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Abstract

Detection and extraction of quasi-oscillatory dynamical modes from instrumental
records of geophysical data became a useful tool in analysing variability of observed
phenomena reflected in complex, multivariate geophysical signals. Using the exten-
sion of the Monte Carlo Singular System Analysis (MC SSA), based on evaluating
and testing regularity of dynamics of the SSA modes against the colored noise null
hypothesis, we demonstrate detection of oscillatory modes with period about 96
months in the long-term records of aa index as well as in the records of surface air
temperature from several mid-latitude European locations and in the North Atlantic
Oscillation index.
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1 Introduction

Possible influence of the solar variability on the climate change have been the
subject of research for many years, however, there are still open questions and
unsolved problems (for reviews, see e.g. Rind (2002); Bard & Frank (2006);
Kane (2005)). Probably the longest historical record of the solar variability
are the so-called sunspot numbers. In the middle of the 19th century it was
discovered by a druggist H. Schwabe that the number of spots on the Sun
varied in a cyclic manner with a characteristic time about 11 years. After
the sunspot numbers, aa index, the time series characterizing the geomagnetic
activity, provides the longest data set of solar proxies which goes back to 1868
(Mayaud, 1972). Since there are no direct measurements of solar irradiance
available until the beginning of the 1980’s, the data of geomagnetic variations
are used for additional study of solar activity, especially of irradiance. The
long-term trend of irradiance is supposed to be inferred by taking account
of the magnetic activity record. The amplitude antipodal activity index aa
exhibits an 11-yr cycle superimposed on a long-term background (Mayaud,
1972; Lean et al., 1995). General similarity in time variations of the Earth’s
surface temperature and the low frequency component of the aa index over the
last 120 years indicates a significant role of solar variability in climate change.
Two-fold increase of the solar magnetic flux was noted (Cliver et al., 1998).

The role of the geomagnetic activity in the climate change became a topic
theme of many recent studies. Close relations during the last sixty years
were found between the geomagnetic activity and the surface air tempera-
ture (Bucha & Bucha, 1998; Ponyavin, 2004; Gao et al., 2004; Valev, 2006),
winds distributions (Bochńıček & Hejda, 2006) and tropospheric circulation
characterized by the NAO index (Lukianova & Alekseev, 2004; Bochńıček &
Hejda, 2005).

A number of studies indicate substantial increase of geomagnetic activity dur-
ing the last century and especially from the 1940s (Cliver et al., 1998; Lock-
wood et al., 1999; Clilverd et al., 2002; Ponyavin, 2004; Lukianova & Alek-
seev, 2004; Echer et al., 2004; Galet et al., 2005; Le Mouel et al., 2005; Valev,
2006). Some authors (Mursula et al., 2004; Svalgaard et al., 2004; Lean et al.,
2005) reanalyzed the long-term geomagnetic activity presented by the aa in-
dex. Their results confirm the centennial increase in the global geomagnetic
activity which, however is smaller than the two-fold one indicated by Cliver
et al. (1998). Another test of a long-term trend using a reconstructed aa index
(Clilverd et al., 2005) demonstrated high consistency with the official aa in-
dex and supported the idea of long-term increase in the solar coronal magnetic
field strength.

Some of the studies have compared the period of high solar and geomagnetic
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activity during the last sixty years with the reconstructed activity in past
millenia and have claimed that such high solar activity is unusual (Usoskin
et al., 2003, 2004, 2006) or that several periods with similar activity level have
been revealed (Muscheler et al., 2005).

No generally accepted mechanism is known for the explanation of tropospheric
responses to the effects of the geomagnetic activity. In order to understand,
model, and predict complex, possibly nonlinear processes, it is necessary to
identify dynamical mechanisms underlying phenomena reflected in experimen-
tal data. The first step of the research in this direction is an attempt to detect
trends, oscillatory processes and/or other potentially deterministic signals in a
noisy environment. Paluš and Novotná (1998, 2004) have introduced so called
enhanced Monte Carlo Singular System Analysis (MC SSA), based on evalu-
ating and testing regularity of dynamics of the SSA modes against the colored
noise null hypothesis, in addition to the test based on variance (eigenvalues).
The application of the regularity index, computed from a coarse-grained es-
timation of mutual information, enhances the test sensitivity and reliability
in detection of relatively more regular dynamical modes than those obtained
by decomposition of colored noise, in particular, in detection of irregular os-
cillations embedded in the red noise. This enhanced MC SSA was success-
fully applied in detection of oscillatory modes with a period about 8 years in
records of monthly mean near-surface air temperature from several European
locations, as well as in the monthly North Atlantic Oscillation index (Paluš &
Novotná, 2004).

In this paper we continue and refine the enhanced MC SSA of monthly mean
near-surface air temperature from several European locations and the monthly
North Atlantic Oscillation index and we add the enhanced MC SSA of the
aa index and sunspot numbers time series. The identified oscillatory modes,
especially those found in the aa index, are compared with the oscillatory modes
extracted from the temperature data and the NAO index.

A brief introduction into the Monte Carlo singular system analysis and its
enhancement is given in Sec. 2. The analyzed data are described in Sec. 3.
Section 4 summarizes the application of the enhanced MC SSA to the monthly
NAO index, near-surface temperature records, the aa index and the sunspot
data. Discussion and conclusion are given in Sec. 5.

2 Monte Carlo singular system analysis

Singular system (or singular spectrum) analysis (SSA) in its original form
(also known as principal component analysis, or Karhunen-Loève decomposi-
tion) is a method for the identification and distinction from noise of important
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information in multivariate data. It is based on an orthogonal decomposition
of a covariance matrix of multivariate data under study. SSA provides an or-
thogonal basis onto which the data can be transformed, thus making individ-
ual data components (“modes”) linearly independent. Each of the orthogonal
modes (projections of the original data onto new orthogonal basis vectors) is
characterized by its variance, which is given by the related eigenvalue of the
covariance matrix.

Here we will deal with a univariate version of SSA in which the analyzed data
is a univariate time series and the decomposed matrix is a time-lag covariance
matrix, i.e., instead of several components of multivariate data, a time series
and its time-lagged versions are considered. This form of SSA, which has fre-
quently been used in the field of meteorology and climatology (Vautard &
Ghil, 1989; Ghil & Vautard, 1991; Keppenne & Ghil, 1992; Yiou et al., 1994;
Allen & Smith, 1994), can provide a decomposition of the studied time series
into orthogonal components (modes) with different dynamical properties, and
thus “interesting” phenomena such as slow modes (trends) and regular or ir-
regular oscillations (if present in the data) can be identified and retrieved from
the background of noise and/or other “uninteresting” non-specified processes.

In traditional SSA, the distinction of “interesting” components (signal) from
noise is based on finding a threshold (jump-down) to a “noise floor” in a se-
quence of eigenvalues given in a descending order. This approach might be
problematic if the signal-to-noise ratio is not sufficiently large, or the noise
present in the data is not white but “colored.” For such cases, statistical
approaches utilizing Monte Carlo simulation techniques have been proposed
(Ghil & Vautard, 1991; Vautard et al., 1992) for reliable signal/noise separa-
tion. The particular case of Monte Carlo SSA (MC SSA) that considers “red”
noise, usually present in geophysical data, has been introduced by Allen &
Smith (1996).

Now, we present a few necessary details of the SSA method in the form of a
technical recipe:

Take the analyzed time series {y(i)}, i = 1, . . . , N0, and construct a map
(“embedding”) into a space of n-dimensional vectors x(i) with components
xk(i), given as

xk(i) = y(i + k − 1), (1)

where k = 1, . . . , n; and n is the embedding dimension.
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Construct a symmetric n× n matrix C = XTX, with elements:

ckl = (1/N)
N∑

i=1

xk(i)xl(i), (2)

where 1/N is the proper normalization and the components xk(i), i = 1, . . . , N ,
are supposed to have a zero mean. The symmetric matrix C can be decom-
posed as

C = VΣVT , (3)

where the n × n matrix V = {vij} gives an orthonormal basis in the space
of vectors x(i), Σ=diag(σ1, σ2, . . . , σn), σi are non-negative eigenvalues giving
the variance of orthogonal modes

ξk(i) =
n∑

l=1

vlkx
l(i), (4)

into which the original series can be decomposed. For more details, see, e.g.,
(Vautard et al., 1992).

Of course, the original time series xk(i) can be reconstructed from the modes,
as

xk(i) =
n∑

l=1

vklξ
l(i). (5)

In equation (5), the modes ξk(i) can also be interpreted as time-dependent
coefficients and the orthogonal vectors vk = {vkl} as basis functions, usually
called the empirical orthogonal functions (EOFs).

The clear signal/noise distinction based on the eigenvalues σ1, σ2, . . . , σn can
only be obtained in particularly idealized situation when the signal/noise ratio
is large enough and the background consists of white noise. In many geophys-
ical processes, however, so-called “red” noise with power spectrum of the 1/f
type is present (Allen & Smith, 1996). Its SSA eigenspectrum also has the 1/f
character, i.e., an eigenspectrum of the red noise is equivalent to a coarsely
discretized power spectrum, where the number of frequency bins is given by
the embedding dimension n. The eigenvalues related to the slow modes are
much larger than the eigenvalues of the modes related to higher frequencies.
Thus, in the classical SSA approach applied to the red noise, the eigenvalues of
the slow modes might incorrectly be interpreted as a (nontrivial) signal, or, on
the other hand, a nontrivial signal embedded in red noise might be neglected if
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its variance is smaller than the slow-mode eigenvalues of the background red
noise. Therefore, Allen & Smith (1996) proposed comparing the SSA spec-
trum of the analyzed signal with SSA spectra of a red-noise model fitted to
the studied data. Such a red-noise process can be modeled by using an AR(1)
model (autoregressive model of the first order):

u(i)− û = α(u(i− 1)− û) + γz(i), (6)

where û is the process mean, α and γ are process parameters, and z(i) is
Gaussian white noise with a zero mean and a unit variance.

In order to correctly detect a signal in the red noise, the following approach
has been proposed (Allen & Smith, 1996):
First, the eigenvalues are plotted not according to their values, but according
to a frequency associated with a particular mode (EOF), i.e., the eigenspec-
trum in this form becomes a sort of a (coarsely) discretized power spectrum in
general, not only in the case of red noise (when the eigenspectrum naturally
has this form, as mentioned above).
Second, an eigenspectrum obtained from studied data is compared, in a frequen-
cy-by-frequency way, with eigenspectra obtained from a set of realizations of
an appropriate noise model (such as the AR(1) model (6)), i.e., an eigenvalue
related to a particular frequency bin obtained from the data is compared with
a range of eigenvalues related to the same frequency bin, obtained from the
set of realizations of the chosen AR(1) model.

The detection of a nontrivial signal in an experimental time series becomes a
statistical test in which the null hypothesis that the experimental data were
generated by a chosen noise model is tested. The realizations of the consid-
ered noise model (“null hypothesis”), i.e., the artificial data generated by the
chosen noise model, are usually called “surrogate data” (Theiler et al., 1992;
Allen & Smith, 1996; Paluš, 1995; Paluš & Novotná, 2004). When an eigen-
value associated with some frequency bin differs with a statistical significance
from the range of related noise model eigenvalues, then one can infer that
the studied data cannot be fully explained by the null hypothesis and could
contain an additional (nontrivial) signal.

The above MC SSA is a sophisticated technique, but it still assumes that the
signal of interest has been linearly added to a specified noise background and
therefore that the variance in the frequency band, characteristic of the sig-
nal, is significantly greater than the typical variance in this frequency band
obtained from the noise model. If the studied signal has a more complicated
origin, e.g., when an oscillatory mode is embedded into a background process
without significantly increasing variance in a particular frequency band, the
standard MC SSA can fail. In order to be able to detect any interesting dy-
namical mode independently of its (relative) variance, Paluš & Novotná (2004)
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have proposed testing also dynamical properties of the SSA modes against the
modes obtained from the surrogate data. In their particular implementation,
the dynamics of the modes is characterized by their predictability (or regular-
ity) measured by means of information theory.

The mutual information I(X; Y ) of two random variables X and Y is given
by I(X; Y ) = H(X) + H(Y ) − H(X, Y ), where the entropies H(X), H(Y ),
H(X,Y ) are defined in the usual Shannonian sense (Cover & Thomas, 1991).
For a time series {x(t)}, considered as a realization of a stationary and ergodic
stochastic process {X(t)}, t = 1, 2, 3, . . ., we compute the mutual information
I(x(t); x(t + τ)) as a function of time lag τ . In the following, we will mark
x(t) as x and x(t + τ) as xτ , i.e. we evaluate I(x; xτ ). Let us find such τmax

that for τ ′ ≥ τmax: I(x; xτ ′) ≈ 0 for the analyzed datasets. Then we define
the regularity index to be the norm of the mutual information:

||I(x; xτ )|| = ∆τ

τmax − τmin + ∆τ

τmax∑
τ=τmin

I(x; xτ ) (7)

with τmin = ∆τ = 1 (sample) as a usual choice.

Since the mutual information I(x; xτ ) measures the average amount of infor-
mation contained in the process {X} about its future τ time units ahead, the
regularity index ||I(x; xτ )|| gives an average measure of predictability of the
studied signal and is inversely related to the signal’s entropy rate, i.e., to the
rate at which the system, or process, producing the studied signal “forgets”
information about its previous states (Paluš, 1996).

Finally, we realize the enhanced MC SSA as follows:

(1) The studied time series undergoes SSA as briefly described above, or, in
detail in (Paluš & Novotná, 2004), i.e., using an embedding window of
length n, the n × n lag-correlation matrix C is decomposed using the
SVDCMP routine (Press et al., 1986). In the eigenspectrum, the position
of each eigenvalue on the abscissa is given by the dominant frequency
associated with the related EOF, i.e., detected in the related mode. That
is, the studied time series is projected onto the particular EOF, the power
spectrum of the projection (mode) is estimated, and the frequency bin
with the highest power is identified. This spectral coordinate is mapped
onto one of the n frequency bins, which equidistantly divide the abscissa
of the eigenspectrum.

(2) An AR(1) model is fitted to the series under study, and the residuals are
computed.

(3) The surrogate data are generated using the above AR(1) model, where
“scrambled” (randomly permutated in temporal order) residuals are used
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as innovations, i.e., the noise term γz(i) in (6) .
(4) Each realization of the surrogates undergoes SSA as described in step 1.

Then, the eigenvalues for the whole surrogate set, in each frequency bin,
are sorted and the values for the 2.5th and 97.5th percentiles are found.
In eigenspectra, the 95% range of the surrogates’ eigenvalue distribution
is illustrated by a horizontal bar between the above percentile values.

(5) For each frequency bin, the eigenvalue obtained from the studied data is
compared with the range of the surrogate eigenvalues. If an eigenvalue
lies outside the range given by the above percentiles, the null hypothesis
of the AR(1) process is rejected, i.e., there is a probability p < 0.05 that
the data can be explained by the null noise model.

(6) For each SSA mode (a projection of the data onto a particular EOF), the
regularity index is computed, as well as for each SSA mode for all the
realizations of surrogate data. The regularity indices are processed and
statistically tested in the same way as the eigenvalues. The regularity
index is based on mutual information obtained by a simple box-counting
approach with marginal equiquantization (Paluš, 1995, 1996, 1997a).

3 The data

The NAO index is traditionally defined as the normalized pressure difference
between the Azores and Iceland. The NAO data used here and their description
are available at http://www.cru.uea.ac.uk/cru/data/nao.htm.

In the initial stage of this study, we used monthly average near-surface air
temperature time series from ten European stations, see (Paluš & Novotná,
2004) for details; obtained from the Carbon Dioxide Information Analysis
Center Internet server (ftp://cdiac.esd.ornl.gov/pub/ndp041) and a time
series from the Prague–Klementinum station from the period 1781 – 2002. The
long-term monthly averages were subtracted from the data, so that the annual
cycle was effectively filtered out. In near future, further analyses will include
data from other stations as well as from NCEP/NCAR reanalysis series.

The aa-index is defined by the average, for each 3-hour period, of the maxi-
mum of magnetic elements from two near-antipodal mid-latitude stations in
Australia (Melbourne) and England (Greenwich). The data spanning the pe-
riod 1868–2005 were obtained from World Data Centre for Solar-Terrestrial
Physics, Chilton, http://www.ukssdc.ac.uk/data/wdcc1/wdc menu.html.

The sunspot data has been obtained from the internet address
http://sidc.oma.be/DATA/monthssn.dat due to the SIDC-team, Royal Ob-
servatory of Belgium, Ringlaan 4, 1180 Brussels, Belgium.
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4 Enhanced MC SSA detection of oscillatory modes: The results
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Fig. 1. Enhanced MC SSA of the monthly NAO index (a,c) and monthly average
near-surface air temperature series (Prague–Klementinum station) (b,d). Low-fre-
quency parts of eigenspectra – logarithms of eigenvalues (“LOG POWER”) (a,b)
and regularity index spectra (c,d). Bursts – eigenvalues or regularity indices for
the analysed data; bars – 95% of the surrogate eigenvalues or regularity index dis-
tribution, i.e., the bar is drawn from the 2.5th to the 97.5th percentiles of the
surrogate eigenvalues/regularity indices distribution. Both datasets span the period
1824–2002, the embedding dimension n = 480 months was used.

Figure 1 presents the results from the enhanced MC SSA for the considered
NAO index and the monthly average near-surface air temperature time se-
ries (Prague–Klementinum station) obtained using the embedding dimension
n = 480 months. In the standard MC SSA, the only eigenvalue undoubt-
edly distinct from the surrogate range is the trend (zero frequency) mode in
the temperature (Fig. 1b). Further, there are two modes at the frequency
0.0104 just above the surrogate bar in both the temperature and NAO tests
(Figs. 1a,b). These results, however, are still “on the edge” of significance and
are not very convincing.

A quite different picture is obtained from the analyses based on the regularity
index (Figs. 1c,d). Several oscillatory modes have been detected with a high
statistical significance. The distinction of the regularity indices of these modes
from the related surrogate ranges is clear and even the simultaneous statisti-
cal inference (see Paluš (1995) and references therein) cannot jeopardize the
significance of the results. The significant modes in the NAO are located at
the frequencies (in cycles per month) 0.004, 0.006, 0.0104, 0.014, 0.037 and
0.049, corresponding to the periods of 240, 160, 96, 73, 27 and 20 months,
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respectively. Besides the zero frequency (trend) mode, the significant modes
in the temperature are located at the frequencies 0.0104, 0.014, 0.016, 0.018,
0.025, 0.037 and 0.051, corresponding to the periods of 96, 68, 64, 56, 40,
27 and 20 months, respectively. The modes with the period of 8 years were
studied in (Paluš & Novotná, 2004), their mean period was estimated with
higher precision as 7.8 years. Besides the latter modes (and the trend mode
in the temperature), the highest regularity index was obtained for the modes
with the period of 27 months (frequency 0.037). This frequency lies within the
range of the quasi-biennial oscillations (QBO) and behaviour of these modes
was studied by Paluš & Novotná (2006).
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Fig. 2. Standard MC SSA of the monthly aa index – full eigenspectrum (a). En-
hanced MC SSA of the monthly aa index (b,c). The low-frequency part of the
eigenspectrum – logarithms of eigenvalues (“LOG POWER”) (b), and the regular-
ity index spectrum (c). Bursts – eigenvalues or regularity indices for the analysed
data; bars – 95% of the surrogate eigenvalues or regularity index distribution, i.e.,
the bar is drawn from the 2.5th to the 97.5th percentiles of the surrogate eigen-
values/regularity indices distribution. The dataset spans the period 1868–2005, the
embedding dimension n = 480 months was used.

Figure 2a presents the full eigenspectrum of the aa index and related AR(1)
surrogate data. It can be understood as the standard MC SSA. Here we present
the full eigenspectrum in order to illustrate the power spectrum of the surro-
gate red noise, depicted by the vertical bars, since, as it was stated above, the
eigenspectrum of the red noise is a discretized version of its power spectrum,
with the number of frequency bins given by the used embedding dimension.
The enhanced MC SSA consists of both the eigenspectrum (Fig. 2a,b) and
the regularity index spectrum (Fig. 2c). Since in this study we concentrate on
slow oscillatory modes, in Figs. 2b,c we present the low frequency parts of the
eigenspectrum and the regularity index spectrum in the same way as in the
case of the temperature and NAO index above. In the standard (eigenvalue)
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Source Period [months]

data 136 120 96 64 27

sunspots + + – – –

aa + – + + –

T – – + + +

NAO – – + – +

Table 1
Occurrence of the most significant oscillatory modes with periods of approximately
136, 120, 96, 64 and 27 months in the four source data: sunspot numbers, aa index,
average near-surface air temperature and NAO index.

analysis of the aa index (Fig. 2b) we can see significant modes for the trend,
i.e., the zero frequency mode, and for the mode on the frequency 0.0073 which
corresponds to the period of 136 months, i.e. to the 11-year solar activity cycle.
The analysis based on the regularity index (Fig. 2c) confirms the previous two
modes and adds two more ones on frequencies 0.0104 and 0.016 corresponding
to the periods of 96 and 64 months.

Analyzing the monthly sunspot data, the only clear significance in both the
eigenspectrum and the regularity index spectrum is the mode with the pe-
riod of 136 months. After removal of this mode and subsequent analysis, a
significant mode on the closest higher frequency bin occurs. Its period is 120
months. It is important to note that the frequency accuracy of the SSA ap-
proach is limited by the number of frequency bins given by the embedding
dimension. The accuracy of the frequency or the period of a particular mode
can be increased after the extraction of this mode from the original data and
its subsequent spectral or autocorrelation analysis, as Paluš & Novotná (1998,
2004) have done for the temperature mode. On the other hand, oscillatory
modes from natural processes are never strictly periodic and their frequency
is variable. For instance, the period of the sunspot cycle varies between 9 and
13 years. (A histogram of the instantaneous frequencies of the sunspot cycle
can be found in (Paluš et al., 2007), Fig. 5b). Therefore, the periods given
here should be understood as limited accuracy estimates of an average period
of a particular mode.

The common occurrence of the oscillatory modes with the periods of approxi-
mately 136, 120, 96, 64 and 27 months in the sunspot numbers, the aa index,
the near-surface air temperature and the NAO index is summarized in Tab. 1.
The mode with the period of 96 months or 8 years has been detected in

the three of the five analyzed data sources, i.e. in the atmospheric temper-
ature, in the NAO index and in the aa index. The time series of the modes
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Fig. 3. The oscillatory modes with the mean period 96 moths extracted by using
SSA (thick lines) and CCWT (thin lines) from the near-surface air temperature (a),
the NAO index (b), and the aa index (c).

extracted by using the SSA, i.e., by projecting the input data on the particular
EOF, are presented in Fig. 3 by thick lines, and compared with the modes ob-
tained by using the complex continuous wavelet transform (CCWT) (Torrence
and Compo, 1998) with the central wavelet frequency set to the period of 96
months (thin lines in Fig. 3). Using the SSA, there is an uncertainty of timing
of the modes given by the embedding window, and a part of the data equal to
the embedding window is lost. We positioned the SSA modes by maximizing
the crosscorrelation between the mode and the original data. This approach,
however, not always gives unambiguous results. Thus the SSA mode and the
wavelet mode, obtained from the temperature data (Fig. 3a) are shifted by
π (a half of the period), otherwise their agreement is very good. The timing
of the SSA and CCWT modes from the NAO index (Fig. 3b) is consistent,
however, the wavelet transform performs stronger smoothing. In the modes
from the aa index (Fig. 3c) the CCWT mode is smoother and slightly shifted
in time in comparison with the SSA mode.

It is interesting to note that the oscillatory mode with the period of 7.8 years
has been detected in the NAO, in the Arctic Oscillation (AO), in the Upp-
sala winter surface atmospheric temperature, as well as in the Baltic Sea ice
annual maximum extent by Jevrejeva & Moore (2001). Unal & Ghil (1995)
and Jevrejeva et al. (2006) observed oscillations with periods 7 – 8.5 years
in a number of sea level records. Feliks & Ghil (2007) report the significant
oscillatory mode with the 7.8 year period in the Nile River record, Jerusalem
precipitation, tree rings and in the NAO index. Our first application of the
enhanced MCSSA (Paluš & Novotná, 1998) yielded the observation of the
mode with the period 7.8 years in near-surface atmospheric temperature from
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several European locations. Recently, the enhanced MCSSA analyses of the
temperature data were refined and the analysis of the NAO index was added
(Paluš & Novotná, 2004). In this paper the number of processes containing
the oscillatory mode with the approximate period of 8 years was extended by
the geomagnetic activity aa index.

5 Discussion and Conclusion

In this paper, Monte Carlo Singular System Analysis has been extended by
evaluating and testing the regularity of the dynamics of the SSA modes against
the colored noise null hypothesis in addition to the test based on variance
(eigenvalues). The nonlinear approach to the measurement of regularity and
predictability of the dynamics, based on a coarse-grained estimate of the mu-
tual information, increases the MC SSA test sensitivity and reliability in the
detection of dynamical modes which are relatively more regular than those
obtained by decomposition of colored noise.

The enhanced MC SSA has been applied to records of monthly average near-
surface air temperature from several European locations, to the monthly NAO
index, as well as to the monthly aa index and the monthly sunspot numbers.
Several significant oscillatory modes have been detected in all the source data,
some of them with common periods (Tab. 1). While the QBO 27-month mode
is shared by the atmospheric data, the period 136 months mode, related to the
solar activity cycle is shared by the sunspot data and the aa index, the mode
with the period of 64 months, or approximately 5.5 yr has been detected in
the aa index and in the temperature records. The mode with the period of 96
months or 8 years is present in the three data sources, i.e. in the atmospheric
temperature, in the NAO index and in the aa index. These findings give a
solid basis for further research of relations among the dynamics reflected in
the analysed data and thus between the geomagnetic activity and the climate
variability. The existence of oscillatory modes opens the possibility to apply
the recently developed synchronization analysis (Pikovsky et al., 2001; Paluš,
1997b) which already has found successful applications in studies of relations
between atmospheric phenomena. Maraun & Kurths (2005) discovered epochs
of phase coherence between El Niño/Southern Oscillation and Indian mon-
soon, while Paluš & Novotná (2006) demonstrated phase synchronization or
phase coherence between the above mentioned QBO modes extracted from
the temperature and the NAO index. The analysis of instantaneous phases of
oscillatory processes allows to detect very weak interactions (Pikovsky et al.,
2001) and also causality relations if one oscillatory process drives the other one
(Rosenblum & Pikovsky, 2001; Paluš & Stefanovska, 2003). In such analysis,
Mokhov & Smirnov (2006) have demonstrated that the NAO interacts, or is
influenced by the other global atmospheric oscillatory process – the El Niño
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Southern Oscillation. We believe that the synchronization analysis will help to
uncover mechanisms of the tropospheric responses to the geomagnetic activity
and to contribute to better understanding of the solar-terrestrial relations and
their role in the climatic change.
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