different from the values obtained
for the surrogate set, one can infer that the data were
not generated by a linear process; otherwise the null hy-
pothesis, that a linear model fully explains the data, is
accepted. For the purpose of such test the surrogate data
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FIG. 1. Top panel: A segment of the ground level ozone

concentration time series — the raw data (thin line) and the

MA trend (thick line). Bottom panel: The MA filtered diur-

nal oscillations of the above GLO data (thin line) and their
instantaneous amplitude (thick line).

must preserve the spectrum and consequently, the auto-
correlation function of the series under study [6]. In the
multivariate case also cross-correlations between all pairs
of variables must be preserved [5].

Like in [3] we define the test statistic as the difference
between the redundancy obtained for the original data
and the mean redundancy of a set of surrogates, in the
number of standard deviations (SD’s) of the latter. The
result is considered significant if the difference is clearly
larger than 2 SD. In this study only 2-variable mutual
information I(X;Y’) was applied: the univariate version
I(X(t); X (t+7)) when dynamical properties and nonlin-
earity of individual series (variables) were studied, and
the bivariate version I(X(¢); Y (t + 7)) when dynamical
relations between two variables were investigated. The
mutual information I(X;Y")[o] from the scrutinized data
and the mean mutual information I(X;Y)[s] from the
surrogates, as well as the test statistics, defined above,
were plotted as functions of lag 7. Significant differences
found between I(X;Y)[o] and I(X;Y")[s] were used to in-
fer nonlinearity in dynamics of a variable (in univariate
case), or in a relation between two variables (in bivariate
case). The values of I(X;Y)[o] indicate a “coherence” or
predictability of a variable, i.e., the dependence between
z(t) and z(t+7) (in univariate case), or a strength of the
link between two variables (in bivariate case), both as a
function of the lag 7.

III. DATA

Time series of GLO, NO; and NO, concentrations, as
well as air temperature, wind speed and relative humidity
were selected from a database of 37 Czech stations and
several stations from UK, Germany, Finland and Italy.
The sampling time is 30 min. in the data from the Czech
stations and 1 hour otherwise. The lengths of processed
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FIG. 2. Linear (a) and general (nonlinear) (b) mutual in-

formation (bivariate redundancy) for the raw ground level

ozone concentration data (full line) and its surrogate data —

mean (dotted line) and mean+SD (dashed lines) of the 30

surrogate realizations. Differences (“significances”) obtained
from linear (c) and nonlinear (d) redundancy.

data segments were 2048 and 4096 samples, according to
data availability. Since all the data are dominated by the
diurnal cycle, in addition to raw data also the following
two slow components were extracted from the data and
processed: a) trends, (Fig. 1, top panel) obtained from
the raw data by simple moving average (MA, window
length equal to 49 samples), b) instantaneous amplitude
(Fig. 1, bottom panel) of the diurnal cycle. The latter
has been obtained from the MA filtered data by using
the analytic signal concept of Gabor [2]. For any signal
s(t), the analytic signal ¢(t) is a complex function of time
defined as

B(t) = s(t) + ji(t) = A(t)e’®D, (3)

where the function §(¢) is the Hilbert transform of s(¢)

)= L PV, / h :(—T)df. @)

™ —o0

(P.V. means that the integral is taken in the sense of the
Cauchy principal value.) The instantaneous amplitude is
then

A(t) = /52 + 8(2)2. (5)

IV. RESULTS

The results from the above described nonlinearity test
obtained from the raw GLO concentration data (the
Czech Station TuSimice, 4096 half-hour samples from the
1997 season) are presented in Fig. 2. Results from the
linear MI (Fig. 2a,c) show no significant differences be-
tween the data and the surrogates, i.e., the surrogates
correctly reflect the linear properties of the studied data
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FIG. 3. The (nonlinear) mutual information (a,b) and the
related difference statistics (c,d) for the trend (a,c) and the
instantaneous amplitude (b,d) obtained from the ground level
ozone concentration data (full line) and its surrogate data (in
a,b: mean (dotted line) and mean+SD (dashed lines) of the
30 surrogate realizations).

and the significant differences, detected by the nonlinear
MI (Fig. 2b,d) should not be due to flawed surrogates.
On the other hand, the formal rejection of the null hy-
pothesis of a linear stochastic process is not a conclusive
evidence for nonlinear character of the process underly-
ing the GLO concentration time series. It is clear that
the diurnal cycle is externally driven and could bring a
formal statistical long-term dependence on linear or non-
linear level which, however, does not represent any causal
connection between z(t) and z (¢ + 7). For the purpose of
predicting the GLO concentration we should study the
series of the trends and amplitudes, obtained from the
raw data as described above. In the following tests the
surrogate data were constructed from the raw data, and
their trends and amplitudes were obtained from the sur-
rogates in the same way as from the raw data. The results
for the trend and amplitude of the above GLO concen-
tration data (the Czech Station Tusimice, 4096 half-hour
samples from the 1997 season) are presented in Fig. 3.
Without the diurnal cycle the serial dependence (and
predictability) of this series falls quickly, esp. in the case
of amplitudes where it lasts less then 20 hours (Fig. 3b),
while the serial dependence of the trend spreads to lags of
approx. 30 hours (Fig. 3a). This dependence is predomi-
nantly linear, a nonlinear dependence can be detected for
short lags up to 10 hours for the trend (Fig. 3c), while
for the amplitude it is practically negligible (Fig. 3d).
In the following we analyse pairs of simultaneously
recorded time series using the bivariate surrogate data.
The relation between the air temperature and the GLO
concentration (in terms of trends and amplitudes) is ana-
lyzed in Fig. 4 using 4096 half-hour sample data from the
Czech station Teplice, 1997 season. There is a slowly de-
creasing, long term, entirely linear dependence between
the temperature and GLO trends (Fig. 4a,c), while the
dependence between the temperature and GLO ampli-
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FIG. 4. The (nonlinear) mutual information (a,b) and the
related difference statistics (c,d) between the trends (a,c) and
the instantaneous amplitudes (b,d) of the air temperature
and the ground level ozone concentration data (full line) and
their bivariate surrogate data (in a,b: mean (dotted line) and
mean+SD (dashed lines) of the 30 surrogate realizations).

tudes is decreasing quickly, however, for the short lags
(up to 10 hours) it is stronger than the dependence of
the trends (Fig. 4b) and is also nonlinear (Fig. 4d). The
linear dependence between the trends of the relative air
humidity and the GLO concentration has a similar long-
term slowly decreasing character as the air temperature -
GLO trends dependence, however, unlike the latter case
there is a strong nonlinear relation between the humidity
and GLO trends, though confined to short time lags (up
to approx. 20 hours, however, with a high significance
again only to 10 hours, see Fig. 5a,c). The relation be-
tween the amplitudes is again linear, long-term slowly de-
creasing one (Fig. 5b,d). The above results were obtained
from 4096 half-hour samples, recorded at the Czech Sta-
tion TuSimice, in the 1997 season. Comparable results
have been obtained from other Czech stations as well as
from some UK and German stations.

In further analyses, the short-lag nonlinear dependence
has also been found in the relations of the trends of the
wind velocity and the GLO concentration in the data
from several Czech stations, however, has not been con-
firmed in the German and UK data. Only a weak and
short linear dependence has been found in the relations
of the amplitudes of wind velocity and GLO data.

The analyses of GLO relations to other pollutants are
in their introductory state, so only as a preliminary re-
sult we can state the short-lag nonlinearity in the GLO
— NO, amplitudes relation, while the GLO — NO, trends
and both the trends and amplitudes of the GLO — NO re-
lations appear to be limited to a weak linear dependence.
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FIG. 5. The (nonlinear) mutual information (a,b) and the
related difference statistics (c,d) between the trends (a,c) and
the instantaneous amplitudes (b,d) of the air relative humid-
ity and the ground level ozone concentration data (full line)
and their bivariate surrogate data.

V. DISCUSSION

The presence of nonlinearity in the dynamics of time
series of the ground level ozone (GLO) concentration
as well as in relation of this data to time series of the
most influential meteorological variables and to concen-
trations of other pollutants has been investigated by the
test for nonlinearity employing the mutual information
and the surrogate data method. The analysis of the raw
data indicated long-term dependence and some formally
proven nonlinearity caused by the diurnal cycle which
dominates all the studied data sets. Since the externally
driven diurnal cycle has practically no implications for
predictability of the scrutinized time series, for further
analyses the data had been preprocessed in order to ob-
tain the long term trends and the instantaneous ampli-
tude of the diurnal cycle. The GLO concentration has
been found related to the influential meteorological vari-
ables (air temperature, relative humidity and wind veloc-
ity) by the slowly decreasing long-term linear dependence
in some cases enhanced by a short-lag (up to 10 hours)
nonlinearity. Thus nonlinear time series models, such as
neural networks, can improve only the short term (sev-
eral hours) GLO concentration forecasts. For predictions
with day or longer horizons the statistical models should
be combined with deterministic models and forecasted
meteorological variables.
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