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Abstract

Detection of nonlinearity in experimental time series is usually based on rejection of a linear null
hypothesis by a statistical test. Typically, the null hypothesis is a Gaussian process or a Gaussian process
passed through a static nonlinear transformation or a similar simple alternative. Rejection of such a null
is frequently interpreted as a detection of a deterministic nonlinear relation in data under study, which
is, however, only one of possible alternatives. We show how variable variance, or seasonality in variance
could lead to spurious identification of deterministic nonlinearity and discuss how to distinguish actual
determinism in studied time series.

1 Introduction

Let {y(t)} be a time-series, i.e., a series of measurements done on a system in consecutive instants of
time ¢t = 1,2,.... We will discuss approaches to processing and prediction for such a data.

The time series {y(¢)} can be considered as a realization of a stationary linear stochastic process {Y (¢)}.
Without loss of generality we can set its mean to zero. Then the linear stochastic process Y () can be written
as:

Y()=Y(0)+ Y a(i)Y(t—di)+ > b{HN(t—1), (1)
=1 =0

where b(0) = 1, 32, |a(i)| < 00, Y iog [b(4)] < oo, {N(t)} is an independent, identically distributed (iid),
normally distributed process with zero mean and finite (constant) variance. (For more details see [18].)
Alternatively, the time series {y(¢)} can be considered as a projection of a trajectory of a dynamical
system, evolving in some measurable d-dimensional state space. To be more specific, let X; denote a
state vector in R%. Then the measurements y(¢) are obtained as y(t) = g(X;), where g(.) is a projection
(measurement function), and temporal evolution of X; may be described by a discrete-time dynamical system

(a difference equation):
Xi = F(Xi-1), (2)

with Xy € R? and for t > 1. The vector-valued function F is also called a map. If the map F was linear,
then for ¢ — oo, either | X; | = oo (the unstable case) or | X; |— ¢ (a constant), such that ¢ = F(c) (the
stable case). These types of behaviour are obviously not interesting for time series analysts and therefore
we will consider nonlinear maps F, which provide the following three possibilities: 1) periodic solution (for
t— o0, Xi = {c1,.-6p}, Fle1) = ¢2y .0y F(cp—1) = ¢p, F(¢cp) = ¢1), 2) quasi-periodic solution (for ¢ — oo,
X; — a sum, or some other smooth function, of a finite number of periodic functions with incommensurate
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periods); and 3) deterministic chaos (for ¢ — 0o, X; — non-degenerate closed subspace of R?, called strange
attractor).

Traditionally, processing and prediction in complex experimental time series were dominated by linear
methods based on spectral analysis and ARMA (auto-regressive moving average) models such as presented
in Eq. (1). In eighties, new methods for nonlinear signal processing have been introduced, which have not
arisen as an extension of linear analysis, but have been conceived due to an inspiration provided by theory
of nonlinear dynamical systems. While the above cases 1 and 2, i.e., periodic and quasiperiodic dynamics
are of a limited interest when considering complex experimental time series, the case of deterministic chaos
attracts attention of researchers due to the finding that deterministic chaotic systems can possess complex,
aperiodic, and irregular (seemingly random) solutions to simple mathematical formulas. New and innovative
techniques for time series analysis based on the idea of deterministic chaos have provided experimentalists
with new ways of understanding the implications of their data, though the limitations of these new techniques
have not always been understood and necessary precautions fully appreciated.

In attempts to explain complicated dynamics, deterministic chaos has been usually considered as an
opposite alternative to random processes. Recent results indicate, however, that low-dimensional chaos may
be rather a rare than ubiquitous phenomenon, especially when open, real-world systems are considered [15];
or, the strict separation between deterministic-chaotic and stochastic dynamics may be impossible [5]. Also,
we may argue in accord with Tong [21] that in reality observations rarely evolve according to system (2),
simply because stochastic noise is ubiquitous, which may arise as a result of one or more of the following
sources: (i) a model used is invariably inexact; (ii) there are always unexpected external random disturbances;
(iii) measurements are often inexact. It is thus more realistic to replace the above states by random variables
and the dynamics by a Markovian model such as

Xy =F(Xi_1,e), (3)

where t € Z,, F : R?* — R {e;} is a sequence of independent and identically distributed d-dimensional
random vectors and e; is independent of X,, 0 < s < t. We shall call {e;} the dynamic noise. Following
Tong [21], we shall refer to equation (2) as the skeleton of model (3), considering F(X) = F(X,0). For
convenience, it is frequently assumed that the dynamic noise is additive so that equation (3) reduces to the
model with additive noise

Xt = F(Xt_l) + e;. (4)

Exploring nonlinear models (4), a number of nonlinear prediction methods have been developed (see
e.g. [22] and references therein). Such methods can principally improve reliability of time series prediction
in comparison to linear (ARMA) models (Eq. 1), provided the evolution of a process underlying the ex-
perimental time series indeed possesses a nonlinear deterministic skeleton such as (2). Otherwise, training
nonlinear predictors on essentially linear stochastic data can be considered as a waste of human and com-
puter resources without any improvement over an ARMA model. Therefore objective methods for detecting
nonlinear determinism are desirable.

2 A test for nonlinearity based on redundancies and surrogate
data

Consider n discrete random variables Xi,..., X,, with sets of values Zy,...,Z,, respectively. The
probability distribution for an individual X; is p(z;) = Pr{X; = z;}, z; € Z;. We denote the probability
distribution function by p(zx;), rather than px,(z;), for convenience. Analogously, the joint distribution for
the n variables Xy,..., X, is p(z1,...,2Z5n). The redundancy R(Xy;...;X,), in the case of two variables
also known as mutual information I(X;; X2), quantifies average amount of common information, contained
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in the n variables Xi,..., X,:

R(Xi5..:X) = > ... Y (@1, 1) log PLEL 2 Tn). (5)

r1€E1 Tn€En p(-’El) o p(mn)

When the discrete variables Xi, ..., X, are obtained from continuous variables on a continuous proba-
bility space, then the redundancies depend on a partition £ chosen to discretize the space. Various strategies
have been proposed to define an optimal partition for estimating redundancies of continuous variables (see
[12, 22] and references therein). Here we use the “marginal equiquantization” method described in detail in
[10, 12].

Now, let the n variables X;,..., X,, have zero means, unit variances and correlation matrix C. Then, we
define the linear redundancy L(X1;...; X,) of X1, Xs,..., X, as

(X5 Xn) = =3 D log(or), (6)

where o; are the eigenvalues of the n X n correlation matrix C.

If X1,...,X, have an n-dimensional Gaussian distribution, then L(Xj;...;X,) and R(Xy;...;X,) are
theoretically equivalent.

In practical applications one deals with a time series {y(¢)}, considered as a realization of a stochastic
process {Y(¢)}, which is stationary and ergodic. Then, due to ergodicity, all the subsequent information-
theoretic functionals are estimated using time averages instead of ensemble averages, and the variables X
are substituted as

Xi=ylt+ (i —-1)r7). (7)

Due to stationarity the redundancies
R™(7) = R(y(t);y(t +7);...59(t + (n — 1)7)), (8)
L*(r) = L{y();y(t + 7);- .5yt + (0 — 1)7)), (9)

are functions of n and 7, independent of .

The surrogate-data based nonlinearity tests [19, 12] consist of computing a nonlinear statistic from
data under study and from an ensemble of realizations of a linear stochastic process, which mimics “linear
properties” of the studied data. If the computed statistic for the original data is significantly different from
the values obtained for the surrogate set, one can infer that the data were not generated by a linear process;
otherwise the null hypothesis, that a linear model fully explains the data, cannot be rejected and the data can
be analyzed, characterized and predictions can be obtained by using well-developed linear methods. For the
purpose of such test the surrogate data must preserve the spectrum! and consequently, the autocorrelation
function of the series under study. An isospectral linear stochastic process to a series can be constructed
by computing the Fourier transform (FT) of the series, keeping unchanged the magnitudes of the Fourier
coefficients, but randomizing their phases and computing the inverse FT into the time domain. Different
realizations of the process are obtained using different sets of the random phases.

To evaluate the test, the test statistic is defined as the difference between the redundancy obtained for the
original data and the mean redundancy of a set of surrogates, in the number of standard deviations (SD’s)
of the latter. Thus both the redundancies and redundancy-based statistics can be evaluated as functions of
the lag 7 and the embedding dimension n.

The redundancy R"™(7), based on probability distributions, measures general dependences among the
series {y(t)} and its lagged versions, whereas the linear redundancy L™(7), based on correlations, reflects

1 Also, preservation of histogram is usually required. A histogram transformation used for this purpose is described in [12]
and references within.
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only their linear relations. Comparing the plots of R™(7) and L"™(7) can provide an informal test for
important nonlinearities in the studied data [8]. This approach, in [12] referred to as qualitative testing, or,
qualitative comparison, can bring some additional information to the results of the quantitative (surrogate
data based) test. Moreover, one can not always construct good surrogate data. That is, despite theoretical
expectations, in numerical practice linear properties of the surrogates may differ from those of the data
under study. Changes in linear properties are reflected in nonlinear statistics as well, and thus may result in
spurious detection of nonlinearity in linear data [12]. Therefore, we also evaluate the statistic based on the
linear redundancy L™(7), which specifically reflects changes in linear properties. Then, only those significant
differences in the nonlinear statistic can reliably count for nonlinearity, which are not detected in the linear
statistic [12].

3 The null hypothesis and its negations

Consider that the above described test yielded a significant result, i.e., the null hypothesis was reliably
rejected. The null hypothesis was equivalent? to a linear stochastic process such as that described by the
ARMA model (1). It is very common in nonlinear dynamics literature to consider the rejection of the null (1)
as an evidence for a process such as (4) with a nonlinear skeleton (2). This is, however, only one of possible
negations of (1). A number of different processes should be considered, which possess a linear deterministic
skeleton®, i.e., a linear AR part — the first sum in (1), or no deterministic skeleton at all (MA processes),
however, their innovations {/N(¢)} do not fulfill the conditions given above. Generally, one or more of the
following properties could reject the null (1):

1. The innovations {N(¢)} are not Gaussian.

2. The innovations {N(t)} are not an iid process, where iid means that the innovations should be not
only uncorrelated, but generally independent.

3. The variance of {N(¢)} is not constant.

4 An example of atmospheric pressure series

A series of daily recordings of atmospheric surface pressure {P(t)} (¢ = 1 — 65,536 days; i.e., 180
years) was described and analyzed in [11]. Here we analyze differences from long-term daily averages. This
transformation of data (almost entirely) removes the oscillations with the period of one year (seasonality
in mean). We ask the question about possible long-term nonlinear dependence and perform the linear
redundancy — redundancy surrogate data test, described above. The results are presented in Fig. 1. For
lags larger than a few days there is only a weak linear dependence, as measured by the linear redundancy
(Fig. 1a) and reflected in the surrogates, but the (nonlinear) redundancy detects a clear dependence as an
oscillatory structure with a yearly periodicity. This difference is highly significant (10 — 30 SD’s, Fig. 1d),
while no significance in the linear statistic (Fig. 1c) confirm the quality of the surrogates, which reflect
correctly “the linear properties” of the data (in the sense of the model (1)). Can this result be understood
as an evidence for the model (4) with a nonlinear periodic skeleton F', which could provide predictability of
the atmospheric pressure for several years in advance?

The seasonality in mean present in this data (Fig. 2, upper panel) was mostly removed by considering
differences from the long term averages.* The problem is that also the variance of this data is not constant,
but clearly seasonal (Fig. 2, lower panel, standard deviation (SD) is the square root of variance). This

2Principal equivalence and technical differences between the surrogate data constructed by using the Fourier transform and
the ARMA modeling are discussed in [19, 20].

30bviously, for a linear function F, the model (4) is a special case of (1).

4The seasonality in mean can be entirely removed by filtration in spectral domain, as done in [11].
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property is “nonlinear” in a sense that the surrogate data and the model (1) possess a constant variance
and cannot reproduce the seasonality in variance. After rescaling the data in order to obtain a constant
variance, the effect of the false long-term nonlinear dependence is lost (Fig. 3). In the rescaled data there is
no long-term dependence except of weak linear link due to not entirely removed seasonality in mean.

5 Discussion and conclusion

The influence of variable variance on the redundancy — surrogate data nonlinearity test, introduced in
Sec. 2 and in detail in [12], has been demonstrated in the previous section. The effect of non-Gaussian inno-
vations {N(t)} was discussed in [12], and a possible influence of non-iid {N(¢)} (i.e., innovations containing
(nonlinear) temporal structures) is understandable. It is important to note that similar effects of “defective”
innovations in a process under study would effect not only this particular test for nonlinearity, but all tests
which use some type of FT/ARMA surrogates, and also any method which contain the process (1) at least
implicitly in its construction, e.g., so-called qualitative comparison of linear redundancy and redundancy
(Sec. 2, Ref. [12]), or comparison of linear correlations with so-called generalized correlations, based on
mutual information [4]. Also, all entropy-related statistics, that is, not only the above information-theoretic
functionals, but also, for instance, statistics based on correlation integral [17], are extremely sensitive to
variable variance and/or to (non)Gaussianity of data/innovations. Therefore one must very carefully assess
results of nonlinearity tests in order to avoid confusing this kind of effects with actual functional depen-
dence in the data under study. Therefore assessing (in)variability of variance should be a part of basic
statistical description of the data before any testing. The other above discussed effects are hard to detect
without a priori knowledge of the underlying model/mechanism. A certain help could be provided by using
the statistics which test directly properties of functional dependence — e.g., the presence of a vector field
of a hypothetical underlying dynamical system [6, 7], and continuity and differentiability of a hypothetical
functional dependence [16]. Unfortunately, even these “direct deterministic” statistics are relativized by the
ubiquity of noise and the necessity to set up critical values or confidence intervals by some kind of bootstrap
or surrogate data technique. For instance, the behaviour of the Kaplan-Glass direct test for determinism
[6, 7] has been found practically equivalent to that of the above redundancy test [9]. An interesting graphical
tool for assessing nonlinear dependence in time series can be provided by using so-called residual-delay plots,
proposed by Casdagli [3].

In conclusion we state that there is a long way from nonlinearity to predictability, i.e., from formal
detection of nonlinearity in a test to evidence for nonlinear functional dependence and its utilization by
nonlinear prediction methods. It is necessary to combine several tests for nonlinearity and determinism
with different properties to avoid spurious detection of functional dependence. Another way is developing
special types of surrogate data, tailored to specific properties of data under study and expected dependencies.
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Figure 1: a): Linear redundancy L(y(t);y(t+7)) (solid line), b): nonlinear (general) redundancy R(y(t);y(t+
7)) (solid line), for a series of differences from the long term averages of the surface atmospheric pressure
(Prague-Klementinum station) and for its FT surrogates (thin solid and dashed lines present mean and
mean+SD, respectively, of a set of 30 surrogate realizations); c): linear (L-based), and d): nonlinear (R-
based) statistics; as functions of the time lag 7, measured in days.
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Figure 2: Seasonality in mean (upper panel) and in variance (lower panel) of the surface atmospheric pressure
series — long term means (upper panel) and standard deviations (square root of variance, lower panel) for
each day in a year. The days are consecutively numbered, January 1 has the index 1, January 2 has the
index 2, ..., February 1 has the index 32, etc.
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Figure 3: a): Linear redundancy L(y(t);y(t+7)) (solid line), b): nonlinear (general) redundancy R(y(t); y(t+
7)) (solid line), for a series of differences from the long term averages of the surface atmospheric pressure,
rescaled in order to have a constant variance, and for its FT surrogates (thin solid and dashed lines present
mean and mean+SD, respectively, of a set of 30 surrogate realizations); c): linear (L-based), and d): nonlinear
(R-based) statistics; as functions of the time lag 7, measured in days.



