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Principles and applications of statistical testing as a tool for inference of underlying mechanisms
from experimental time series are discussed. The computational realizations of the test null hypoth-
esis known as the surrogate data are introduced within the context of discerning nonlinear dynamics
from noise, and discussed in examples of testing for nonlinearity in atmospheric dynamics, solar cy-
cle and brain signals. The concept is further generalized for detection of directional interactions, or
causality in bivariate time series.
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1. INTRODUCTION

One of the great challenges of contemporary physics
and contemporary science in general is understanding of
emergent phenomena in complex systems. Physicists try
to apply their ideas and tools in studies of complex dy-

namics of various origin, thus it is not surprising that re-
view papers in this journal discuss complex processes not
only in traditional physical areas such as, for instance,
the physics of atmosphere and climate [1, 2], but also
touch complexity in biological systems in general [3], in
proteins [4], DNA [5, 6], or in the dynamics of the human
cardiovascular system [7]. Processing and evaluation of
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complex biomedical signals and images is also a problem
attracting the attention of physicists and the Contempo-
rary Physics [8, 9]. Systems of many interacting compo-
nents can be found not only in the traditional areas of sta-
tistical physics, but also at various levels of organization
of living tissues and organisms, from molecular structures
to neuronal networks, from proteins, cells, to the human
brain, and further to interactions of human individuals
or groups organizing themselves in social networks, work-
ing and doing business in the globalized economy. From
some contemporary physicists we can hear the opinion
that economics might be ‘the next physical science’ [10].
Others assert that the contemplation and resolution of
questions at the interfaces of biology, mathematics, and
physics promise to lead to a greater understanding of the
natural world and to open new avenues for physics [11].

In the scientific areas close to biology or to social
sciences, the connection between experimental data
and a theory is usually less straightforward than in
traditional physical sciences. The decision whether
data support a proposed theory or a hypothesis usually
cannot be made just using simple methods of data
evaluation and presentation. Sophisticated statistical
approaches should be used in order to distinguish
repetitive patterns from random effects and then to
infer possible physical mechanisms underlying an ob-
served complex phenomenon. The traditional field of
mathematical statistics provides both a language and
a toolbox for dealing with the questions of inference
that emerge in the search for ‘order in chaos’, or, more
specifically, in attempts to discern noise from complex
dynamics generated by possibly deterministic and
probably nonlinear physical (chemical, biological, social)
processes. A formal framework that can help in asking
and answering questions about possible mechanisms
underlying experimental data has been developed in
the field of statistical testing. The statistical testing
is widely used in many scientific fields including some
areas of physics (see, e.g., [12–14, 16–18]), however, in
many physical areas it is underestimated or ignored.
The underestimation occurs in two ways: A part of
physicists use it, however, without a deep understanding
of the principles and without serious mastering of the
available tools. This underestimation of the necessary
expertise level leads to many incorrect results and/or
wrong interpretations of the statistical tests, giving
thus arguments to the proponents of the other kind of
underestimation – the belief that the statistical testing
as a scientific tool is useless (see, e.g., [19] and references
therein). Therefore it is desirable to discuss realistic
possibilities of the statistical testing in a form accessible
to a broad physical readership.

This article is an attempt to introduce the statisti-
cal testing to a general physical community. Instead of
starting with formal definitions and/or rephrasing mate-
rials from some of the many textbook of mathematical
or applied statistics, we will briefly review the scientific

development in the area of nonlinear dynamics and the
theory of deterministic chaos, oriented to processing of
experimental data, in which the need of the statistical
testing naturally emerged.

A description and explanation of the ways of physical
thinking that have led to complicated theories and their
elegant formulations in the language of mathematics,
instead of lecturing the chain of axioms, definitions,
theorems and corollaries, was the way how Professor
Jozef Kvasnica (1930–1992) used to give his memorable
lectures on quantum mechanics and quantum field
theory at the Faculty of Mathematics and Physics of
the Charles University in Prague. The author would
like to dedicate this article to memory of Professor
Jozef Kvasnica, head of department of mathematical
physics (1976–1986), a theoretical physicist and a great
educator [20] who was able to maintain a relatively
liberal academic atmosphere at his department in 1980s
Czechoslovakia.

In experimental studies of complex systems, usually it
is not possible to characterize the state of such systems
by a single measurement or a set of measurements. In
many cases, however, it is possible to follow dynamics
or evolution of a system by recording of some observ-
able quantity (or a set quantities, or the same quantity
in different spatial locations) by registering its values in
successive instants of time t1, t2, . . . , tN . The collection
of measurements {s(t)} is called a time series. The time
series are the kind of data we will consider in this article.
Traditional statistical approaches to time series analysis
are based on the linear theory [21], although some exten-
sions counting for specific types of nonlinearity have been
developed [22, 23]. An independent approach to analysis
of nonlinear time series emerged in physics-related areas
of nonlinear dynamics and the theory of deterministic
chaos. We will introduce some ideas of this approach
below. Inspirations from the chaos theory have been ex-
plored in the statistical context of time series analysis as
well [23, 24].

Having recorded a time series {s(t)} of some observ-
able quantity reflecting complex behaviour of some sys-
tem or process, one could ask questions about the nature
of that system or process. Is it random, or is it deter-
ministic and predictable? If it is not random, what are
the underlying mechanisms? Can we infer them from
the data and express them in a form of a mathemati-
cal model with a predictive power? These questions are
quite general questions of science. We will describe how
researchers in the field of nonlinear dynamics and chaos
tried to cope with such questions and how the statisti-
cal testing has been introduced into the ‘search for order
in chaos’. After an introduction of necessary concepts
of statistical testing, namely the computational Monte
Carlo approaches based on the surrogate data techniques,
we will discuss the problem of detection of nonlinearity
in time series. Starting with some theoretical considera-
tions, we will continue our review with particular exam-
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ples of testing for nonlinearity in atmospheric dynamics,
solar cycle and in brain signals. From statistical infer-
ences about dynamics of a single process we will move
to a study of interactions between systems, in particular,
we will demonstrate a statistical approach for detection of
directional interactions, or causality from bivariate time
series.

2. SEARCHING ORDER IN CHAOS

In 1991 Shu-yu Zhang published the Bibliography on
Chaos [25] comprising 7167 titles from which more than
2700 papers contained the words ‘chaos’, ‘chaotic’, or
‘strange attractor’ in their title.

The editor of the New York Times Book Review chose
as one of the best books of the year 1987 James Gleick’s
Chaos: Making a New Science [26]. Gleick [27] character-
ized the ‘new science of chaos’ as the scientific revolution
shifting the paradigm of understanding natural and so-
cial phenomena. Indeed, the ‘science of chaos’, or, to be
more precise, the theory of deterministic chaos [28] has
found its way not only to physics and other natural sci-
ences, but also to philosophy [29, 30] and to the art [31].
The chaos theory has been proposed as a new principle
for a successful management of firms and corporations
[32]. What has made the chaos theory so attractive for
scientists, journalists, philosophers and artists?

The first important feature of chaotic dynamics is that
it can give a simple explanation to complex behaviour.
For instance, the following two equations, known as the
Hénon system [33]

xn+1 = 1.4− x2
n + b yn

yn+1 = xn (1)

represent a deterministic description for a movement in
a plane. Each point has two coordinates, x and y, which
are evolving in discrete time instants n = 1, 2, . . . . The
transition from the point (xn, yn) to the following point
(xn+1, yn+1) is exactly given by the prescription accord-
ing to the equations (1). For b = −0.01, after some
transient time, the Hénon system remains forever jump-
ing between two points. The temporal evolution of the
coordinate x (illustrated as the plot of xn vs. n) shows
a simple periodic pattern (the top panel in Fig. 1). For
b = −0.001, the after-transient state consists of eight dif-
ferent points. The temporal evolution of coordinate x is
slightly more complicated, but still shows repeating pat-
terns (the middle panel in Fig. 1). For b = 0.3, even
the after-transient state consists of an infinite number of
different points, although confined to a bounded subset
of the plane. In the temporal evolution of coordinate x
some patterns may resemble the previous ones, however,
no pattern exactly repeats (the bottom panel in Fig. 1.)
This is an example of the deterministic non-periodic be-
haviour, called the chaotic dynamics. Does the term ‘de-
terministic’ mean that such dynamics is predictable? Let
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FIG. 1: Temporal evolution of coordinate x of the Hénon
system for b = −0.001 (top panel), b = −0.01 (middle panel)
and for the chaotic state b = 0.3 (bottom panel).

us consider two temporal evolutions starting at nearby
points (x0, y0) and (x0 + ∆x, y0). Further, let us con-
sider ∆x = 0.2 and the periodic state of the Hénon sys-
tem with b = −0.001. The two trajectories starting in the
two points (x0, y0) and (x0 +∆x, y0) evolve close to each
other (the top panel in Fig. 2). If we take ∆x = 0.02, the
two trajectories are even undistinguishable in the preci-
sion of our graphics (the middle panel in Fig. 2). With
the small ∆x = 0.02, but in the case of the chaotic Hénon
system with b = 0.3, the two trajectories are close to each
other only during a few iterations and then they evolve
as two different trajectories (the bottom panel in Fig. 2).
This behaviour is called the sensitive dependence on ini-
tial conditions, or the exponential divergence of trajec-
tories and has fatal consequences for the predictability
of chaotic systems. Even if we know the exact equations
for a particular chaotic system, for predicting the future
we need to measure the present state. Each measure-
ment, however, has some error. In the above example we
can consider ∆x as the measurement error and the ini-
tial points (x0, y0) and (x0 + ∆x, y0) as the actual state
and the state given by the measurement with the finite
precision. Then the two trajectories can be considered as
the actual one (the solid line) and the predicted one (the
dashed line in Fig. 2). We can see that the measurement
error propagates into the prediction error of a comparable
magnitude in the case of the regular (periodic) state of
the system. In the chaotic state, however, the prediction
error grows in an exponential rate. The two trajectories
in the bottom panel in Fig. 2 do not exponentially move
away each other simply because the dynamics of the sys-
tem is confined within a bounded set in a plane. The
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FIG. 2: Temporal evolution of coordinate x of two trajectories
(solid and dashed lines) starting at two nearby points with
distance ∆x = 0.2 in the case of b = −0.01 (top panel);
∆x = 0.02 and b = −0.01 (middle panel); and ∆x = 0.02 in
the chaotic state with b = 0.3 (bottom panel).

prediction error, however, very soon reaches the magni-
tude comparable with the diameter of this set, so that
any prediction is impossible.

Now we know that we can generate complex dynamical
behaviour with limited or practically none predictabil-
ity by simple model equations. Can such models, how-
ever, help to understand natural complex phenomena? A
usual way, applicable to regular (non-chaotic) phenom-
ena would be fitting a chosen mathematical model using
the experimental data and then testing the validity of
the model by comparing the predictions, given by the
model, with the measured data. Considering the lim-
ited predictability of the chaotic dynamics, however, this
approach is hardly applicable.

A breakthrough in the chaos theory and its connec-
tion to the real world was the seminal paper ‘Geometry
from a time series’ [34]. In this paper, Packard et al.
[34] demonstrated how to reconstruct a subset of abstract
mathematical space in which variables of a chaotic sys-
tem evolve (such as the above variables x and y in the
equations (1)) using just one measurable quantity reflect-
ing information about the system state. Recording of an
observable quantity of a system under study in the form
of a time series can thus be a key to uncover the hid-
den order in the observed chaos. Having reconstructed
the ‘geometry of behaviour’, it is then possible to esti-
mate a dimension of such a state space and thus to know
how many equations are needed to explain the observed
complex dynamics. This way of characterization of low-
dimensional chaotic systems (i.e. systems described by n

ordinary differential equations, when n is sufficiently low)
based on the processing of experimental time series has
also been understood as a way to detect chaotic dynamics
underlying complex experimental data. The arguments
were simple: Recorded complex experimental time series
reflects dynamics which cannot be explained by any reg-
ular deterministic model. In the dimensional analysis we
obtained a low dimension n, so we observe a process gen-
erated by an n-dimensional chaotic deterministic system,
since noise cannot be explained by a finite-dimensional
process. These considerations will be more precisely for-
mulated in the following Sections 2 2.1 and 2 2.2.

Early enthusiasm of many researchers has led to
straightforward applications of this approach and to
claiming experimental evidence for the existence of (low-
dimensional) deterministic chaos in many types of sys-
tems and processes, ranging from atmospheric dynam-
ics [35–37], solar cycle [38–40], through complex physio-
logical phenomena such as the dynamics of the heart [44,
45] and brain activity [46–48], to complex social phenom-
ena such as the financial markets [41–43], just to mention
a few examples.

2.1. Low-dimensional chaotic dynamics: detection
and characterization

Let us consider that possible states of a system can
be represented by points in a finite dimensional state
space, say Rd (also the term phase space is used). The
transition from the system’s state x(t1) at time t1 to its
state at time t2 is then given by a deterministic rule:
x(t2) = Tt2−t1(x(t1)). This transformation can be ex-
pressed either in continuous time by a set of ordinary
differential equations:

ẋ(t) = F(x(t)) , (2)

or in discrete time t = n∆t by a map of Rd onto itself:

xn+1 = f(xn) . (3)

The transition rules Tt in the forms (2) or (3), are called
a dynamical system. Various forms of F (resp. f) lead to
different types of dynamics, ranging from simple dynam-
ics of fixed points and limit cycles to complex, irregular
behaviour. If the dynamics is dissipative (contracting its
‘vital space’, i.e. the subset of the state space visited by
the system’s trajectory), the area visited by the system
after some transient time will be concentrated on a sub-
set of the phase space. This set is called an attractor.
Since not all points on an attractor are visited with the
same frequency, it is possible to define a measure µ(x)dx,
as the average fraction of time which a typical trajectory
spends in the phase space element dx. In an ergodic sys-
tem, the measure µ(x) is the same for almost all initial
conditions. Averages over phase space taken with respect
to µ(x)dx are then equal to time averages taken over a
typical trajectory.
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Let us consider now that a registered time series {s(t)}
is a scalar projection of a trajectory {x(t)} of a dynam-
ical system in Rd, i.e. {s(t) = s(x(t))}. In other words,
there is a d-dimensional dynamical system underlying the
studied process, however, the full d-dimensional trajec-
tory {x(t)} cannot be observed. An observer has an ac-
cess just to a scalar observable s(t), registered as the
time series {s(t)}. Following the original idea of Packard
et al. [34], a reconstruction of the original trajectory can
be obtained using so-called time-delay embedding

s(t) = (s(t− (m− 1)τ), s(t− (m− 2)τ), . . . , s(t)) , (4)

where τ is the delay time and m is the embedding dimen-
sion. Provided that the measurement function s : Rd →
R is sufficiently smooth (at least C2) and that either
the dynamics or the measurement function is generic in
the sense that it couples all degrees of freedom, then for
m ≥ 2d + 1, Takens [49] proved that the reconstructed
trajectory is topologically equivalent to the original one.
This problem is discussed and the ‘embedding theorem’
further generalized in [50].

The topological equivalence of the reconstructed and
the original trajectories means that characteristics of the
‘geometry of dynamics’, i.e. of the geometry of an at-
tractor of the dynamical system computed from the tra-
jectory reconstructed by the time-delay embedding, are
the same as if they were estimated from the original tra-
jectory, or, ideally, from the invariant measure µ(x)dx
generated by the original trajectory. This way of a possi-
ble connection between complex, noisy-like experimental
data and a mathematical chaotic model is the second
feature which made the chaos theory so attractive for re-
searchers. This new way of processing experimental data
has sometimes been considered as an alternative to stan-
dard statistical methods of time series analysis.

The dynamics of chaotic systems is characterized by
the above-mentioned exponential divergence of near-by
trajectories. On the other hand, when the trajectory
after the transient state evolves on an attractor, it is
confined to a limited subset of the phase space. This
combination of stretching, folding, and volume contrac-
tion lead to irregular geometry of the system’s attrac-
tor which can have a statistically self-similar structure.
This fractal geometry of the system’s attractor can be
characterized by fractal dimensions. Several definitions
of non-integer dimensions have been proposed in the lit-
erature [28], e.g. the well-known Hausdorff dimension,
or the computationally more accessible box counting di-
mension. One can weight points in a set by the average
frequency with which they are visited by the trajectory.
Then a definition of the dimension in terms of the natural
measure µ(x)dx on the attractor can be obtained. At-
tempts to take weighted averages of the number of points
contained in elements of a partition of the phase space
and study their dependence on the refinement of the par-
tition usually did not bring satisfactory results due to
limited amounts of available data. An alternative way to

define the dimension of a measure µ(x)dx was proposed
by Grassberger and Procaccia [51]. They estimate the
locally averaged density ρε as the convolution of µ with
a kernel function Kε(r) = K(r/ε) of bandwidth ε falling
off quickly enough so that the convolution exists:

ρε(x) =
∫

y

dyµ(y)Kε(‖x− y‖) . (5)

Usually, the kernel is chosen to be Kε(r) = Θ(1 − r/ε)
where Θ(·) is the Heaviside step function, Θ(x) = 0 if
x ≤ 0 and Θ(x) = 1 for x > 0. Then the correlation
integral of order q is given as:

Cq(ε) =
∫

x

dxµ(x) [ρε(x)]q−1 . (6)

For a self-similar measure, for ε → 0

Cq(ε) ∝ ε(q−1)Dq . (7)

Dq is called the dimension of order q. This definition
includes the dimension D0 which is equivalent to the
Hausdorff dimension in many cases. Grassberger and
Procaccia [51] proposed the correlation dimension D2 as
a means of quantifying the ‘strangeness’ of an attractor.
The term strange attractor was coined in the chaos lit-
erature for attractors of dynamical systems which were
chaotic, i.e. their dynamics was characterized by the ex-
ponential divergence of trajectories and the geometry of
the underlying attractor was fractal. The fractality is
captured by any non-integer fractal dimension, such as
the correlation dimension D2. The chaoticity, i.e., the
exponential divergence of trajectories is characterized by
the positive Lyapunov exponents. Let us briefly review
basic ideas of so-called fixed evolution time algorithm for
estimating the largest Lyapunov exponent according to
Wolf et al. [52].

Given a scalar time series x(t), an m-dimensional tra-
jectory is reconstructed using the time-delay method [49]
according to Eq. (4), i.e., x(t) = {x(t), x(t+τ), . . . , x(t+
[m − 1]τ)}, where τ is the delay time and m is the em-
bedding dimension. A neighbour point x(t′) is located
so that the initial distance δI , δI = ||x(t) − x(t′)||, is
smin ≤ δI ≤ smax, where ||.|| means the Euclidean dis-
tance. The minimum and maximum scales smin and smax,
respectively, are chosen so that the points x(t) and x(t′)
are considered to be in a common ‘infinitesimal’ neigh-
borhood. After an evolution time T ∈ {1, 2, 3, . . . }, the
resulting final distance δF is calculated: δF = ||x(t+T )−
x(t′ + T )||. Then the local exponential growth rate per
a time unit is:

λlocal
1 =

1
T

log(δF /δI). (8)

To estimate the overall growth rate, in the case of deter-
ministic dynamical systems the largest Lyapunov expo-
nent (LLE) λ1, the local growth rates are averaged along
the trajectory:

λ1 = 〈λlocal
1 〉 =

1
T

[〈log(δF )〉 − 〈log(δI)〉], (9)
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where 〈.〉 denotes averaging over all initial point pairs
fulfilling the condition smin ≤ δI ≤ smax.

The algorithm of Wolf et al. [52] quickly became
one of the most frequently used methods for detecting
chaos in experimental time series (after the Grassberger-
Procaccia correlation dimension algorithm [51]), al-
though later several methods for estimating the full Lya-
punov spectrum, i.e., n Lyapunov exponents of an n-
dimensional dynamical systems, characterizing the expo-
nential divergence of trajectories in each of the n direc-
tions, have been developed [53–55].

2.2. Ubiquity of chaos challenged: surrogate data
testing

Various types of dimensions were used to characterize
the ‘geometry of behaviour’, i.e., the dimensionality
and fractality of attractors of underlying dynamical
systems. The ‘chaoticity’ of dynamics, i.e., the sensitive
dependence on initial conditions can be characterized
by Lyapunov exponents and dynamical entropies such
as the Kolmogorov-Sinai entropy [28, 56, 57]. Methods

of estimating dimensions and entropies of chaotic sys-
tems have been discussed in several review papers, see
e.g. [58–61], as well as in books [62, 63]. Also a number
of conference proceedings are devoted to this topic, for
instance Refs. [56, 64–66]. A critical review of nonlinear
dynamics and chaos related methods for time series
analysis has been written by Schreiber [67]. The book
of Kantz and Schreiber [63] was followed by a useful
program package described also in Ref. [68].

Among the ‘measures of chaos’, i.e., dimensions, en-
tropies and Lyapunov exponents, the correlation dimen-
sion D2 [51] became the most frequently used quantity es-
timated from experimental time series in order to detect
and characterize a strange attractor underlying analysed
data. Having a measured time series {s(t)}, in the typical
approach the time-delay embedding (4) was constructed
for an increasing sequence m1,m2,m3, . . . of embedding
dimensions m. For each m, the correlation dimension
D2(m) was estimated. Usually, the D2(m) estimates
were increasing with increasing m, but from some ms

the estimates of D2(m) ‘saturated’, i.e. a sequence

D2(m1) < D2(m2) < · · · < D2(ms − 1) < D2(ms) ≈ D2(ms + 1) ≈ D2(ms + 2) ≈ . . .

was obtained. Then the estimate D2(ms) was consid-
ered as the fractal dimension of the underlying attractor
and ms as the sufficient embedding dimension and as
the number of equations necessary to explain the ob-
served dynamics, reflected in the recorded time series
{s(t)}. Such an ‘evidence for low-dimensional chaos’ has
been observed in time series obtained from very differ-
ent sources already mentioned above. Here we only re-
mind the data and processes which we will discuss later:
The sunspot numbers representing the solar cycle [38–
40], time series of meteorological variables reflecting the
atmospheric dynamics [35–37], and human EEG – elec-
troencephalogram, recordings of electrical potentials of
the brain [46–48]. The broad usage of the correlation di-
mension for detection of chaos evoked also critical studies
which pointed out some limitations of the method [69–
71]. It was shown that with a limited amount of data the
estimator of the correlation dimension saturated on a fi-
nite (and low) value even when so-called white noise (re-
alizations of independent, identically distributed random
variables) was used as the input data. Krakovská [72] de-
rived an analytical formula quantifying underestimation
of the correlation dimension given the number of data
samples and the embedding dimension. Statistical esti-
mators for fractal dimensions and their theoretical prop-
erties are also studied in Refs. [73–77].

Understanding the effect of the time series length, i.e.

of the number of available data samples on the estima-
tion of the correlation dimension (as well as on other
dimensions) has led to the first ‘test of reality’ of a low-
dimensional chaos. Such a test was realized as a compar-
ison of the estimation of the correlation dimension from
studied data with results of the same estimator applied to
the same number of samples of white noise. White noise,
however, similarly as a purely deterministic system, is a
mathematical construct rarely occurring in the nature.
If a time series {s(t)} is a realization of a white-noise
process, then any two samples, say s(t) and s(t + τ) are
independent. In natural processes subsequent values s(t)
and s(t + τ) can be dependent. A class of linear stochas-
tic processes characterized by power-law spectra exhibit
long-range linear dependence. Realizations of such pro-
cesses, also known as coloured (pink, or red) noise, were
analysed by Osborne and Provenzale [78]. They demon-
strated that applications of the standard Grassberger-
Procaccia algorithm yielded a finite correlation dimen-
sion for time series generated by stochastic systems with
power-law spectra [78]. This problem is also discussed by
Theiler [79].

A serial dependence between s(t) and s(t + τ) in the
form of the linear autocorrelation is a property consis-
tent with an explanation by a linear stochastic process,
i.e., a sequence of random variables, or, in other words,
noise that is not white. The linear autocorrelation be-
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tween s(t) and s(t+ τ) can be the source of a spurious fi-
nite dimension estimation. Various corrections have been
proposed [67, 73] for dealing with this problem, as well
as with other sources of bias in dimension estimations
[80, 81]. Some authors tried to remove the linear depen-
dence present in the data by fitting a linear regression
model and using the model residuals in further analysis.
Such an approach is established in statistics when search-
ing for dependence structures beyond the linear correla-
tions. Theiler & Eubank [82], however, demonstrated
that this procedure was not suitable for the detection of
chaotic dynamics, since the removal of the linear depen-
dence destroyed structures of an underlying attractor.
In time series from nonlinear dynamical systems, depen-
dence structures cannot usually be linearly decomposed
into a sum of linear and nonlinear parts and analysed
separately. As a way how to assess the validity of fi-
nite dimension estimations, Theiler et al. [83] proposed
to construct a special kind of filtered noise, i.e. control
data as realizations of a linear stochastic process which
possesses the same linear properties as the data under
study. As the linear properties, namely the autocorrela-
tion function c(τ) is meant, giving the linear dependence
between s(t) and s(t+ τ) for the time series {s(t)}. Such
test data can be obtained when a linear stochastic pro-
cess with the same spectrum as the analysed data is con-
structed. An application of the dimensional estimates to
such a ‘control data set’, in order to ascertain that the
finite dimension estimates were not a numerical artifact,
has been proposed by several authors [38, 83–86], how-
ever, Theiler et al. [83] introduced a systematic approach
using the statistical language of hypothesis testing. For
the control data sets Theiler et al. [83] coined the term
surrogate data.

The surrogate data with the same sample spectrum
as the tested time series can be constructed using the
fast Fourier transform (FFT). The FFT of the series is
computed, the magnitudes of the (complex) Fourier coef-
ficients are kept unchanged, but their phases are random-
ized. The surrogate series is then obtained by computing
the inverse transform into the time domain. Different re-
alizations of the process are obtained using different sets
of the random Fourier phases.

Having constructed a set of independent surrogate data
realizations, the correlation dimension (or other ‘nonlin-
ear’ measure) is estimated from the surrogate time series
in order to obtain a range of values typical for a linear
stochastic process with the given spectrum and the au-
tocorrelation function. Then the value of the correlation
dimension (or other quantity) obtained from the anal-
ysed experimental data is compared with the surrogate
range, asking the question ‘is the tested data set (time
series) significantly different from the related surrogate
data?’ If the answer is ‘yes’, then the possible explana-
tion of the data by a linear stochastic process is rejected
and the result is considered as an evidence for nonlinear-
ity, the necessary condition for the deterministic chaos.
If the answer is ‘no’, then, in the statistical language,

the so-called null hypothesis of a linear stochastic pro-
cess is accepted. This decision, however, does not mean
that an evidence for an explanation of the data by a lin-
ear stochastic process was obtained. Such a result merely
means that the used measure, e.g., the correlation dimen-
sion, is not able to distinguish the analysed data from
the isospectral linear stochastic process and the hypoth-
esis about an underlying low-dimensional chaotic system
is unfounded, even if the absolute value of the estimated
correlation dimension is low. Below we will discuss these
issues in detail.

3. STATISTICAL TESTING

The mathematical science of statistics is focused to the
collection, analysis, interpretation or explanation, and
presentation of data. Methods of descriptive statistics
are used to describe a collection of data. Structures or
patterns in the data may be modelled, accounting for
randomness and uncertainty in the observations. Using
the statistical models, inferences are drawn about pro-
cesses underlying the data, or about the population from
which the data were sampled; this is called inferential
statistics. Although statistical methods have been devel-
oping for centuries, according to experts in the field [87],
the modern inferential statistic began with Karl Pear-
son’s work [88] on the goodness-of-fit test, motivated by
the question whether an assumed probability model ad-
equately describes the analysed data. Pearson’s paper
[88] is regarded as one of the twenty most important sci-
entific breakthroughs of the 20th century along with ad-
vances and discoveries like the theory of relativity, the
IQ test, hybrid corn, antibiotics, television, the transis-
tor and the computer [89]. During the 20th century, the
modern inferential statistics developed from its infancy
into a mature science and nowadays it is applied in al-
most all scientific disciplines, as well as in technology,
business and decision-making.

Considering such a broad usage, it is not surprising
that also criticism of the statistical testing appeared in
various scientific fields [19, 90–92]. Detailed analyses
show, however, that the critical voices are valid as far
as they concern numerous incorrect applications and in-
terpretations of the statistical tests. One of the problem
leading to the major mistakes in interpreting the results
of the statistical tests is the mixing of two different test-
ing paradigms – the Fisher’s significance testing and the
Neyman-Pearson’s hypothesis testing. Therefore we need
a distinctive definitions of the two approaches. The third
– Bayesian approach will not be discussed in this paper.

3.1. Significance testing and hypothesis testing

A statistical test is a framework for searching answers
to questions about experimental data. As the data, let
us consider a (set of) measurement(s) x of a random vari-
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able (process) X. A property of the data under interest
should be quantifiable by some real function θ(x), called
a discriminating statistic, or simply a statistic. We set
a null hypothesis H0: θ = θ0. For simplicity, let us con-
sider θ0 = 0 and θ(x) ≥ 0. Due to the random nature of
X, there is a nontrivial probability function for θ(x) ≥ 0
even if the null hypothesis θ = 0 is valid. Consider that
we know or can calculate this probability function for the
specified null hypothesis.

In the framework of the Fisher’s significance testing
[93–95] we ask what is the probability that we can ob-
serve an outcome of magnitude θ(x) (or larger) providing
that the null hypothesis θ = 0 is valid. We compute sig-
nificance, or p-value as p = Prob(θ(x0) ≥ θ(x)), where
x0 are realizations of the random variable (process) X
under the condition of the validity of H0. The p-value
is a measure of inductive evidence against H0, smaller
the p-value, the stronger the evidence. Small p-value
indicates an unlikely event and, hence, an unlikely hy-
pothesis. Fisher saw statistics as playing a vital part in
inductive inference, drawing conclusions from the par-
ticular to the general, from samples to a population, or
from a measurement to an underlying process. Scientific
knowledge is created via inductive inference, for Fisher
the evidential p-value had an important role in this pro-
cess. The evidential p-value is a data-dependent random
variable.

The Neyman-Pearson’s hypothesis testing [96] is not a
theory of statistical inference, but a paradigm for using
the statistical testing as a mechanism for making deci-
sions and guiding behaviour. While Fisher specified only
the null hypothesis H0, Neyman & Pearson introduced
two hypotheses, the null H0 and the alternative H1 and
their approach requires a decision between two distinct
courses of action, accepting H0 or rejecting it in favour
of H1. When choosing between accepting H0 and H1

mistakes occur. The significance level in the Neyman-
Pearson’s approach, usually denoted as α and called the
Type I error, is the probability of the false rejection of H0

(a false positive result). The Type II error, β, is the prob-
ability of the false acceptance of H0 (a false negative re-
sult). The Neyman-Pearson’s approach is not concerned
with gathering evidence, it is aimed at error minimiza-
tion. The validity of errors is understood in a long run,
considering the frequentist principle: In repeated prac-
tical use of a statistical procedure, the long-run aver-
age actual errors should not be greater than (and ideally
should equal) the long-run average reported error [97].
The nominal significance level α is chosen before the test
is done. From the equation α = Prob(θ(x0) ≥ γ) the
critical value γ is calculated and the null H0 is always
rejected if θ(x) > γ is obtained for the tested data x.

3.2. Null distribution of discriminating statistic

In the classical approach to significance and hypothesis
testing, a discriminating statistic θ is carefully tailored to

match the null hypothesis. Statistics are preferred which
have standard or ‘standardized’ distributions for a given
null hypothesis, i.e., the distribution of θ for the speci-
fied null hypothesis can be analytically derived and the
critical value γ for a given significance level α can be eas-
ily calculated using a known formula or found in a table.
Tables of critical values for the most frequently used dis-
criminating statistics and null hypotheses can be found
in many statistical handbooks, see e.g. Refs. [98–100].
The restriction of the statistical testing to the statistics
with known distributions has to some extent been super-
seded by computer-intensive methods, in which the dis-
tribution of θ and its confidence range for a given α can
be accurately estimated by so-called Monte-Carlo simu-
lation. Such an approach has been proposed by Barnard
[101] and fully developed by Hope [102] and others [103–
114]. The basic idea of this approach is to compute values
of θ for many different realizations of the null hypothe-
sis and to empirically estimate the distribution of θ from
these values. Considering the quickly increasing perfor-
mance and availability of powerful computers, Efron in
his 1979 manifesto [108] argued for replacing (not always
possible) analytical derivations based on (not always re-
alistic) narrow assumptions by computational estimation
of empirical distributions for statistics under interest.
In computational statistics, the term bootstrap [112] is
coined for Monte-Carlo methods and random resampling
of experimental data, frequently with the aim to estimate
confidence intervals (‘error bars’) for evaluated statistical
quantities [108–112]. We should be careful to distinguish
the quite different problems of estimating confidence in-
tervals and testing null hypotheses, although the resam-
pling, bootstrap or surrogate data methods can be tech-
nically similar. In the problem of the confidence interval
estimation, a statistic of some intrinsic interest is com-
puted from the data, and the goal is to find the error
bars using realizations of resampled data obtained from
a (probability) model aimed at the true underlying dis-
tribution. In the case of hypothesis testing, there is a
specific, carefully stated null hypothesis, and the goal is
to test whether the data are consistent with that hypoth-
esis. The latter is the case of the surrogate data technique
[83] proposed for the inductive inference of nonlinearity
in the studied data by constructing the surrogate data as
realizations of a linear stochastic process replicating the
‘linear properties’ of the original data. We propose to
extend the term surrogate data for general significance
testing using statistics and null hypotheses for which an
analytical treatment is not known or not possible. As a
working definition we can say that the surrogate data are
numerically generated data which preserve all important
statistical properties of the original data but the property
which is tested for. More realistic definition for practical
purposes requires that the surrogate data replicate those
data properties which influence the discriminating statis-
tic and are the primary source of its bias and variance
irrespectively of the presence of the tested property. Of
course, the surrogate data should not posses the tested
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property. We will discuss these issues using concrete ex-
amples in the following Sections 5 and 6.

3.3. The story of sunspots and senators as an
illustrative example

The energy output of the Sun as the main basis of life
on the Earth is nearly constant. However, the Sun is far
from being uniform. The best observed solar inhomo-
geneities are spots on the solar surface in which the lu-
minosity is diminished but magnetic fields appear which
are stronger than usual magnetic fields on the rest of the
solar surface.

In the middle of the 19th century it was discovered by
a druggist H. Schwabe and described in the scientific lit-
erature by Wolf [115] that the number of spots on the
Sun varies in a cyclic manner with a characteristic time
of about 11 years. Initially, this variation was considered
periodic, but nowadays its aperiodicity and complex be-
haviour is stressed and studied in detail. We will return
to the problem of the intrinsic dynamics of the solar cycle
in Sec. 6.

The historical data of the sunspot numbers have been
attracting researchers since the 1852 Wolf’s paper [115].
Recently, in the very intensive debate about the global
warming and its possible causes, the sunspot numbers, as
the long-term record of variability of the solar activity,
are studied and compared with various climate-related
data [116–118]. On the other hand, some climatologists
oppose that no clear evidence exists for the solar vari-
ability causing the climate change, and the most famous
declared correlation between the parameters of the so-
lar cycle and the global atmospheric temperature [119]
was obtained by incorrect processing and evaluating of
the data [120, 121]. Although the cause of the climate
change is an important problem which is very interesting
also from the viewpoint of statistical testing, it is beyond
the scope of this article. In the following we will only
borrow an example used by some climatologists [122] as
well as statisticians [123] in order to demonstrate pitfalls
in testing and interpretation of correlations.

The top panel of Figure 3 shows the number of the
Republicans in the U.S. Senate in the years 1960 – 2006
[124], while the middle panel shows the sunspot numbers
in the same period [125]. Let us consider N observations
xi, yi of two variables x and y. For assessing the linear
dependence of the variables x and y by the means of
(cross)correlation c(x,y), it is necessary to ‘normalize’ the
variables by subtracting their means

x̄ =
1
N

N∑

i=1

xi

and dividing by their standard deviations σ

σ2 =
1

N − 1

N∑

i=1

(xi − x̄)2
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FIG. 3: The number of Republicans in the U.S. Senate in the
years 1960 – 2006 (top panel); the sunspot number for the
period 1960 – 2006 (middle panel); the number of the Re-
publican senators (dashed line) and the sunspots (solid line)
normalized to zero mean and unit variance (bottom panel).

in order to obtain normalized

x̃i =
xi − x̄

σ
.

The same procedure is done with the measurements yi

in order to obtain normalized ỹi. Then, the correlation
between x and y is

c(x, y) =
1
N

N∑

i=1

x̃iỹi .

The normalized numbers of the sunspots and the Re-
publican senators are plotted in a common scale in the
bottom panel of Fig. 3. We can see that in the first part
of the record, from 1960 to 1986, the agreement between
the numbers of the sunspots and the senators is remark-
ably good. The correlation coefficient c obtained from the
related 14 samples (a part of the Senate is elected each
second year, so the number of the senators is sampled
biannually) is c = 0.52. In the classical statistical testing
the correlation (coefficient) is a very common statistic
and its distribution for the null hypothesis of linear inde-
pendence (H0: c = 0) is well known for data sets sampled
from independent, identically distributed, normally dis-
tributed populations (IID Gaussian distributions). For
such a null hypothesis the critical values γ for given sig-
nificance levels α can be easily computed or find in tables
in statistical handbooks. The correlation coefficient at-
tains values from -1 to 1, so it can differ from the zero
value either in the negative or in the positive direction.
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Thus in general one should test the digression from the
zero value in both the directions and the ‘two-tailed’ or
‘two-sided’ test should be applied. If we are interested
only in the positive correlation (such as the one observed
between the numbers of sunspots and senators in the pe-
riod 1960–1986), we apply the one-sided (one-tailed test).
Choosing the significance level α = 0.05, the related crit-
ical value γ = 0.458 says that 95% of the distribution
of the correlation coefficient under the condition of va-
lidity of the above specified null hypothesis is bounded
by c ≤ 0.458, considering the one-sided test and N = 14
samples. In the statistical tables the term 12 degrees
of freedom (df) is used, considering df = N − 2. For
N = 24 samples (here the whole record 1960–2006) the
critical value is γ = 0.344. For the period 1960–1986 the
correlation c = 0.52 > γ = 0.458, i.e. the null hypothesis
should be rejected. Supposing that only the 1960–1986
data are available, a possible temptation to interpret this
result as an evidence for a causal relation between the so-
lar activity and the election success of the Republicans is
used by some authors as a demonstration of a very lim-
ited value of statistical testing for inferring dependence
when a physical mechanism of interactions in not known.
They argue further that this apparent nonsense can be
statistically disproved only when more data is available –
using the whole record 1960–2006 the null hypothesis of
independence cannot be rejected (c = 0.16 < γ = 0.344).

In fact, this argument against the value of the statis-
tical testing for inference of new knowledge in climatol-
ogy, and in physical sciences in general, is based on an
incorrect interpretation of an incorrectly applied statisti-
cal test. Not only the Neyman-Pearson’s approach is not
suitable in this case, more importantly, the chosen null
hypothesis is inadequate. In the following we will demon-
strate that with an appropriately constructed surrogate
data reflecting an adequate null hypothesis, the observed
correlation c = 0.52 is not statistically significant, since
it could probably occur by chance in the case of indepen-
dent processes of adequate statistical properties.

For a better understanding of the approach let us start
with the Monte-Carlo computational realization of the
above inadequate null hypothesis that both the numbers
of senators and sunspots were drawn from IID Gaussian
distributions. For each analysed segment 1960–1986 (14
samples) and 1960–2006 (24 samples) we randomly draw
independent pairs of 14- and 24-sample sets and compute
their correlations c(x, y). We draw 100,000 independent
realizations of the null hypothesis and then estimate dis-
tributions of c(x, y) as 100-bin histograms from the ob-
tained 100,000 values. These histograms are presented
by solid lines in the upper panels of Fig. 4 and Fig. 5 for
the 24- and the 14-sample sets, respectively. If, instead
of the two IID Gaussian draws, we correlate the numbers
of the senators on the one side (variable x) with the ran-
dom Gaussian draws as the variable y on the other side,
the resulted histograms are practically the same (dashed
lines almost coinciding with the solid lines in upper pan-
els of Figs. 4, 5). Practically the same histograms are
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FIG. 4: Top panel: Distribution (histogram) of correlations
between two 24-sample sets randomly drawn from a Gaus-
sian distribution (solid lines); the histogram of correlations
between the number of the Republican senators in the period
1960–2006 (24 samples) with 24-sample sets randomly drawn
from the Gaussian distribution (dashed line); and the his-
togram of correlations between the number of the Republican
senators in the period 1960–2006 (24 samples) with the related
24-sample segment of the sunspot numbers randomly permu-
tated in the temporal order (IID surrogate, dash-and-dotted
line). Bottom panel: Histogram of correlations between the
number of the Republican senators in the period 1960–2006
(24 samples) with 24-sample realizations of the Barnes model.
The vertical solid line shows the correlation between the num-
ber of the Republican senators and the sunspot numbers for
the period 1960–2006.

again obtained when we correlate the numbers of the
senators with the related numbers of the sunspots which
are, however, permutated in the temporal order (dash-
and-dotted lines in upper panels of Figs. 4, 5, mostly
coinciding with the solid lines). The latter Monte-Carlo
realizations of the null hypothesis (the sunspot numbers
randomly permutated in temporal order; different real-
izations of the null hypothesis are obtained as different
independent permutations), i.e. computationally gen-
erated data obtained by numerical manipulation of the
original data, are usually called the surrogate data. The
term surrogate data is also used for data generated by
a model fitted on the original data. The terminology,
however, is not unified. Some authors would also use the
term ‘surrogate data’ for the above draws from the Gaus-
sian distributions, while others would identify the surro-
gate data generation process as a bootstrap. The IID or
‘scrambled’ surrogate data are realizations of white noise
(IID process) with exactly the same sample histogram as
the original data. Of course, such data are by construc-
tion also independent from other data or processes, in
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FIG. 5: Top panel: Distribution (histogram) of correlations
between two 14-sample sets randomly drawn from a Gaus-
sian distribution (solid lines); the histogram of correlations
between the number of the Republican senators in the period
1960–1986 (14 samples) with 14-sample sets randomly drawn
from the Gaussian distribution (dashed line); and the his-
togram of correlations between the number of the Republican
senators in the period 1960–1986 (14 samples) with the related
14-sample segment of the sunspot numbers randomly permu-
tated in the temporal order (IID surrogate, dash-and-dotted
line). Bottom panel: Histogram of correlations between the
number of the Republican senators in the period 1960–1986
(14 samples) with 14-sample realizations of the Barnes model.
The vertical solid line shows the correlation between the num-
ber of the Republican senators and the sunspot numbers for
the period 1960–1986.

this case from the number of the Republican senators.
In order to evaluate the statistical significance in the

one-sided test, the histograms are summed-up from the
most left bin to the right, in order to obtain the cumu-
lative histograms (Fig. 6) showing the cumulative prob-
ability of correlation values from the minimum (-1) to a
given value. It means that the significance p of a given
value, i.e. the probability that a correlation equal to or
larger than a given value could occur by chance, if the
null hypothesis is valid, is the complement to one from
the actual cumulative probability. For the 24-sample seg-
ment 1960–2006 we have c = 0.16 and we obtain p < 0.22
(cf. the vertical solid line with the dashed curve in the
upper panel of Fig. 6). From the same cumulative his-
togram (the dashed curve in the upper panel of Fig. 6)
we can read the critical value for the significance level
α = 0.05 which is, in the 24-sample case, γ = 0.34. The
Monte-Carlo approach is consistent with the standard
‘significance table’ approach, advising not to reject the
null hypothesis in the case of the record 1960–2006. For
the sub-segment 1960–1986 again the Monte-Carlo agrees
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FIG. 6: Top panel: Cumulative histogram for the distribu-
tion of the correlations of the 24-sample sets drawn from the
Gaussian distribution (dashed line); cumulative histogram for
the distribution of the correlations of the number of the Re-
publican senators in the period 1960–2006 (24 samples) with
24-sample realizations of the Barnes model (solid line). The
vertical solid line shows the correlation between the number
of the Republican senators and the sunspot numbers for the
period 1960–2006. Bottom panel: The same as in the top
panel, but for the 14 samples in the period 1960–1986.

with the related tables: the significance for c = 0.52 is
p < 0.027 (cf. the vertical solid line with the dashed
curve in the lower panel of Fig. 6), the result in favour
for rejecting the null hypothesis. Should we consider this
result as an indication for a possible relation between the
solar activity and the election success of the Republican
Party? No. So, what is wrong? In fact, nothing. Let
us remind the null hypothesis, stated above: indepen-
dent (c = 0) realizations of IID Gaussian processes. As
we demonstrated by using the IID surrogates, even the
strict Gaussianity is not the decisive property, but the
explanation of the failure of the current null hypothe-
sis is in the IID property. The independent, identically
distributed samples mean that in the data there is no re-
lation between any xi and xi+j . Apparently, this is not
true. The subsequent values xi and xi+j (or yi and yi+j)
in both the data sets are not independent. Especially the
sunspot numbers with their cyclic behaviour are charac-
terized by non-zero autocorrelations c(xi, xi+j). This
phenomenon, also called serial correlation, is typical es-
pecially in the context of time series and explains why
the IID null hypothesis is inadequate in cases when c(xi,
xi+j) and c(yi, yi+j) are nonzero for j 6= 0. The serial
correlation is a data-specific property and therefore no
universal table of critical values cannot be derived for
testing the independence of serially correlated data sets,
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FIG. 7: Normalized numbers of the Republican senators
(dashed line in all three panels) compared with random sur-
rogate data (solid lines) obtained as a realization of Gaussian
white noise (top panel) and two different realizations of the
Barnes model for the sunspot cycle (middle and bottom pan-
els).

or time series. Computing correlations and comparing
them with tabelated critical values implicitly means that
the IID null hypothesis is used.

The possible solution for testing the null hypothesis
of independence for serially correlated data is the sur-
rogate data approach. Here we will keep the senators
data unchanged, but we construct surrogate data hav-
ing the same serial correlations, or more precisely, the
same autocorrelation function as the original sunspot
data, however, by the construction the surrogate data
are independent from the senators data, as well as from
the original sunspot data. Such surrogate data can be
either obtained by numerical manipulation of the origi-
nal sunspot data, or generated by a mathematical model
mimicking statistical properties of the sunspot numbers.
We will use realizations of the Barnes model [126] which
will be described in detail in Sec. 6, where we also will see
that the linear dependence given by the autocorrelation
function of the realizations of the Barnes model is con-
sistent with the linear dependence in the sunspot data.
Here we only demonstrate two different realizations of
the Barnes model in Fig. 7. There is no structure in the
realizations of the IID Gaussian process (the top panel
of Fig. 7, solid line), while the Barnes model (the middle
and bottom panels of Fig. 7) produces data with the same
periodicity as that observed in the sunspot cycle. The
artificial sunspot cycle, simulated by the Barnes model,
is, as a process, independent from the senators data by
the way of its constructions. A majority of realizations

of the Barnes model have no apparent correlations with
the senators data in the period 1960–1986, such as the
example in Fig. 7, the middle panel. By chance, how-
ever, strongly correlated realizations can occur (Fig. 7,
the bottom panel). Of course, the probability of such a
chance requires a statistical evaluation.

Again, using 100,000 realizations of the Barnes model
we construct the histograms of the correlations c(x, y)
with the senators data for the 24-sample and the 14-
sample sets (the lower panels in Figs. 4 and 5, respec-
tively). We can see that these histograms are wider than
the related histograms for the IID null hypothesis, indi-
cating that larger correlation values can occur by chance
than in the case of the IID data. The cumulative his-
tograms for the Barnes model surrogate data are depicted
in Fig. 6 by the solid lines. The significance for the cor-
relation value c = 0.52 for the period 1960–1986 is now
p < 0.14 which is not considered small enough for re-
jecting the null hypothesis of independence. Of course,
the correlation c = 0.16 for the period 1960–2006 is not
significant either (p < 0.32). If we use the cumulative his-
tograms obtained using the Barnes model surrogate data
(Fig. 6, the solid lines) for evaluation of the test critical
values, for the significance level α = 0.05 for the one-
sided test we have γ = 0.45 for 24 samples, and γ = 0.73
for the 14-sample series. Thus in the latter case, for the
correlation to be significant on α = 0.05, the correlation
should exceed the value 0.73. The actual value c = 0.52
is not significant. The statistical test with the appropri-
ate null hypothesis indicates that this correlation prob-
ably occurred by chance and campaign managers of the
Republican Party need not to be afraid of a low solar
activity.

Using a properly chosen surrogate data for numerical
realizations of the null hypothesis in the Monte Carlo
approach, the statistical testing can provide a power-
ful tool for preventing false positive detections of vari-
ous phenomena and relationships. However, the choice
of a correct testing methodology is not a trivial problem
and the surrogate data should be carefully tailored for a
particular case. In the following Sections we will discuss
some problems encountered in surrogate data applica-
tions which recently appeared in a part of the physical
literature.

Looking back at the c(x, y) histograms obtained us-
ing the Barnes model surrogate data (the lower panels
in Figs. 4 and 5) we can already at this point give a
notice to a common error in the surrogate data appli-
cations. Many authors evaluate surrogate tests by com-
puting a difference between the discriminating statistic
obtained from the tested data and the mean value of
the discriminating statistic obtained from the surrogate
ensemble, divided by the standard deviation (SD there-
after) of the discriminating statistic obtained from the
surrogate ensemble. Then, if such a difference is greater
than 1.699, the difference is considered significant and the
null hypothesis is rejected. Again, we do not go to sub-
tle disputes between the Fisher’s and Neyman-Pearson’s
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approaches, we rather remind that this critical value is
derived from a Gaussian distribution of the discriminat-
ing statistic, where the digression 1.699SD is related to
the significance level α = 0.05 for rejecting the null hy-
pothesis of a zero value in the two-sided test. We can see
that the distributions of the correlations for the Barnes
model surrogates are quite different from Gaussian ones.
It is typical for various discriminating statistics, used
in nonlinear dynamics in combinations with some spe-
cific surrogate data that the distributions of the statis-
tics are wider than the Gaussian distribution and/or are
fat-tailed (decreasing in a power-law way instead of the
exponential decay as in the case of the Gaussian distri-
bution). Therefore, it is recommended to evaluate the
surrogate data test by estimating the exact significance
p from the empirical distribution, rather than using the
critical values derived from the Gaussian distribution, al-
though the former requires much more realizations of the
surrogate data. However, not all tests evaluated by using
the ‘number of SD’ approach are incorrect. If the null hy-
pothesis was not rejected for the difference smaller that
1.699SD, or, on the other hand, the null was rejected by a
huge difference in higher multiples or tens of SD, then the
correct histogram approach probably would not change
the results. The test results in the range 1.7 – 3SD might
be problematic and require a reassessment.

4. TESTING FOR NONLINEARITY

The motivation for and introduction of the surrogate
data tests for nonlinearity into nonlinear dynamics and
the theory of deterministic chaos has been described in
Sec. 2 2.2. We can see this problem from a broader per-
spective of analysis of time series recorded in complex
systems. Many authors have the temptation to apply
modern, just developed, or even still being developed
nonlinear methods in an expectation to obtain more in-
formation than by using the classical time series analysis
methods [22], based on the linear theory. Various systems
include nonlinear components so that a linear description
seems unsatisfactory. The question is, however, whether
a specific signal recorded from such a system is indeed
affected by nonlinearity so that its linear analysis can
fail. A nonlinearity test should be performed before us-
ing nonlinear methods which are usually more computer-
intensive and theoretically/methodologically (mathemat-
ically/statistically) less elaborated than the linear meth-
ods. As we point out in a more general discussion on
the statistical testing, failure to reject the null hypoth-
esis of a linear process is not an evidence that the un-
derlying mechanism is indeed linear. When the analysed
data, however, cannot be, in a properly done test, distin-
guished from realizations of a linear process, than we can
hardly expect that useful information can be extracted
by a nonlinear descriptor. Moreover, there is a danger
of unfounded interpretations of the results in usually so
attractive and philosophically tractable terms of dimen-

sions or Lyapunov exponents.

4.1. Formulation of the problem

Let {y(t)} be a time series, i.e., a series of measure-
ments done on a system in consecutive instants of time
t = 1, 2, . . . . The time series {y(t)} can be considered
as a realization of a stationary linear stochastic process
{Y (t)}. Without loss of generality we can set its mean
to zero. Then the linear stochastic process Y (t) can be
written as:

Y (t) = Y (0) +
∞∑

i=1

a(i)Y (t− i) +
∞∑

i=0

b(i)N(t− i) , (10)

where b(0) = 1,
∑∞

i=1 |a(i)| < ∞,
∑∞

i=0 |b(i)| < ∞,
{N(t)} is an independent, identically distributed (iid),
normally distributed process with zero mean and finite
(constant) variance. (For more details see [21].)

Alternatively, the time series {y(t)} can be considered
as a projected trajectory of a dynamical system, evolv-
ing in some measurable d-dimensional state space. To be
more specific, let Xt denote a state vector in Rd. Then
the measurements y(t) are obtained as y(t) = g(Xt),
where g(.) is a projection (measurement function), and
temporal evolution of Xt may be described by a discrete-
time dynamical system (a difference equation):

Xt = F (Xt−1) , (11)

with X0 ∈ Rd and for t ≥ 1.
Due to ubiquity of noise, it is more realistic to replace

the above states by random variables and the dynamics
by a Markovian model such as

Xt = F (Xt−1, et) , (12)

where t ∈ Z+, F : R2d → Rd, {et} is a sequence of in-
dependent and identically distributed d-dimensional ran-
dom vectors and et is independent of Xs, 0 ≤ s < t.
We call {et} the dynamic noise. Following Tong [24],
we refer to equation (11) as the skeleton of model (12),
considering F (X) = F (X, 0). For convenience, it is fre-
quently assumed that the dynamic noise is additive so
that equation (12) reduces to the model with additive
noise

Xt = F (Xt−1) + et . (13)

4.2. The null hypothesis and the surrogate data

The approach for identifying nonlinearity in time se-
ries, introduced by Theiler et al. [83] as the method of
surrogate data, seeks an evidence for nonlinearity by re-
jecting the null hypothesis of a linear stochastic process
such as the above definition (10). It is important that the
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Monte Carlo realizations of the null hypothesis – the sur-
rogate data preserve the ‘linear properties’ of the tested
data. It is meant, namely, the serial linear correlations,
for time series {y(t), t = 1 . . . N} expressed as the auto-
correlation function

c(τ) ≡ c(y(t), y(t−τ)) =
1

N − τ

N∑
t=τ+1

y(t)y(t−τ) . (14)

Without a loss of generality we consider that the time
series {y(t)} has a zero mean and a unit variance. Ac-
cording to the Wiener-Khinchin theorem the autocorrela-
tion function is related to the power spectrum which can
be estimated as the periodogram P (k), using the Fourier
transform of {y(t)},

S(k) =
N−1∑
t=0

y(t)ei2πkt/N (15)

as P (k) = |S(k)2|.
For a Gaussian linear process, the linear properties are

specified by the squared amplitudes of the Fourier trans-
form (i.e., the periodogram estimator of the power spec-
trum). The required surrogate time series {y′(t)} can
be generated by multiplying the Fourier transform of the
data by random phases and then transforming back into
the time domain:

y′(t) =
N−1∑

k=0

eiαk
√

P (k)e−i2πkt/N , (16)

where 0 ≤ αk < 2π are independent, uniformly dis-
tributed random numbers. Due to the way of generating
the surrogate data using the Fourier transform (FT), we
call this type of surrogate data the FT surrogates.

In order to capture an autocorrelation function of an
underlying process, one can directly fit onto data a model
of the same type as the definition of a linear process (10),
just of a finite order m,n, i.e. the first sum in (10) has m
summands and the second sum has n summands. Such a
model is called an autoregressive moving average model,
or an ARMA model, with specification of its order shortly
written as ARMA(m,n). In principle, such a model can
also be used for generating the surrogate data. It is nec-
essary, however, to realize that we distinguish two types
of null hypotheses - simple and composite. An example
of a simple null hypothesis is a linear Gaussian process
with a given mean and variance. In nonlinearity tests,
however, we should consider a class of such processes
without a specified mean and variance. Such a specifica-
tion defines the composite null hypothesis. Parameters,
specifying particular members of the considered class of
processes are called the nuisance parameters. A discrim-
inating statistic that does not depend on the nuisance
parameters is called pivotal. Using a non-pivotal statis-
tic to test a composite null hypothesis, when nuisance
parameters are unknown, might be problematic.

Theiler & Prichard [127] explain that ARMA mod-
els produce typical realizations of a Gaussian process,
while the FT surrogates are constrained realizations –
constrained to a particular sample spectrum. Thus the
FT surrogates provide a subset of all realizations that
are typical for the considered process. Theiler & Prichard
[127] demonstrate that for non-pivotal statistics and com-
posite null hypotheses, the constrained surrogate data
have better test performance than the typical realiza-
tions generated by the ARMA models. Although some
nonlinear statistics are pivotal [128], the FT surrogates
became most frequently used, probably also due to the
elegant way of their generation. The performance of the
FT surrogates in nonlinearity tests, however, can be jeop-
ardized by pitfalls on different levels: problems of prin-
cipal as well as of technical nature can be identified and
not always satisfactorily solved. Mammen and Nandi
[129] warn that the variance of critical values of a statis-
tic obtained from the FT surrogates may be of the same
order as the variance of the test statistic itself. Chan
[130] shows that asymptotically the FT surrogates are
exactly valid for stationary Gaussian circular processes.
The FT surrogates tend to preserve the periodic autocor-
relation function [67] rather then the standard autocorre-
lation function (14). This problem and possible solutions
are discussed in Refs. [67, 131]. Paluš [132] analyses a
related problem of strongly cyclic data, when a limited
series length causes ‘blurring’ of a sharp spectral peak so
that the FT surrogate data have weaker autocorrelation
than the original data. This property can lead to false
rejections of the null hypothesis. Therefore Paluš [132]
proposes to accompany each nonlinearity test with a test
using a linear statistic assessing the quality of the surro-
gate data.

Realizations of the FT surrogates tend to have a Gaus-
sian distribution. A possibly different distribution of
the original data can be another source of false posi-
tive results of nonlinearity test. Therefore Theiler et
al. [83] propose a histogram transformation (rescaling of
the data) in order to equal the histograms of the original
data and the surrogates, then called the latter the am-
plitude adjusted FT (AAFT) surrogates. Using such a
histogram transformation, in fact, one reformulates the
basic null hypothesis of a linear stochastic process with
Gaussian innovations (10) (and a Gaussian distribution)
to a null hypothesis of a linear stochastic process (10), re-
alization of which underwent a static nonlinear transfor-
mation, i.e., if {y(t)} is a realization of (10), we measure
{w(t)} such that w(t) = G[y(t)], where G is a nonlinear
function. Such nonlinearity is called the static nonlinear-
ity, since it is caused by a static transformation, e.g., it
occurred during a measurement, but it is not inherent to
the dynamics of the process.

It is shown in Ref. [133], however, that for short and
strongly correlated sequences, the AAFT algorithm can
yield an incorrect test since it introduces a bias towards a
slightly flatter spectrum. In fact, the formal requirement
for the surrogates to have the same sample periodogram
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as the tested data should be extended by requiring also
the same sample probability distribution (amplitude his-
togram) as the data. Schreiber and Schmitz [133] pro-
pose a method which iteratively corrects deviations in the
spectrum and in the distribution. Alternatingly, the sur-
rogate is filtered towards the correct Fourier amplitudes
and rank-ordered to the correct distribution. The accu-
racy of such iterative amplitude-adjusted (IAFT) surro-
gates depends on the size and structure of the data. Con-
sidering these complication, a nonlinear statistic that is
independent of the univariate data distribution can be
very useful. Such a statistic used by Paluš [132] will be
introduced in the following Sec. 4 4.3. A detailed dis-
cussion of the problems encountered in the generation of
the surrogate data within the problem of the testing for
nonlinearity was written by Schreiber and Schmitz [134].

4.3. Information-theoretic functionals as
discriminating statistics

Information theory [135, 136] provides efficient math-
ematical tools for quantifying information carried by
random variables and stochastic processes, information
transmitted between and among variables and processes,
as well as common information contained in two or more
variables or processes. The quantification of common in-
formation led to measures of general dependence, i.e.,
the dependence beyond the linear correlation. There-
fore information-theoretic measures have found their way
to nonlinear dynamics and related nonlinear time series
analysis methods. Here we will define some basic terms,
necessary for further considerations.

Consider n discrete random variables X1, . . . , Xn with
sets of values Ξ1, . . . , Ξn, respectively. The probabil-
ity distribution function (PDF) for an individual Xi is
p(xi) = Pr{Xi = xi}, xi ∈ Ξi. We denote the PDF
by p(xi), rather than pXi(xi), for convenience. Anal-
ogously, the joint PDF for the n variables X1, . . . , Xn

is p(x1, . . . , xn). The redundancy R(X1; . . . ; Xn), in the
case of two variables also known as the mutual infor-
mation I(X1;X2), quantifies average amount of common
information, contained in the n variables X1, . . . , Xn:

R(X1; . . . ; Xn) =

∑

x1∈Ξ1

· · ·
∑

xn∈Ξn

p(x1, . . . , xn) log
p(x1, . . . , xn)
p(x1) . . . p(xn)

. (17)

When the discrete variables X1, . . . , Xn are obtained
from continuous variables on a continuous probability
space, then the redundancies depend on a partition ξ cho-
sen to discretize the space. Various strategies have been
proposed to define an optimal partition for estimating
redundancies of continuous variables (see [65, 132, 137]
and references therein). Here we use a simple box-
counting algorithm based on marginal equiquantization
[57, 132, 138], i.e., a partition is generated adaptively in

one dimension (for each variable) so that the marginal
bins become equiprobable. It means that the marginal
boxes are not defined equidistantly but so that there is
approximately the same number of data points in each
marginal bin. The only parameter of this method is
the number Q of the marginal bins. Paluš [132] pro-
posed that computing redundancy/mutual information
of n variables, the number of marginal bins should not
exceed the n + 1-st root of the number of the data sam-
ples, i.e. Q ≤ n+1

√
N .

The equiquantization method effectively transforms
each variable into a uniform distribution. This type
of the redundancy/mutual information estimate, even
its coarse-grained version, is invariant against any
monotonous (possibly nonlinear) transformation of data
[138] and in consequence, information-theoretic function-
als estimated by this algorithm are independent of the
univariate distribution of the input data.

Now, let the n variables X1,. . . , Xn have zero
means, unit variances and the correlation matrix C.
Then, we define the linear redundancy L(X1; . . . ; Xn) of
X1, X2, . . . , Xn as

L(X1; . . . ; Xn) = −1
2

n∑

i=1

log(σi), (18)

where σi are the eigenvalues of the n×n correlation ma-
trix C.

If X1, . . . , Xn have an n-dimensional Gaussian distri-
bution, then L(X1; . . . ; Xn) and R(X1; . . . ; Xn) are the-
oretically equivalent.

In practical applications one deals with a time series
{y(t)}, considered as a realization of a stochastic process
{Y (t)}, which is stationary and ergodic. Then, due to
ergodicity, all the subsequent information-theoretic func-
tionals are estimated using time averages instead of en-
semble averages, and the variables Xi are substituted as

Xi = y(t + (i− 1)τ). (19)

Due to stationarity the redundancies

Rn(τ) ≡ R(y(t); y(t + τ); . . . ; y(t + (n− 1)τ)) (20)

and

Ln(τ) ≡ L(y(t); y(t + τ); . . . ; y(t + (n− 1)τ)) (21)

are functions of n and τ , independent of t.
Let us remind also equivalent definitions of the redun-

dancy, or, for simplicity of the mutual information of
two discrete random variables X and Y with sets of val-
ues Ξ and Υ, respectively, and probability distribution
functions p(x), p(y) and joint PDF p(x, y). The entropy
H(X) of a single variable, say X, is defined as

H(X) = −
∑

x∈Ξ

p(x) log p(x), (22)
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and the joint entropy H(X, Y ) of X and Y is

H(X,Y ) = −
∑

x∈Ξ

∑

y∈Υ

p(x, y) log p(x, y). (23)

The conditional entropy H(Y |X) of Y given X is

H(Y |X) = −
∑

x∈Ξ

∑

y∈Υ

p(x, y) log p(y|x). (24)

The average amount of common information, contained
in the variables X and Y , is quantified by the mutual
information I(X; Y ), defined as

I(X; Y ) = H(X) + H(Y )−H(X, Y ). (25)

The mutual information normalized as

ι(X; Y ) =
I(X; Y )

max(H(X),H(Y ))
(26)

attains values between 0 and 1, and can be used to define
a distance measure d(X, Y ) as

d(X, Y ) = 1− ι(X; Y ), (27)

which has all mathematical properties of a distance in
the space of random variables [139]. Thus d(., .) define a
metric based on the strength of dependence. Independent
variables have the maximum distance (d(., .) = 1), the
functionally related variables have a zero distance.

The conditional mutual information I(X; Y |Z) of the
variables X, Y given the variable Z is given as

I(X; Y |Z) = H(X|Z) + H(Y |Z)−H(X, Y |Z). (28)

For Z independent of X and Y we have

I(X; Y |Z) = I(X; Y ). (29)

By a simple manipulation we obtain

I(X; Y |Z) = I(X; Y ; Z)− I(X; Z)− I(Y ; Z). (30)

Thus the conditional mutual information I(X; Y |Z)
characterizes the “net” dependence between X and Y
without the possible influence of another variable, Z.

The entropy and information are usually measured in
bits if the base of the logarithms in their definitions is 2,
here we use the natural logarithm and therefore the units
are called nats.

4.4. The null hypothesis of nonlinearity tests and
its negations

We have already mentioned some problems embedded
in the nonlinearity tests based on the FT surrogate data.
We should, however, return to the basic null hypothe-
sis and precisely consider its negations before interpret-
ing possible rejections of the null hypothesis. The null

hypothesis realized by the FT surrogates is in principle
equivalent to a linear stochastic process such as that de-
scribed by the ARMA model (10). It is very common
in the nonlinear dynamics literature to consider the re-
jection of the null (10) as an evidence for a process such
as (13) with a nonlinear skeleton (11). This is, however,
only one of possible negations of (10). A number of dif-
ferent processes should be considered, which possess a
linear deterministic skeleton[232], i.e., a linear AR part
– the first sum in (10), or no deterministic skeleton at
all (MA processes), however, their innovations {N(t)}
do not fulfill the conditions given above. Generally, one
or more of the following properties could reject the null
(10):

1. The innovations {N(t)} are not Gaussian.

2. The innovations {N(t)} are not an iid process,
where iid means that the innovations should be not
only uncorrelated, but generally independent.

3. The variance of {N(t)} is not constant.

We will demonstrate such effects in the following ex-
amples.

5. TESTING FOR NONLINEARITY IN THE
ATMOSPHERIC DYNAMICS

Complex dynamical phenomena in the atmosphere and
the prediction of the weather or the climate have been
challenging physicists for decades. It is not surprising
that many papers have been published, devoted to the
problem of inferring the dynamical mechanisms of the
weather and of the climate changes from recorded data
using the ideas and methods of the theory of determinis-
tic chaos. The measured quantities, selected for the anal-
yses, have included, e.g., local surface pressures, relative
sunshine durations, zonal wave amplitudes [140], upper-
level geopotential heights [141, 142], low-level vertical
velocity components [143], or, oxygen-isotope concentra-
tions in deep sea cores [140, 144–147]. In the majority
of the cases the Grassberger-Procaccia algorithm for es-
timating the correlation dimension [51] was used as the
analysis tool, and obtained low values of the dimension
estimates were claimed as evidence for low-dimensional
chaos in the weather or climate dynamics [140–144, 146].
On the other hand, Grassberger [145] cautioned, that in
the case of short and noisy data, as the climatic and
weather records usually are, the reliability of the method
is questionable and the low values of the dimension es-
timates may be spurious. And indeed, he constructed a
random series of corresponding length, preprocessed by
the same way as the climatic record in [144] and obtained
a low value of the estimated dimension. Also Lorenz [148]
writes that it seems unlikely that the global weather or
climate systems possess a low-dimensional attractor. As
a contribution to this discussion, Paluš and Novotná [149]
applied a test for nonlinearity to weather related data.
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FIG. 8: (a) Linear redundancy L2(τ), (b) redundancy R2(τ),
as functions of the lag τ , (c) linear redundancy statistic,
(d) redundancy statistic for the Prague series of the geopoten-
tial heights of 500 hPa isobaric level. Embedding dimension
n = 2.

In their test the above information-theoretic functionals
were used as the discriminating statistic with the FT sur-
rogate data.

5.1. Lack of nonlinearity in geopotential heights
and in the temperature

In Ref. [149], two series of daily values of geopotential
heights of 500 hPa isobaric level were analysed, the first,
6570 samples (18 years) recorded in Prague, Ruzyně sta-
tion; the second, 11670 samples (32 years) recorded in
Krakow. The surrogate data were generated using the
fast Fourier transform (FFT), which requires the series
length to be a power of two, therefore subseries of lengths
4096 and 8192 samples, respectively, were analysed.

The other two series, analysed in [149], were recorded
in Prague, Klementinum station, and are more unique:
the series of 200 years (73000 samples) of mean daily val-
ues of the near-surface air temperature and daily values
of the near-surface atmospheric pressure. Again, due to
the FFT-based surrogates, the subseries of 65536 samples
were analysed.

Paluš et al. [150, 151] demonstrated that already a
qualitative comparison of the graphs of the redundancy
Rn(τ) and the linear redundancy Ln(τ), as functions of
the time lag τ , can serve as an indication of nonlinearity.
This comparison, referred to as the qualitative testing,
is then followed by the standard surrogate data test in
which the redundancy Rn(τ) serves as the discriminating
statistic. The same test, as that using Rn(τ), is done us-
ing the linear redundancy Ln(τ). Since Ln(τ) is given by

the autocorrelation function – see Eq. (18), the applica-
tion of Ln(τ) as a discriminating statistic tests the quality
of the surrogate data. A non-significant test with Ln(τ)
confirms that the autocorrelation function of the tested
data is preserved in the surrogates within the statistical
accuracy. A significance in this test identifies a prob-
lem in the surrogate data, so that a possible significance
obtained using a nonlinear statistic can be spurious.

The results of the analysis of the Prague series of the
geopotential heights are presented in Fig. 8. The qualita-
tive comparison shows no substantial difference between
the time plots of the linear redundancy L2(τ) and the
redundancy R2(τ), showed in Figs. 8a and 8b, respec-
tively. In the quantitative analysis with the FT surro-
gates (Figs. 8c, d), where the discriminating statistic is
defined as the difference between R2(τ) (or L2(τ)) from
the data and the mean values from the surrogate set,
given in the number of the surrogate SD’s, there are sev-
eral formally significant results (i.e. differences greater
than 1.699SD), however, even if we suppose a normal
distribution of this statistic, there are two reasons why
not to reject the null hypothesis of a linear stochastic
process:
a) Statistical reason: Due to multiplicity of the test val-
ues (60 in this case) the criterion for significance of an
individual value must be strengthened, i.e., based on
the Bonferroni inequality we should take, in this case,
α < 0.05/60 instead of α < 0.05 [152, 153], what in-
creases the critical value of the statistics from 1.699 to
approximately 3.5. This approach, however, is fully cor-
rect for independent test values, for the dependent test
values, what is the case here, the power of the test can be
decreased. In order to avoid the type II error (i.e., accep-
tance of the null hypothesis when it should be rejected),
the Heilperin-Ruger inequality can be considered instead
of the Bonferroni inequality, and, expecting k significant
values (from m total test values) α < 0.05k/m can be
taken [154, 155]. In this case the critical value is still
about 3. Thus, no significant difference was found.
b) Methodological reason: Even if we accept some values
of the nonlinear statistic (based on Rn(τ)) as significant,
we cannot reliably reject the null hypothesis of a linear
stochastic process, as far as equivalent differences were
found in the linear statistic (based on Ln(τ)). Therefore
the observed differences can be caused by the fact that
the surrogates do not exactly mimic the linear properties
of the data, and not necessarily by a nonlinearity. There-
fore, using both the qualitative and quantitative meth-
ods, Paluš and Novotná [149] concluded that the Prague
series of the geopotential heights was not unambiguously
discernible from the isospectral linear stochastic process.

The main feature of the dynamics of the above geopo-
tential heights series, as it can be observed in the time-lag
plots of the redundancies (Fig. 8a, b), is the one-year
periodicity. Asking whether there is anything beyond
this dynamics, also the filtered series was analysed, in
which one-year periodicity was eliminated by the FFT
based filter. In the qualitative analysis both Ln(τ) and
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FIG. 9: (a) Linear redundancy Ln(τ), (b) redundancy Rn(τ),
computed from the near-surface air temperature series. The
four different curves in each picture are the redundancies for
different embedding dimensions, n = 2 − 5, reading from
the bottom to the top. Redundancies Ln(τ) and Rn(τ) are
plotted as Ln(τ)/(n − 1) and Rn(τ)/(n − 1), respectively.
(c) Rn(τ), n = 2 (lower curve), 3 (upper curve), for the sur-
rogate data of the filtered temperature series, (d) Rn(τ), n =
2 (lower curve), 3 (upper curve), for the filtered temperature
series.

Rn(τ) show the same picture – they decrease quickly un-
til the lag 12 days and then fluctuate about a very low
level. The question whether these small values (2 – 4
×10−3) can mean a “numerical zero”, i.e., the fact that
the filtered series {y(t)} and {y(t + τ)} for τ > 12 are
independent, was answered by the quantitative test us-
ing the scrambled surrogates – the elements of the series
were mixed in temporal order so that all temporal cor-
relations were destroyed. Comparing the data with the
scrambled surrogates the null hypothesis of an IID pro-
cess was tested an rejected (differences of 4 – 8 SD’s).
On the other hand, using the FFT surrogates, both the
stronger dependences (the lags 1 – 12) and the weak de-
pendences for the lags τ > 12 days were found consistent
with the isospectral linear stochastic process.

The results for the Krakow series were very similar to
those for the above Prague series. Therefore, Paluš and
Novotná [149] concluded that the analysis of the record-
ings of the geopotential heights did not yield sufficient
arguments for rejecting the linear stochastic explanation.

The results of the analysis of the surface air temper-
ature record (65,536 samples – days) are presented in
Fig. 9. The qualitative analysis of the data (Figs. 9a,
b) brought no substantial difference between Rn(τ) and
Ln(τ), n = 2 – 5, τ = 10 – 1200 days (Figs. 9a, b). In the
quantitative analysis, the differences obtained were not
greater than 1.6 SD’s. After filtering out the one-year pe-
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FIG. 10: (a) Linear redundancy Ln(τ), (b) redundancy
Rn(τ), computed from the near-surface air pressure series.
(c) Linear redundancy Ln(τ), (d) redundancy Rn(τ), com-
puted from the filtered near-surface air pressure series. The
three different curves in each picture are the redundancies
for different embedding dimensions, n = 2 − 4, reading from
the bottom to the top. Redundancies Ln(τ) and Rn(τ) are
plotted as Ln(τ)/(n− 1) and Rn(τ)/(n− 1), respectively.

riodicity, the quantitative analysis brought no significant
results, like the analysis before the filtration. In Figs. 9c,
d we can see that the redundancies of the filtered temper-
ature series decrease until the lag of about 80 days and
then fluctuate about the same (low) level. Similarly, like
in the case of the geopotential heights data, the hypothe-
sis of an IID process was rejected, however, the observed
dependence was found consistent with a linear stochas-
tic explanation. The analysis of the temperature record
brought no arguments to reject the null hypothesis of a
linear stochastic process. Note that in this case the linear
redundancy Ln(τ) did not detect any significant differ-
ences from the surrogate data, although the temperature
data contains a strong periodic component. As discussed
by Paluš [132], the above-mentioned problems with re-
producing the autocorrelation function of the cyclic data
emerges in relatively short time series such as the series
of the geopotential heights, while using long time series
(such as the temperature series of 65536 samples) the
FFT algorithm can produce reliable surrogate data.

5.2. Pressure data: What kind of nonlinearity do
we observe?

The results of the analysis of the near-surface air pres-
sure record (65,536 samples – days) are presented in
Fig. 10. The qualitative analysis of the data (Figs. 10a,
b) shows some differences between Ln(τ) and Rn(τ),
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namely the half-year peaks are not so clearly pronounced
in Ln(τ) than in Rn(τ), the one-year periodicity, how-
ever, is apparent in both Ln(τ) and Rn(τ). More clear
results were obtained by the quantitative analysis: While
no significant differences were detected on the linear level,
i.e., by the statistic based on Ln(τ), the nonlinear statis-
tic (based on Rn(τ)) brought significant differences of
values between 5 and 15 SD’s. The results of the analysis
of the filtered pressure series are even more illustrative:
The results of the quantitative analysis did not change af-
ter the filtration, i.e., evidence for nonlinearity, safe from
spurious effects of differences on the linear level, was de-
tected. In the qualitative comparison (Figs. 10c, d), we
can see that Rn(τ) decreased after the filtration, i.e., the
linear contribution to the dependence structures in the
data (reflected in nonlinear Rn(τ) as well) was removed
by the filtration, while the character of the time-lag de-
pendence of Rn(τ) is almost the same as in Rn(τ) com-
puted from the original data, i.e., the principal one-year
peaks and the smaller half-year peaks were detected. On
the other hand, linear redundancy Ln(τ) of the filtered
data does not reveal these structures. Note that the fil-
tering in Ref. [149] was done in the spectral domain. We
can analyse the pressure data again using so-called daily
anomalies, defined as the differences from the long-term
daily averages. This transformation of data (almost en-
tirely) removes the annual cycle as the seasonality in the
mean and does not cause effects sometimes observed af-
ter using the filters in the spectral domain. The results
are presented in Fig. 11. For lags larger than a few days
there is only a weak linear dependence, as measured by
the linear redundancy (Fig. 11a) and reflected in the sur-
rogates, but the (nonlinear) redundancy detects a clear
dependence as an oscillatory structure with a yearly peri-
odicity. This difference is highly significant (10 – 30 SD’s,
Fig. 11d), while no significance in the linear statistic
(Fig. 11c) confirms the quality of the surrogates, which
correctly reflect ‘the linear properties’ of the data. So we
confirm the nonlinearity detected in the previous analysis
(Fig. 10). Can this result be understood as an evidence
for the model (13) with a nonlinear periodic skeleton F ,
which could provide predictability of the air pressure for
several years in advance?

The seasonality in the mean present in this data
(Fig. 12, upper panel) was mostly removed by consid-
ering the differences from the long term daily averages.
The problem is that also the variance of this data is not
constant, but clearly seasonal (Fig. 12, the lower panel,
the standard deviation (SD) is the square root of the
variance). This property is ‘nonlinear’ in the sense that
the surrogate data and the model (10) possess a con-
stant variance and cannot reproduce the seasonality in
the variance. After rescaling the data in order to obtain
a constant variance, the effect of the false long-term non-
linear dependence is lost (Fig. 13). In the rescaled data
there is no long-term dependence except of a weak lin-
ear link due to the not entirely removed seasonality in the
mean, i.e., although the null hypothesis (10) was rejected,
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FIG. 11: (a) Linear redundancy L(y(t); y(t + τ)) (solid line),
(b) redundancy R(y(t); y(t + τ)) (solid line), for the series of
the differences from the long term daily averages of the near-
surface air pressure (Prague-Klementinum station) and for its
FT surrogates (thin solid and dashed lines present mean and
mean±SD, respectively, of a set of 30 surrogate realizations);
(c) linear (L-based), and (d) nonlinear (R-based) statistics;
as functions of the time lag τ , measured in days.
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FIG. 13: (a) Linear redundancy L(y(t); y(t + τ)) (solid line),
(b) redundancy R(y(t); y(t+τ)) (solid line), for a series of dif-
ferences from the long term daily averages of the near-surface
air pressure, rescaled in order to have a constant variance,
and for its FT surrogates (thin solid and dashed lines present
mean and mean±SD, respectively, of a set of 30 surrogate re-
alizations); (c) linear (L-based), and (d) nonlinear (R-based)
statistics; as functions of the time lag τ , measured in days.

the rejection was apparently caused by the seasonal (non-
constant) variance and not by a nonlinear deterministic
structure (11).

The above example of the near-surface air pressure
clearly demonstrated the influence of variable variance on
the redundancy – surrogate data nonlinearity test [132].
The effect of non-Gaussian innovations {N(t)} was dis-
cussed in [132], and a possible influence of non-iid {N(t)}
(i.e., innovations containing (nonlinear) temporal struc-
tures) is understandable. It is important to note that
similar effects of ‘defective’ innovations in a process
under study would effect not only this particular test
for nonlinearity, but all tests which use some type of
FT/ARMA surrogates, and also any method which con-
tain the process (10) at least implicitly in its construc-
tion. Also, all entropy-related statistics, that is, not only
the above information-theoretic functionals, but also, for
instance, statistics based on the correlation integral [156],
are extremely sensitive to variable variance and/or to
(non)Gaussianity of the innovations {N(t)}. Therefore
one should very carefully assess results of nonlinearity
tests in order to avoid confusing this kind of effects with
actual nonlinear functional dependence in the data under
study. Some authors [157] even report that the ‘strength
of nonlinearity’ in air pressure data depends on latitude,
with the weakest or no nonlinearity in tropical or sub-
tropical regions. The influence of the seasonality in the
variance should be carefully assessed before taking such
conclusions for granted.
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FIG. 14: (a) The daily mean near-surface air temperature
in Prague in 1920 (dashed lines) and in 1929 (solid lines),
raw data (thin lines) and smoothed data (thick lines). The
solid straight lines show that the temperature of March 21,
1920 was reached with a delay of 24 days in 1929. (b) The
phase φ(t) of the annual temperature cycle obtained from
the Prague record (1775 – 2001). (c) The phase φ(t) of the
annual temperature cycle obtained from seven European sta-
tions (thin smooth lines); and the North Atlantic Oscillation
index averaged over the January-March period (thick line).
All data are normalized to zero mean and unit variance.

5.3. But the atmosphere is not linear ...

We should again reiterate the statement that the lack
of arguments for rejecting the null hypothesis is not an
evidence that the null hypothesis is true. The above re-
sults or the example of Grassberger [145] do not say that
the dynamics of the atmosphere is linear, they just dis-
qualify the assertion that a low-dimensional, nonlinear,
chaotic dynamical system in the evolution of the weather
and climate was detected. Neither the correlation dimen-
sion, nor the mutual information unambiguously detect
a functional nonlinearity in the analysed meteorological
data. The statistical tests with the surrogate data pre-
vent researchers from making claims not supported by
the available data. Even this ‘negative’ result is useful in
the process of broadening scientific knowledge. Can we,
however, use the testing with the surrogate data in ob-
taining new knowledge? Of course, we can, we just need
to specify more focused questions. In the next Section 6
we will demonstrate that it is more useful to test for a
specific nonlinear property, than just to test for general,
unspecified nonlinearity.

Practically all atmospheric data are influenced by the
annual cycle. The latter is most prominent in air temper-
ature series recorded in mid and higher latitudes. Let us
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consider that the dominant component of the annual tem-
perature cycle can be written, apart from a noise term,
as

T (t) = A(t) cos[ωt + φ(t)], (31)

where t is time, A(t) is the amplitude, ω is the (con-
stant) frequency given by the tropical year. The phase
φ(t) describes the difference from the exact annual cycle,
so that it reflects fluctuations in the timing of seasons.
Paluš et al. [158] demonstrated that the phase fluctu-
ations φ(t) are rather large, giving differences in start-
ing of the spring seasons up to 24 days inside a decade
(Fig. 14). Thus, on the century scale, a phase shift due
to the precession is negligible in comparison with the ob-
served phase fluctuations φ(t).

If the atmospheric dynamics was linear stochastic, the
phase fluctuations φ(t) could be well described by a ran-
dom process. Paluš et al. [158] show that these fluctua-
tions are not arbitrary, but are correlated with a large-
scale atmospheric process, known as the North Atlantic
Oscillation [159]. The inherent dynamics of the phase
fluctuations φ(t) was not analysed yet, however, it is a
challenging task, since it could demonstrate a nonlinear
response of the atmosphere to the regular driving given
by the movement of the Earth. Uncovering a dynamical
mechanism underlying the phase fluctuations φ(t) would
also allow predictions of the fluctuations of seasons. Po-
tential skills in the prediction of the onsets of seasons
could have significant socio-economic impacts, while an
unpredictable phase in the climate may be a more seri-
ous problem to society than changes in the amplitude of
the annual cycle or even of the mean temperature [160],
considering the strong influence of seasons at mid and
higher latitudes on natural ecosystems and human ac-
tivities such as agriculture, forestry, water management,
transportation and tourism.

6. NONLINEARITY IN THE SUNSPOT
NUMBERS

Let us return to the famous sunspot numbers, probably
the longest historical record of the solar variability. As
we mentioned in Sec. 3 3.3, in 1852 Wolf [115] reported
the now well-know 11-year cycle. Of course, the sunspot
cycle is not strictly periodic, but fluctuations in its ampli-
tude as well as in its frequency (i.e., in the cycle duration)
occur. Regularities and irregularities in the solar activity
cycle [161] are among the most intriguing and poorly un-
derstood aspects of the Sun. Dynamo theory [162–164],
describing complex magnetohydrodynamic plasma mo-
tions inside the Sun, has resulted in many models which
reproduce basic features of the solar activity [165–167].
However, the nature of the solar cycle is far from being
understood and the dynamo models are not predictive
[168]. In many cases stochastic models were constructed
in order to make predictions of a future behaviour of the
sunspot cycle (see [169] and references therein). On the
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FIG. 15: The yearly sunspot numbers 1700–2006 (top panel).
A 307-sample realization of the Barnes model (middle panel).
A realization of the IAFT surrogate data of a 256-sample
subset of the sunspot numbers (bottom panel).

other hand, development in nonlinear dynamics and the
theory of deterministic chaos, namely the methods and
algorithms for analysis and prediction of nonlinear and
chaotic time series have naturally found their way into
the analyses of the sunspot series. Several authors [38–
40] have claimed an evidence for a deterministic chaotic
origin of the sunspot cycle, based on estimations of cor-
relation dimension, Lyapunov exponents and an increase
of a prediction error with a prediction horizon. How-
ever, as we discussed above (Sec. 2 2.2), the dimensional
algorithms have been found unreliable when applied to
relatively short experimental data, and properties con-
sistent with stochastic processes (colored noises) such as
autocorrelations can lead to a spurious convergence of
dimensional estimates [70, 73, 78, 79]. Similar behavior
has been observed also for Lyapunov exponent estimators
[170, 171]. And the increase of a prediction error with an
increasing prediction horizon is not a property exclusive
for chaos, but it can also be observed in stochastic sys-
tems. Therefore, such results cannot be considered as a
convincing evidence for a nonlinear dynamical origin of
the sunspot cycle. For instance, Theiler et al. [83] demon-
strate that the correlation dimension cannot distinguish
the sunspot data from their AAFT surrogate data, while
a prediction error statistic gives a weak distinction (2–
3SD). Only a simple skew statistic, measuring the tem-
poral asymmetry of a signal, is able to reliably reject the
AAFT surrogate data [83]. The asymmetric behaviour of
the sunspot cycle, however, can be mimicked by a trans-
formation of a linear stochastic model, described below
(the Barnes model).
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FIG. 16: (a) Linear redundancy L(y(t); y(t + τ)) (solid line)
for the series of sunspot numbers as a function of the lag τ ;
linear redundancy L(y(t); y(t + τ)) for the related IAFT sur-
rogate set: dash-and-dotted line presents the mean, dashed
lines illustrate the 2.5th and the 97.5th (bottom and top line,
respectively) percentile of the surrogate L(y(t); y(t+τ)) distri-
bution. (b) Nonlinear (general) redundancy R(y(t); y(t + τ))
(solid line), for the series of sunspot numbers as a function
of the lag τ ; nonlinear redundancy R(y(t); y(t + τ)) for the
related IAFT surrogate set, the same line codes as in (a).
(c) Nonlinear redundancy R(y(t); y(t + τ)) (solid line), for
the series of the sunspot numbers as a function of the lag τ ;
nonlinear redundancy R(y(t); y(t + τ)) for the Barnes model
surrogate set, the same line codes as in (a). (d) Nonlinear
redundancy R(y(t); y(t + τ)) (solid line), for a realization of
the Barnes model as a function of the lag τ ; nonlinear redun-
dancy R(y(t); y(t+τ)) for the related IAFT surrogate set, the
same line codes as in (a).

Let us demonstrate the test for nonlinearity using
the information-theoretic functionals as discriminating
statistics in the case of the series of the yearly sunspot
numbers from the period 1700 – 2006 (Fig. 15, top panel).
At the first step we use the iterative, amplitude adjusted
FT (IAFT) surrogate data (Fig. 15, bottom panel).

As the test results, here we do not present differences
from surrogate mean in number of standard deviations
as in the previous section, but using 15,000 surrogate
replications we estimate the 2.5th and 97.5th percentiles
of distributions of the redundancies computed from the
surrogate data. If the values of the redundancy obtained
from the studied data lies outside the range given by
these two percentile values, the null hypothesis can be
rejected on the significance level α < 0.05.

The linear redundancy L(y(t); y(t + τ)) (solid line in
Fig. 16a) lies clearly inside the 2.5th and the 97.5th per-
centiles of the L(y(t); y(t + τ)) IAFT surrogate distribu-
tion (dashed lines in Fig. 16a). This test is just the check

of the quality of the surrogate data and it says that the
linear properties (dependence structures) in the sunspot
data do not differ from those of the IAFT surrogates
(a realization of which is presented in Fig. 15, bottom
panel), so that the surrogates should not be the source
of a spurious detection of nonlinearity.

The nonlinearity test itself is presented in Fig. 16b,
where the (nonlinear) redundancy R(y(t); y(t+τ)) (solid
line in Fig. 16b) is, for majority of the studied lags, higher
than the 97.5th percentile of the IAFT surrogate distri-
bution (the upper dashed line in Fig. 16b). Thus the
null hypothesis of a linear stochastic process (10), possi-
bly passed through a static nonlinear transformation, is
rejected.

Does this rejection really mean that a nonlinear dy-
namical system such as (11) or (13) underlies the sunspot
cycle, or can this rejection be explained by any of the
reasons listed in Sec. 4 4.4 ? This question is hard to
answer. For instance, we cannot evaluate properties of
innovations (model residuals) without an a-priory knowl-
edge of a valid model. Physical models trying to explain
the variation of the solar activity come from the dynamo
theory [164]. The principle of such a self-exciting dynamo
is that the magnetic field is amplified and maintained by
the interaction of mainly three types of hydrodynamic
plasma motions, namely differential rotation, turbulent
convection and helicity. It is interesting to mention that
there are some rather simple conceptual dynamo models
which show a rich dynamical behaviour and can explain
several facts known from observations [165]. Such mod-
els, however, are not fitted directly to experimental data,
are evaluated only in a qualitative way, and are not pre-
dictive.

The Barnes model [126]:

zi = α1zi−1 + α2zi−2 + ai − β1ai−1 − β2ai−2, (32)

si = z2
i + γ(z2

i − z2
i−1)

2, (33)

where α1 = 1.90693, α2 = −0.98751, β1 = 0.78512,
β2 = −0.40662, γ = 0.03 and ai are IID Gaussian ran-
dom variables with zero mean and standard deviation
SD=0.4; is a simple but efficient model able to mimic es-
sential statistical properties of the sunspot numbers. It
incorporates the structure of an autoregressive moving
average ARMA(2,2) model (32) with a nonlinear trans-
formation (33) which ensures that the generated series
remains asymmetric and positive and tends to increase
more rapidly than it decreases. Moreover, the stochastic
Barnes model can mimic some seemingly nonlinear prop-
erties such as behaviour of correlation integrals [173] and
phase portraits [174] obtained from the sunspot series.

We can evaluate, in the sense of the above nonlinearity
test, whether the Barnes model can explain the sunspot
data, by using realizations of the Barnes model as the
surrogate data (Fig. 15, middle panel). The result of
such a test is presented in Fig. 16c.

The nonlinear redundancy R(y(t); y(t + τ)) (solid line
in Fig. 16c) only slightly exceeds the 97.5th percentile of
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FIG. 17: (a) A solution of the nonlinear Duffing oscillator
without any external driving force, and (b) the related in-
stantaneous amplitude (solid line) and frequency (thin line).

the Barnes surrogate distribution in 3 from the 30 studied
lags. Considering the problem of simultaneous statistical
inference, discussed above (Sec. 5 5.1), this result is not
sufficient for the rejection of the null hypothesis presented
by the Barnes model. If we do not reject the Barnes
model using the nonlinear redundancy R(y(t); y(t + τ)),
the linear redundancy L(y(t); y(t + τ)) would not reject
it either, since it is a special case of R(y(t); y(t + τ)).
This means that the linear properties (the autocorrela-
tion function) of realizations of the Barnes model are
consistent with the linear properties of the original data.

On the other hand, when we test for nonlinearity in
a realization of the Barnes model (Fig. 16d), the IAFT
surrogates are rejected. The rejection is clear only in the
lags 21 and 22, however, R(y(t); y(t + τ)) of the tested
series there exceeds the whole range of the surrogate val-
ues, i.e., the significance p = 0 and the test is significant
even considering the problem of the simultaneous statis-
tical inference. This result could be expected, since the
nonlinear transformation (33) is not static, therefore the
IAFT surrogates are rejected.

To summarize the last two tests, the realization of the
Barnes model appeared in the nonlinearity test as nonlin-
ear, and the Barnes model as the null hypothesis for an
explanation of the dependence structures in the sunspot
cycle cannot be unambiguously rejected. Can we find
any solid argument for a nonlinear dynamical origin of
the sunspot cycle, or should we accept a linear stochastic
explanation, such as the Barnes model?

6.1. Amplitude-frequency correlation in nonlinear
oscillators

In this section we demonstrate a typical property of
nonlinear oscillators (a class of nonlinear dynamical sys-
tems), namely the correlation between the instantaneous
amplitude and the instantaneous frequency of signals
generated as solutions of such systems.

As a demonstrative example of a nonlinear oscillator
(not a model for the sunspot cycle) we will consider the
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FIG. 18: (a) A random driving force (a random walk with a
few jumps). (b) A solution of the nonlinear Duffing oscilla-
tor with the random driving force F (t) plotted in panel (a);
(c) instantaneous amplitude (solid line) and frequency (thin
line) extracted from the solution in panel (b).
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FIG. 19: (a) Another example of a random driving force
(“stronger”, i.e., with higher amplitude than in the previous
case in Fig. 18). (b) A solution of the nonlinear Duffing oscil-
lator with the random driving force F (t) plotted in panel (a);
(c) instantaneous amplitude (solid line) and frequency (thin
line) extracted from the solution in panel (b).

Duffing oscillator

ẍ + 0.05ẋ + x + x3 = F (t). (34)

If F (t) = 0 and without the cubic member x3, the equa-
tion (34) represents a damped linear oscillator with a
constant frequency and an exponentially decreasing am-
plitude. The presence of the nonlinear (cubic) member x3

in the equation (34) leads to a time dependent frequency,
and considering again F (t) = 0, both the amplitude A(t)
and frequency ω(t) exponentially decrease and are corre-
lated (Figs. 17a,b).

Now, consider that the nonlinear oscillator (34) is
driven by a random driving force F (t). In the numerical
examples presented here we consider a simple random
walk with a few jumps as the driving force F (t).

The relation between A(t) and ω(t) is a nonlinear
function and may vary in time, however, the level of
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the correlation between A(t) and ω(t) depends on the
driving force: With a relatively weak driving (Fig. 18a),
A(t) and ω(t) are almost perfectly correlated (Fig. 18c),
with a stronger driving force F (t) (Fig. 19a) some
differences between A(t) and ω(t) emerge, however, A(t)
and ω(t) are still correlated (Fig. 19c).

The above presented amplitude-frequency correlation
is a property which can be tested in experimental sig-
nals, even in scalar cases (single measured time series).
The instantaneous amplitude and phase of a signal s(t)
can be determined by using the analytic signal concept
of Gabor [175], introduced into the field of nonlinear dy-
namics within the context of phase synchronization by
Rosenblum et al. [176]. The analytic signal ψ(t) is a
complex function of time defined as

ψ(t) = s(t) + jŝ(t) = A(t)ejφ(t), (35)

where the function ŝ(t) is the Hilbert transform of s(t)

ŝ(t) =
1
π

P.V.

∫ ∞

−∞

s(τ)
t− τ

dτ. (36)

(P.V. means that the integral is taken in the sense of
the Cauchy principal value.) A(t) is the instantaneous
amplitude and the instantaneous phase φ(t) of the signal
s(t) is

φ(t) = arctan
ŝ(t)
s(t)

. (37)

The instantaneous frequency ω(t) is the temporal deriva-
tive φ̇(t) of the instantaneous phase φ(t).

6.2. Amplitude-frequency correlation in the
sunspot cycle

A possible amplitude-frequency correlation (AFC
thereafter) in the sunspot cycle, in particular, the impor-
tance of the amplitude in determining the length of the
related cycle has already been noted in thirties by Wald-
meier [177] and recently discussed by Hathaway et al.
[178]. In this section we demonstrate that the amplitude-
frequency correlation found in the sunspot cycle is prob-
ably a non-random phenomenon and propose its expla-
nation by an underlying nonlinear dynamical system.

The series of yearly sunspot numbers from the period
1700 – 2006 (Fig. 15, top panel) has been filtered by a
simple moving average (MA) band-pass filter: First, the
MA’s from a 13-sample window have been subtracted
from the data in order to remove slow processes and
trends, and then a 3-sample MA smoothing has been used
in order to remove high-frequency components and noise.
Then the discrete version of the Hilbert transform (36),
using the window length of 25 samples, has been applied
in order to obtain the instantaneous amplitude A(t) and
the instantaneous phase φ(t). For obtaining a more ro-
bust estimation of the instantaneous frequency ω(t) than
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FIG. 20: The instantaneous amplitude (solid line) and fre-
quency (thin line) of (a) the yearly sunspot numbers series,
(b) of a realization of the related IAFT surrogate data, and
(c) of a realization of the Barnes model.

the one yielded by a simple differencing the phase φ(t),
the robust linear regression [179] in a 7-sample moving
window has been used. Finally, the series of A(t) and
ω(t) have been smoothed using a 13-sample MA win-
dow. The resulting series of the instantaneous amplitude
and frequency of the yearly sunspot numbers, plotted
in Fig. 20a, yield the crosscorrelation equal to 0.505.
Does this value mean that the amplitude and frequency
of the sunspot cycle are correlated as a consequence of an
underlying dynamics, or could this correlation occur by
chance? Searching for an answer, we test the statistical
significance of this correlation using the surrogate data
approach.

In the first step we use the FT and IAFT surrogates,
introduced in Sec. 4 4.2, where this kind of the surrogate
data played the role of a linear stochastic process with
the same spectrum and histogram as the studied data.
Testing nonlinearity in general, it is stressed that the
IAFT surrogates replicate the linear “properties” (more
exactly, temporal dependence), while do not contain any
nonlinear dependence structure. Here, testing the signif-
icance of the AFC, we consider the IAFT surrogates as a
data with cycles oscillating with the same frequencies as
the sunspot cycles, however, not possessing any system-
atic amplitude-frequency correlation. Since for generat-
ing the IAFT surrogates we use the Fast Fourier Trans-
form (FFT) [179] which requires the number of samples
equal to a power of two, we perform two tests, using the
“first” and the “last” 256 samples, i.e., the subseries of
the whole 307-sample series obtained by cutting away
51 samples at the end, or at the beginning, respectively,
from the whole yearly sunspot numbers record. Thus, in
each test, the surrogate data replicate the sample spec-
trum of the related 256-sample subseries.

The FT and IAFT surrogates are generated from
the raw (unfiltered) 256-sample segments of the sunspot
data. Also, the 256-sample subseries are used for estimat-
ing the amplitude-frequency correlation related to the
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particular subseries, applying the procedures described
above. Then, each realization of the (IA)FT surrogates,
generated with respect to the raw data, undergoes the
same processing as the raw data, i.e., the MA bandpass
filtering, the Hilbert transform and the robust linear re-
gression for the ω(t) estimation, and the final A(t) and
ω(t) smoothing are performed before computing the AFC
for each surrogate realization. Then the absolute values
of the AFC’s for 150,000 surrogate realizations are eval-
uated in order to assess the significance of the related
AFC value found in the sunspot data. The first 256-
sample subseries of the sunspot yearly numbers yields
the AFC equal to 0.605, while the mean value of the ab-
solute AFC for the IAFT surrogate set is 0.26 with the
standard deviation (SD) equal to 0.17.

As we already discussed, usually in surrogate tests the
significance is derived from the difference between the
data value and the surrogate mean, divided by the sur-
rogate SD, provided normal distribution of such defined
statistic. Having generated the large amount of the sur-
rogate replications, here we directly estimate the signifi-
cance p of the test, i.e., the probability that the assessed
correlation occurred by chance, considering the chosen
null hypothesis (realized by the surrogate model), by sim-
ply counting the occurrences in the surrogate set of ab-
solute AFC values greater or equal to the assessed raw
data value, i.e., 0.605 in this case. The number obtained
is 3637, which is equal to 2.43%. Statistically speaking,
the test result is significant on p < 0.03, or, in other
words, the probability that the amplitude-frequency cor-
relation found in studied segment of the sunspot data
occurred by chance (as a random event) is smaller than
3%, given the null hypothesis AFC=0, realized by the
used surrogate data.

Processing the ‘last’ 256-sample segment of the yearly
sunspot numbers, the obtained AFC is equal to 0.532,
while the values from the IAFT surrogates are the same
as above, however, the p-value in this case is 6.58%.
Still, we can conclude that the test result is significant
on p < 0.07. An example of the IAFT surrogate realiza-
tion is plotted in Fig. 15, bottom panel, its instantaneous
amplitude and frequency in Fig. 20b.

The results from the tests using the simple FT surro-
gates (i.e., without the histogram adjustment) are practi-
cally the same as those from the above IAFT surrogates.
Testing the monthly sunspot numbers [180] the segments
of (the ‘first’ and the ‘last’) 2048 samples were used. The
same data processing has been applied as described above
in the case of the yearly data with the windows lengths
equivalent in real time, i.e., multiplied by 12 in number
of samples. The obtained results are perfectly equiva-
lent to those yielded by the yearly data, i.e., p < 0.03
and p < 0.07 for the ‘first’ and the ‘last’ 2048-sample
segments, respectively.

In the second step of testing the significance of the
sunspot cycle AFC, we use realizations of the Barnes
model as the surrogate data. As noted above, the Barnes
model mimics some important statistical properties of

the sunspot data. The distribution of instantaneous fre-
quencies, obtained from realizations of the Barnes model,
is consistent with the distribution of the instantaneous
frequencies of the real sunspot data [181]. When the
Barnes model is considered as the null hypothesis, it is
hard to reject it by standard nonlinearity tests, however,
realizations of the Barnes model do not possess any sys-
tematic amplitude-frequency correlation. A realization
of the Barnes model is plotted in Fig. 15, middle panel,
its instantaneous amplitude and frequency in Fig. 20c.

In the test, 150,000 realizations of 307-sample series
were generated by the Barnes model and processed
by the same way as the sunspot series. The mean
absolute AFC is equal to 0.21, SD=0.15, comparison
with the AFC obtained for the whole 307-sample yearly
sunspot series (AFC=0.505) yields the p-value equal
to 4.36%. Thus, considering the Barnes model as the
null hypothesis, the probability that the sunspot series
AFC=0.505 occurred by chance is p < 0.05.

Using two different types of stochastic models (iter-
atively rescaled isospectral surrogates and the Barnes
model) which replicate some properties of the sunspot cy-
cle, we have obtained a statistical support for the hypoth-
esis that the amplitude-frequency correlation observed in
the sunspot cycle did not occur by chance (as a random
event) but is probably a property of an underlying dy-
namical mechanism. Paluš and Novotná [182] pointed
out that well-known systems, possessing this property,
are nonlinear oscillators, in which a significant AFC can
be observed also in cases of external, even random, driv-
ing force. There is, however, no direct connection be-
tween the significant AFC and a possible model in a form
of a nonlinear oscillator (with possibly random driving)
underlying the dynamics of the sunspot cycle. The evi-
dence presented by Paluš and Novotná [182] can be un-
derstood as the first step in bridging the gap between
reliable statistical analyses of the experimental sunspot
data (dominated by linear stochastic methods) and phys-
ical models such as nonlinear dynamo models [165] (com-
pared with data only on a qualitative level). Interpret-
ing the results of statistical tests, one should be aware
of the precise formulation (and realization) of the null
hypothesis and their possible negations. Timmer [183]
also pointed out this problem and proposed, in this case,
an alternative hypothesis in the form of realizations of
the second order linear stochastic (AR2) process with
time-variable frequency. Such a process possesses a com-
plex, analytically given relation between its variance and
theoretical frequency, which however, is not necessarily
reflected in a systematic AFC. Paluš and Novotná [184]
demonstrated that such a hypothesis can easily be re-
jected, so that the nonlinear oscillator is still a more
plausible explanation of the observed AFC. A simple non-
linear oscillator model can naturally be considered as a
projection from a spatio-temporal field described by non-
linear partial differential equations, i.e., our result does
not contradict to magnetohydrodynamic dynamo mod-
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els. And indeed, the evidence for the significant AFC
in the sunspot data, for the first time presented in [182],
inspired Mininni et al. [185] to consider a relaxation oscil-
lator model obtained as a spatial truncation of the mag-
netohydrodynamic equations. They demonstrated that
the AFC in such model data is consistent with the AFC
in the sunspot data. Therefore, they require that theo-
retical models for the solar cycle should be expected to
display the significant AFC [185].

7. STATISTICAL TESTING IN THE PROCESS
OF SCIENTIFIC DISCOVERY

Let us summarize what we have learned from the above
examples. Non-specific tests for nonlinearity can serve
well if they bring the negative result – i.e., the null hy-
pothesis is not rejected. It does not mean that the un-
derlying process is indeed linear, however, the quantity
used for the discriminating statistic is not able to distin-
guish the tested data from the null hypothesis of (non-
linearly transformed) linear stochastic process. Then any
nonlinearity-specific hypothesis, such as the chaotic at-
tractor, is not supported by the data, in the combina-
tion with the used analysis tools. On the other hand,
the rejection of the null hypothesis open many possi-
bilities to search for an underlying mechanism. As we
have stated above (Sec. 4 4.4), the null hypothesis of a
(nonlinearly transformed) linear stochastic process can
be rejected by various properties of the data, not nec-
essarily by the functional nonlinearity (11). The posi-
tive result of a non-specific test for nonlinearity gives an
important information that the standard linear methods
for time series analysis might be inadequate, however, is
not very informative considering the inference of an ac-
tual mechanisms underlying the data. We call the non-
specific nonlinearity test the above test with the mutual
information and redundancy, since these functionals of
probability distributions are general measures of depen-
dence and predictability. In some cases they can serve
in specific tests, however, in the context discussed above
they did not provide very specific information regarding
the mechanism underlying the sunspot cycle. The same
holds for ‘chaotic’ measures such as the correlation di-
mension or the Lyapunov exponents. These measures
are very specific if they were applied to data indeed gen-
erated by dynamics on strange attractors, however, they
were demonstrated to give finite values also for linear
stochastic processes. In such cases the correlation di-
mension does not reflect the dimensionality of an under-
lying attractor, and the Lyapunov exponents do not re-
flect the exponential divergence of trajectories, but these
measures reflect some non-specific property of the anal-
ysed data. The chaotic measures are usually influenced
by the strength and the rate of decay of the autocorrela-
tion function [171]; and also by the amount of noise in the
data, sampling rate and other properties specific rather
to the measurement than to the underlying dynamical

processes.
Therefore, it is more informative to quantify a really

existing feature of the data which can point to some
known nonlinear property. As an example we choose
the amplitude-frequency correlation, a typical feature of
nonlinear oscillators. We have demonstrated that such
a feature is possessed by the sunspot cycle. As we
noted above, some relationship between the amplitude
and the frequency or the period of the solar cycles had
been observed a long time ago [177, 178], however, Paluš
and Novotná [182] showed for the first time that the
amplitude-frequency correlation observed in the sunspot
cycle did not occur by chance, but it is a property inher-
ent to the dynamics of the sunspot cycle. This finding
further inspired the way of choosing among appropriate
physical models for the solar cycle [185]. This is the right
way how the statistical testing can be helpful in uncov-
ering physical mechanisms underlying complex phenom-
ena: One cannot expect a definitive answer about the na-
ture of the studied process from a single statistical test.
A sequence of tests in which both the null hypothesis and
the discriminating statistic are developed and targeted to
infer specific knowledge about the studied phenomenon
can lead to an improvement of our understanding of un-
derlying physical mechanisms and, eventually, in a fur-
ther step, to a proposal of a valid model with a predictive
power. Uncovering of the physical laws underlying com-
plex phenomena is a gradual process in which hypotheses
are proposed, appropriately tested and either rejected, or
accepted and then potentially refined. An acceptance of
an alternative hypothesis is not a definitive decision – a
new data, or a new evidence obtained from the known
data can falsify a hypothesis and new alternatives should
be considered.

8. SOME REMARKS ON NONLINEARITY IN
THE HUMAN EEG

Since the 1980s there has been a sustained interest in
describing neural processes and brain-signals, especially
the electroencephalogram (EEG), within the context of
nonlinear dynamics and the theory of deterministic chaos
(see, e.g., [48, 186–188] for comprehensive reviews). The
electroencephalogram is a record of the oscillations of
brain electric potentials recorded from electrodes at-
tached to the human scalp, revealing synaptic action that
is moderately to strongly correlated with brain states. If
the nature of EEG signals was actually low-dimensional,
the results of dimensional analyses could be of immense
importance for theoretical neuroscience and for neuro-
logical and psychiatric clinical practice. However, confi-
dence of the results such as finite dimensions and positive
Lyapunov exponents obtained from EEG data have been
considerably challenged by using the surrogate data tests.
For instance, in 1989 Rapp et al. [47] have analysed an
extensive collection of EEG recordings of healthy sub-
jects at rest and during a mental activity. In all cases
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they have found finite correlation dimensions which even
discriminated between the resting condition and one type
of a mental activity (D2 = 4.0± 1.4 and D2 = 4.7± 1.0,
respectively), the difference in a paired t-test was found
significant with p = 0.015. In 1996 the same data were re-
examined by Theiler and Rapp [189] using an improved
correlation dimension estimator and the surrogate data
tests. The re-examination suggested that the previous
indication of low-dimensional structures had been an ar-
tifact of autocorrelations in oversampled signals. Signa-
tures of nonlinearity have been found only in a few sig-
nals, the vast majority of the analysed EEG records have
been found more appropriately modelled by filtered noise
(an isospectral linear stochastic process). Moreover, the
discriminating power of the correlation dimension have
been found worse than the discriminating ability of mea-
sures based on the spectral analysis.

Other authors [190, 191] in independent studies have
detected a nonlinear component in EEG recordings of
normal healthy volunteers, however, signatures of low-
dimensional chaos were not found. Paluš [191] analysed
two-hour vigilance and sleep EEG recordings from five
healthy volunteers, using the surrogate data testing with
the redundancy – linear redundancy as the discriminat-
ing statistics. With appropriate FT surrogate data well
preserving the linear properties (differences in the lin-
ear redundancy under 1.5SD), highly significant differ-
ences (10–30SD) have been found using the redundancy
R(n)(τ). Several types of nonlinear behaviour, found in
the EEG recordings, are described in Ref. [191], here
we would like to point to an ‘asymmetry’ in the plot of
R(y(t); y(t + τ)) computed from the EEG data in com-
parison with the ‘symmetric’ result obtained from the
FT surrogate data (see Fig. 21). It is interesting that a
simple simulated signal can reproduce such a behaviour.
Let us consider episodes of two-frequency oscillations of
the form

y(t) = A sin(ω1t) sin(ω2t), (38)

where ω1 = 2π/T1 represents fast dominant oscillations
(e.g., T1 = 0.1 sec.) and ω2 = 2π/T2 represents a slower
“envelope” (e.g., T2 = 0.5 – 1.0 sec.), randomly dis-
tributed in a background of Gaussian noise. If the fre-
quencies ω1,2 randomly fluctuate, the data are consistent
with the linear stochastic surrogates. The nonlinear be-
haviour of the EEG data, depicted in Fig. 21, can be
reproduced if the faster frequency ω1 smoothly changes.
It seems that an analysis of the instantaneous frequency
of the cyclic EEG activity (e.g., α-spindles) can bring in-
teresting results, similarly as in the above discussed cases
of the sunspot numbers or the variable annual cycle in
the atmospheric temperature.

We used the term ‘asymmetry’ in order to characterize
the above behaviour of the redundancy R(y(t); y(t + τ))
of the EEG and the simulated data. In the context of
time series the notion of temporal symmetry–asymmetry
is very interesting. The redundancy R2 (mutual infor-
mation I) is not a measure suitable for detecting the
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FIG. 21: (a) Linear redundancy L2(τ) and (b) redundancy
R2(τ) for the sleep EEG of Subj. 5 from position Pz (full
lines) and its FT surrogates (mean value – dashed lines, mean
± SD – dotted lines). (c, d) The same as (b), but (c) for
the vigilance EEG of Subj. 1, position O1 and (d) for the
simulated data with the smoothly changing fast frequency.

temporal asymmetry, due to its symmetry properties
(I(ξ; η) = I(η; ξ)). Considering ξ = y(t) and η = y(t+τ),
the temporal asymmetry of a series {y(t)} can be de-
tected by the significant difference between the probabil-
ity distributions p(ξ, η) and p(η, ξ). The latter can be
quantified by the Kullback-Leibler information [137]

K(ξ, η) =
∑

ξ

∑
η

[p(ξ, η)− p(η, ξ)] log[p(ξ, η)/p(η, ξ)].

Application of this approach in Ref. [191] led to posi-
tive detection of the temporal asymmetry in the EEG.
Chialvo & Millonas [192] have pointed out the impor-
tance of temporally asymmetric fluctuations for biologi-
cal energy transduction. Possible existence and a role of
temporally asymmetric processes in the brain dynamics
could be an interesting subject of research.

Until now we have discussed possible nonlinearity in
the dynamics of single EEG signals. The EEG signals
(‘channels’), however, are usually recorded from a num-
ber of electrodes placed in predefined positions on the hu-
man scalp. Thus spatio-temporal dynamics of the EEG
should be considered [193]. Detection and characteriza-
tion of interactions between or among the EEG signals
from different parts of the scalp is an important and chal-
lenging task. Paluš et al. [202, 203] studied interactions
in multichannel electroencephalograms of patients suffer-
ing from epilepsy. Causal relations between EEG signals
measured in different parts of the brain were identified
using the approach which will be discussed in the follow-
ing Sec. 9. In transients from normal brain activity to
epileptic seizures, asymmetries in the interactions emerge
or are amplified. Nonlinear measures of directional in-
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teractions or causality can potentially help to localize an
epileptic focus (the part of the brain where seizures start)
or even to foresee epileptic seizures [202, 203]. From a
rather abstract question of nonlinearity in the dynamics
underlying studied data, we will develop the surrogate
data testing methodology with information-theoretic dis-
criminating statistics as a tool for detection of directional
interactions between signals in the following Sec. 9. The
level of interactions, or the quality of information trans-
fer between different parts of the human brain is criti-
cal for healthy mental activity. Preliminary results show
that the nonlinear measures of interactions can help in
early diagnostics of neurodegenerative diseases such as
the Alzheimer disease.

9. INFERENCE OF DIRECTIONAL
INTERACTIONS OR CAUSALITY IN COMPLEX

SYSTEMS

Emergent phenomena in complex systems consisting
of many components usually cannot be explained by a
simple linear sum or a combination of the properties
of the system components. The complex behaviour is
usually the result of mutual interactions of the systems
components. Knowledge about the way of interactions
among the system components can be the key to un-
derstanding of the complex phenomena. Among vari-
ous types of interactions and dependence, synchroniza-
tion [194] plays a specific role in the cooperative behavior
of coupled complex systems or their components. Syn-
chronization and related phenomena have been observed
not only in physical, but also in many biological sys-
tems. Examples include cardio-respiratory interactions
[195–198] and synchronization of neural signals on vari-
ous levels of organization of brain tissues [199–203]. In
such systems it is not only important to detect synchro-
nized states, but also to identify drive-response relation-
ships between studied systems. This task is a special
case of the general problem of determining causality or
causal relations between systems, processes or phenom-
ena. Wiener [204] proposed mathematical formulation of
causality in measurable terms of predictability. Granger
[205] introduced a specific notion of causality into time
series analysis by evaluation of predictability in bivariate
autoregressive models. This linear framework for mea-
suring and testing causality has been widely applied in
economy and finance (see Geweke [206] for survey of the
literature), but also in diverse fields of natural sciences
such as climatology (see [207] and references therein) or
neurophysiology, where specific problems of multichannel
electroencephalogram recordings were solved by general-
izing the Granger causality concept to multivariate cases
[208, 209]. However, the limitation of the Granger causal-
ity concept to linear relations required further generaliza-
tions which emerged especially in the intensively develop-
ing field of synchronization of complex systems. Consid-
ering the task of identification of drive-response relation-

ships, a multitude of asymmetric dependence measures
have been proposed [199, 200, 202, 203, 210–215] and
applied in diverse scientific fields such as laser physics
[216], climatology [217, 218], cardiovascular physiology
[215, 217], neurophysiology [199, 200, 202, 203, 219–221],
or finance [222]. In spite of these wide-spread applica-
tions of various coupling asymmetry measures, the cor-
rect inference of coupling asymmetry, i.e., the identifica-
tion of the driving and driven systems from experimental
time series is far from trivial and requires attentions of
theoreticians as well as applied scientists.

In the following we will review some basic considera-
tions and results from Paluš and Vejmelka [223]. We will
consider two interacting systems, possibly one of them
driving the other. Then the coupling asymmetry, or, as
it is called, the directionality of coupling, also identifies
causality, or causal relations between the studied sys-
tems. The problem of distinguishing the true causality
from indirect influences in interactions of three or more
systems is beyond the scope of the consideration in this
paper.

9.1. Asymmetry in coupling: test systems

We will discuss some issues related to inference of
causality (in the above defined sense) from experimental
data and the way how statistical testing with the sur-
rogate data can be applied in this problem. For these
consideration we will use three numerically generated ex-
amples of coupled chaotic systems. As the first example,
let us consider the unidirectionally coupled Rössler and
Lorenz systems, also studied in Refs. [200, 202, 212],
given by the equations

ẋ1 = −α{x2 + x3}
ẋ2 = α{x1 + 0.2 x2} (39)
ẋ3 = α{0.2 + x3(x1 − 5.7)}

for the autonomous Rössler system, and

ẏ1 = 10(−y1 + y2)

ẏ2 = 28 y1 − y2 − y1 y3 + ε xβ
2 (40)

ẏ3 = y1 y2 − 8
3
y3

for the driven Lorenz system in which the equation for
ẏ2 is augmented by a driving term involving x2. We will
analyse the case with α = 6 and β = 2.

As the second example we will use the unidirectionally
coupled Hénon maps, also studied in Refs. [199, 202,
212], defined by the equations

x′1 = 1.4− x2
1 + b1 x2

x′2 = x1 (41)

for the driving system {X}, and

y′1 = 1.4− (ε x1y1 + (1− ε) y2
1) + b2 y2

y′2 = y1 (42)
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for the response system {Y }. Here we will study the
identical systems with b1 = b2 = 0.3.

The third example, considered here, will be the uni-
directionally coupled Rössler systems given by the equa-
tions

ẋ1 = −ω1x2 − x3

ẋ2 = ω1x1 + a1 x2 (43)
ẋ3 = b1 + x3(x1 − c1)

for the autonomous system, and

ẏ1 = −ω2y2 − y3 + ε(x1 − y1)
ẏ2 = ω2y1 + a2 y2 (44)
ẏ3 = b2 + y3(y1 − c2)

for the response system. In the following we will use
parameters a1 = a2 = 0.15, b1 = b2 = 0.2, c1 = c2 =
10.0, and frequencies ω1 = 1.015 and ω2 = 0.985.

The data from continuous nonlinear dynamical sys-
tems were generated by numerical integration based on
the adaptive Bulirsch-Stoer method [179] using the sam-
pling interval 0.02617 for the systems (39),(40), and
0.1256 for the systems (43),(44). In the latter case this
gives 17 – 21 samples per one period.

In all the cases we denote the driving, autonomous
system by {X}, and the driven, response system by {Y }.
For each of the above three examples we define a set
of coupling strength parameter ε increasing from ε = 0
to an ε-value before the synchronization threshold. As
Paluš et al. [202] explain, the direction of coupling can
be inferred from experimental data only when the studied
systems are coupled, but not yet synchronized. Consid-
ering numerical examples, the synchronization threshold
can be determined using the plot of Lyapunov exponents
(LE) of the coupled systems as the function of the cou-
pling strength ε. With increasing ε, the positive Lya-
punov exponent of the driven system (also known as the
conditional Lyapunov exponent [224]) decreases and be-
comes negative just with the ε-value giving the synchro-
nization threshold. The plots of the Lyapunov exponents
for the Rössler-Lorenz systems (39),(40) can be found in
Refs. [202, 212], the LE plots for the coupled Hénon sys-
tems (41),(42) in Refs. [199, 202, 212], while further study
of the coupled Rössler systems (43),(44), including their
LE plot, can be found in Sec. 9 9.4.

For each value of ε from the predefined range we nu-
merically generate time series {xi} and {yi} as outputs
of the systems {X} and {Y }, obtained by recording the
components x1 and y1, respectively, and analyse them by
using three methods defined in the following Sec. 9 9.2.

9.2. Asymmetry measures

Le Van Quyen et al. [200] use the assumption of ex-
istence of a smooth map between trajectories of {X}

and {Y }. Their asymmetry measure is based on cross-
prediction using the well known idea of mutual neigh-
bors. A state space, known or reconstructed using a
time-delay embedding [49] Xn = [xn, xn−τ , xn−2τ , . . . ],
must be available. However, instead of using k nearest
neighbors, a neighborhood size δ is pre-selected. Consid-
ering a map from X to Y , a prediction is made for the
value of yn+1 one step ahead using the following formula

ŷn+1 =
1

|Vδ(Xn)|
∑

j:Xj∈Vδ(Xn)

yj+1. (45)

The volume Vδ(Xn) = {Xn′ : |Xn′ − Xn| < δ} is the
δ-neighborhood of Xn and |Vδ(Xn)| denotes the num-
ber of points contained in the neighborhood. Using
data rescaled to the zero mean and the unit variance,
Le Van Quyen et al. [200] define a crosspredictability in-
dex by subtracting the root-mean-square prediction error
from one

P (X → Y ) = 1−

√√√√ 1
N

N∑
n=1

(ŷn+1 − yn+1)2, (46)

which should measure how the system {X} influences the
evolution of the system {Y }. The crosspredictability in-
dex P (Y → X) in the opposite direction, characterizing
the ability of the system {Y } to influence the evolution
of the system {X} is defined in full analogy.

The second approach, proposed by Arnhold et al. [210]
and discussed by Quian Quiroga et al. [212], also explore
the assumption of the existence of a smooth map between
the trajectories of {X} and {Y }. If such a smooth map
exists then closeness of points in the state space X of
the system {X} implies a closeness of points in the state
space Y of the system {Y }. Therefore mean square dis-
tances are used instead of the cross-predictions in order
to quantify the closeness of points in both spaces. We use
the implementation according to Ref. [212, 226] in which
a time-delay embedding [49] is first constructed in order
to obtain state space vectors X and Y for both time se-
ries {xi} and {yi}, respectively, then the mean squared
distance to k nearest neighbors is defined for each X as

R(k)
n (X) =

1
k

k∑

j=1

|Xn −Xrn,j |2, (47)

where rn,j denotes the index of the j − th nearest neigh-
bor of Xn. The Y-conditioned squared mean distance is
defined by replacing the nearest neighbors of Xn by the
equal time partners of the nearest neighbors of Yn as

R(k)
n (X|Y) =

1
k

k∑

j=1

|Xn −Xsn,j |2, (48)

where sn,j denotes the index of the j−th nearest neighbor
of Yn. Then the asymmetric measure

S(k)(X|Y) =
1
N

N∑
n=1

R
(k)
n (X)

R
(k)
n (X|Y)

. (49)



30

0 1 2
0

0.1

0.2 (c)

COUPLING STRENGTH ε

i(X
→

Y
),

 i(
Y

→
X

)

0 1 2
0

0.1

0.2

0

0.2

0.4

0.6

(a)

P
(X

→
Y

),
 P

(Y
→

X
)

0

0.2

0.4

0.6

0

0.03

0.06

0.09

(b)

S
(X

|Y
),

 S
(Y

|X
)

0

0.03

0.06

0.09

FIG. 22: (a) Cross-predictability P (X → Y ) (solid line) and
P (Y → X) (dashed line), (b) relative average distance of

the mutual nearest neighbours S(k)(Y|X) (solid line) and

S(k)(X|Y) (dashed line), and (c) coarse-grained transinfor-
mation rate i(X → Y ) (solid line) and i(Y → X) (dashed
line) for the Rössler system (39) driving the Lorenz system
(40), as functions of the coupling strength ε.

is supposed to reflect interdependence in the sense that
closeness of the points in Y implies closeness of their
equal time partners in X and the values of S(k)(X|Y)
approach to one, while, in the case of X independent of
Y , S(k)(X|Y) ¿ 1. The quantity S(k)(Y|X) measuring
the influence of {X} on {Y } is defined in full analogy.

The third measure, used in the following three exam-
ples, the coarse-grained transinformation rate i(X → Y )
is the average rate of the net amount of information
“transferred” from the process {X} to the process {Y },
or, in other words, the average rate of the net informa-
tion flow by which the process {X} influences the process
{Y }. The coarse-grained transinformation rate (CTIR),
introduced by Paluš et al. [202], is based on the condi-
tional mutual information defined in Sec. 4 4.3 and fur-
ther developed in Sec. 9 9.4. Here we only indicate that
the CTIR i(X → Y ) is given by the conditional mutual
information I(x(t); y(t + τ)|y(t)) averaged over a range
of time lags τ ; and analogously, i(Y → X) is given by
τ -averaged I(y(t); x(t + τ)|x(t)). The symmetric term
I(x(t); y(t + τ)), averaged over a range of negative and
positive τ ’s, is subtracted in the both cases [202].

9.3. Asymmetric measures and causality

The three asymmetric measures, introduced above, as
functions of the coupling strength ε, for the Rössler sys-
tem (39) driving the Lorenz system (40) are plotted in
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FIG. 23: (a) Cross-predictability P (X → Y ) (solid line) and
P (Y → X) (dashed line), (b) relative average distance of

the mutual nearest neighbours S(k)(Y|X) (solid line) and

S(k)(X|Y) (dashed line), and (c) coarse-grained transinfor-
mation rate i(X → Y ) (solid line) and i(Y → X) (dashed
line) for the unidirectionally coupled Hénon system (41),(42),
as functions of the coupling strength ε.

Fig. 22. Except for the weakest coupling (ε ≤ 0.6), the
cross-predictability of the system {Y } by the system {X}
(the solid line in Fig. 22a) is greater than the cross-
predictability of the system {X} by the system {Y } (the
dashed line in Fig. 22a). Our result in Fig. 22a agrees
with that of Le Van Quyen et al. [200] who interpret
the relation P (X → Y ) > P (Y → X) by the fact, that
the autonomous Rössler system {X} drives the response
Lorenz system {Y } and therefore the prediction of {Y }
from {X} is better than the prediction in the opposite
direction.

In a similar way, with a few exemptions, the rela-
tive average distance of the mutual nearest neighbours
S(k)(Y|X) > S(k)(X|Y) (Fig. 22b) agrees with the re-
sults in [212], suggesting that the state of the driven sys-
tem {Y } depends more on the state of the driver sys-
tem {X} than vice versa, as also claimed by Arnhold et
al. [210]. (Note that the conditioning X|Y reflects the
influence Y → X and vice versa.) The same conclusion
about {X} driving {Y } can be drawn from the CTIR
i(X → Y ) > i(Y → X) (Fig. 22c). The latter inequal-
ity holds for all positive values of ε but the ε-values ap-
proaching the synchronization threshold which emerges
for ε slightly exceeding 2 [202, 212].

The same analyses as presented in Fig. 22, but for
the unidirectionally coupled Hénon system (41),(42), are
shown in Fig. 23. One can immediately see that in this
case P (X → Y ) < P (Y → X) (Fig. 23a). This result
agrees with that of Ref. [199]. Shiff et al. [199] offer an



31

0 0.05 0.1
0

0.05

0.1 (c)

COUPLING STRENGTH ε

i(X
→

Y
),

 i(
Y

→
X

)

0 0.05 0.1
0

0.05

0.1

0

0.2

0.4

0.6

(a)

P
(X

→
Y

),
 P

(Y
→

X
)

0

0.2

0.4

0.6

0

0.01

0.02

0.03
(b)

S
(X

|Y
),

 S
(Y

|X
)

0

0.01

0.02

0.03

FIG. 24: (a) Cross-predictability P (X → Y ) (solid line) and
P (Y → X) (dashed line), (b) relative average distance of

the mutual nearest neighbours S(k)(Y|X) (solid line) and

S(k)(X|Y) (dashed line), and (c) coarse-grained transinforma-
tion rate i(X → Y ) (solid line) and i(Y → X) (dashed line)
for the unidirectionally coupled Rössler systems (43),(44), as
functions of the coupling strength ε.

interpretation based on the Takens embedding theorem
[49]: From the time series {xi} only the system {X}
can be reconstructed, while from the time series {yi} the
whole system consisting of the coupled systems {X} and
{Y } can be reconstructed and therefore one can predict
the driving system from the response system and not
vice versa [199]. Also, the relation of the second inter-
dependence measure reverses: In this case the inequal-
ity S(k)(Y|X) < S(k)(X|Y) holds. (Fig. 23b). Again,
our result agrees with that of Ref. [212]. Quian Quiroga
et al. [212] explain that the higher-dimensional system
(obtained by the reconstruction from the time series {yi}
which bears information about both the coupled systems)
is ‘more active’ than the lower-dimensional (autonomous,
driving) system. Only the CTIR gives the same relation
as in the previous case: i(X → Y ) > i(Y → X) (Fig. 23c)
suggesting the fact that {Y } is influenced by {X}, while
{X} evolves autonomously.

The analysis of the unidirectionally coupled Rössler
systems (43),(44) is presented in Fig. 24. We can see
that the results are in a qualitative agreement with those
of the coupled Hénon systems (Fig. 23), although these
systems are more similar to the first example of the cou-
pled Rössler-Lorenz systems. We can se that neither the
cross-predictability, nor the mutual nearest neighbours
statistics give consistent results when using three differ-
ent examples of unidirectionally coupled systems. Only
the coarse-grained transinformation rate correctly iden-
tifies the direction of the causal influence in the above

three examples as well as in many other systems of dif-
ferent origins.

In the above discussed examples of unidirectionally
coupled systems we could see that the used measures are
generally non-zero in both directions even before the sys-
tems become synchronized and comparison of the values
of such measures does not always reflect the true causality
given by the unidirectional coupling of the studied sys-
tems. The intuitively understandable implication lower
prediction error (better predictability) ⇒ stronger depen-
dence cannot generally be applied for nonlinear systems.
When the coupling of systems is weaker than that nec-
essary for the emergence of synchronization, any smooth
deterministic function between the states of the systems
cannot exist yet. However, there is already some sta-
tistical relation valid on the coarse-grained description
level. Although the deterministic quantities are based on
the existence of a smooth functional relation, when es-
timated with finite precision, they usually give nonzero
values influenced not only by the existing statistical de-
pendence, but also by properties of the systems other
then the coupling. It is therefore necessary to use quanti-
ties suitable for measuring statistical dependence, such as
information-theoretic measures, which have solid mathe-
matical background and their properties have thoroughly
been studied since their introduction in 1948 [135].

9.4. Inference of causality with the conditional
mutual information

Let {x(t)} and {y(t)} be time series considered as re-
alizations of stationary and ergodic stochastic processes
{X(t)} and {Y (t)}, respectively, t = 1, 2, 3, . . . . In the
following we will mark x(t) as x and x(t + τ) as xτ , and
the same notation holds for the series {y(t)}.

The mutual information I(y; xτ ) measures the aver-
age amount of information contained in the process {Y }
about the process {X} in its future τ time units ahead
(τ -future thereafter). This measure, however, could also
contain an information about the τ -future of the process
{X} contained in this process itself, if the processes {X}
and {Y } are not independent, i.e., if I(x; y) > 0. In or-
der to obtain the “net” information about the τ -future
of the process {X} contained in the process {Y } we need
the conditional mutual information I(y; xτ |x). The latter
was used by Paluš et al. [202] to define the coarse-grained
transinformation rate, used in the above three examples.
We used the standard statistical language in which we
considered the time series {x(t)} and {y(t)} as realiza-
tions of stochastic processes {X(t)} and {Y (t)}, respec-
tively. If the processes {X(t)} and {Y (t)} are substituted
by dynamical systems evolving in measurable spaces of
dimensions m and n, respectively, the variables x and y
in I(y; xτ |x) and I(x; yτ |y) should be considered as n−
and m−dimensional vectors. In experimental practice,
however, usually only one observable is recorded for each
system. Therefore, instead of the original components
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of the vectors ~X(t) and ~Y (t), the time delay embedding
vectors according to Takens [49] are used. Then, back in

time-series representation, we have

I
(
~Y (t); ~X(t + τ)| ~X(t)

)
= I

((
y(t), y(t− ρ), . . . , y(t− (m− 1)ρ)

)
; x(t + τ)|(x(t), x(t− η), . . . , x(t− (n− 1)η)

))
, (50)
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FIG. 25: (a) The two largest Lyapunov exponents of the drive
{X} (constant lines) and of the response {Y } (decreasing
lines), (b) averaged conditional mutual information I(x; yτ |y)
(solid line) and I(y; xτ |x) (dashed line), and averaged CMI

I(x; yτ |~Y ) (solid line) and I(y; xτ | ~X) (dashed line), where

the vectors ~X and ~Y are the original components of the inte-
grated systems, for the unidirectionally coupled Rössler sys-
tems (43),(44), as functions of the coupling strength ε.

where η and ρ are time lags used for the embedding of
trajectories ~X(t) and ~Y (t), respectively. Only informa-
tion about one component x(t + τ) in the τ -future of the
system {X} is used for simplicity. The opposite CMI
I
(

~X(t); ~Y (t+ τ)|~Y (t)
)

is defined in full analogy. Exactly
the same formulation can be used for Markov processes
of finite orders m and n. Based on the idea of finite-
order Markov processes, Schreiber [211] has proposed a
“transfer entropy” which is in fact an equivalent expres-
sion for the conditional mutual information (50) – see
Refs. [137, 223].

Let us consider again the unidirectionally coupled
Rössler systems (43),(44). The dependence of their Lya-
punov exponents (all but the two which are negative in
the uncoupled case) on the coupling strength ε is plotted
in Fig. 25a. The change of the positive LE of the re-
sponse system {Y } to negative values with the coupling

strength slightly under ε = 0.12 gives the synchroniza-
tion threshold for these systems. If we evaluate the sim-
ple CMI I(y; xτ |x) and I(x; yτ |y) with one-dimensional
condition x or y, the CMI’s in both direction are posi-
tive and increasing with the increasing coupling strength
(Fig. 25b). Before the synchronization threshold, the in-
equality I(x; yτ |y) > I(y;xτ |x) indicates the correct di-
rection of coupling, however, as we will see in the next
Section 9 9.5, for reliable inference in general, it is de-
sirable to obtain a zero value in the uncoupled direction
Y → X. This can be attained by a proper conditioning –
the conditioning variable should contain full information
about future values of the system or process generating
this variable in the uncoupled case. So it should be three-
dimensional vectors ~X or ~Y for the studied Rössler sys-
tems. On the other hand, it is sufficient to have just one
component of each vector variable for establishing the
presence of coupling, i.e., the appropriate measures for
inference of coupling directions are the CMI’s I(x; yτ |~Y )
and I(y;xτ | ~X). Evaluation of the latter quantities brings
a five-dimensional estimation problem which might be
hard to solve with limited amount of available data.

The CMI’s I(x; yτ |~Y ) and I(y;xτ | ~X) obtained using
the original components x1(t), x2(t), x3(t) and y1(t),
y2(t), y3(t) for the conditioning vectors ~X and ~Y , re-
spectively, are displayed in Fig. 25c. We can see that
I(y; xτ | ~X) in the uncoupled direction stays at the zero
value up to ε close to the synchronization threshold, while
I(x; yτ |~Y ) is distinctly positive (Fig. 25c).

The CMI’s I(x; yτ |~Y ) and I(y; xτ | ~X) with the condi-
tioning vectors ~X and ~Y obtained as the time-delay em-
bedding [49] from the components x1(t) and y1(t), re-
spectively, are displayed in Fig. 26a. We can see entirely
equivalent results in Fig. 25c and in Fig. 26a.

Many interesting processes in physics, biology, or tech-
nology can be modelled by weakly coupled oscillators
and their interactions can be inferred by analyzing the
dynamics of their instantaneous phases [194, 213, 214].
The instantaneous phase φ(t) from a time series can be
obtained according to Eq. (37) in Sec. 6 6.1.

Paluš & Stefanovska [215] have shown that the con-
ditional mutual information can be applied also in in-
ference of coupling of systems using their instantaneous
phases, confined in interval [0, 2π) or [−π, π) (so-called
wrapped phases). Thus we can come back to the time
series {x(t)} and {y(t)} generated by the unidirection-
ally coupled Rössler systems (43),(44) and compute their
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FIG. 26: (a) Averaged conditional mutual information

I(x; yτ |~Y ) (solid line) and I(y; xτ | ~X) (dashed line), using the

time-delay embedding vectors ~X = [x1(t), x1(t−η), x1(t−2η)]

and analogously for ~Y , (b) averaged CMI I(φ1(t); φ2(t +
τ)|φ2(t)) (solid line) and I(φ2(t); φ1(t + τ)|φ1(t)) (dashed
line), and (c) averaged CMI I(φ1;∆τφ2|φ2) (solid line) and
I(φ2;∆τφ1|φ1) (dashed line), for the unidirectionally cou-
pled Rössler systems (43),(44), as functions of the coupling
strength ε.

instantaneous phases φ1(t) and φ2(t), respectively, ac-
cording to Eqs. (36) and (37). Then we evaluate the
conditional mutual information I(φ1(t); φ2(t + τ)|φ2(t))
and I(φ2(t); φ1(t + τ)|φ1(t)) and plot the results in
Fig. 26b. We can see that CMI evaluated from the
phases distinguishes the driving from the driven sys-
tem. Moreover, the application of the phase dynamics
decreases the dimensionality of the problem – already
I(φ2(t); φ1(t + τ)|φ1(t)) with the one-dimensional con-
dition is zero in the uncoupled direction. Even better
distinction (Fig. 26c) can be obtained when we study de-
pendence between the phase of one system and the phase
increment

∆τφ1,2(t) = φ1,2(t + τ)− φ1,2(t), (51)

of the second system instead of the dependence be-
tween φ1,2(t) and φ2,1(t + τ). Therefore we evaluate the
conditional mutual information I(φ1(t);∆τφ2(t)|φ2(t))
and I(φ2(t); ∆τφ1(t)|φ1(t)), in a shorter notation
I(φ1;∆τφ2|φ2) and I(φ2;∆τφ1|φ1), respectively.

9.5. Conditional mutual information as a
discriminating statistic

Every quantity, descriptive of a state of a system or
a process under study, suffers from bias and variance
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FIG. 27: Histograms of estimates of I(φ1;∆τφ2|φ2) (solid
lines) and I(φ2;∆τφ1|φ1) (dashed lines) from 1000 realiza-
tions of (a) the unidirectionally coupled Rössler systems
(43),(44), the coupling strength ε = 0.05 and the number
of samples N = 1024, (b) FFT surrogate data for the data
used in (a), N = 1024; (c) the same as in (a), but the number
of samples N = 512, and (d) FFT surrogate data for the data
used in (c), N = 512.

when estimated from noisy, nonstationary experimental
data. Using limited, relatively short time series, esti-
mates of complicated quantities such as the conditional
mutual information can have non-negligible bias and vari-
ance even if evaluated from noise-free, stationary model
data. It is necessary to know the behaviour of the used
estimator of any measure before it is applied in analy-
sis of real data. In order to study the bias and vari-
ance of the CMI estimates, we choose a particular cou-
pling strength (ε = 0.05) and evaluate I(φ1;∆τφ2|φ2)
and I(φ2;∆τφ1|φ1) from 1000 realizations of the unidi-
rectionally coupled Rössler systems (43),(44) starting in
different initial conditions, for various time series lengths.
We evaluate the CMI using a simple box-counting algo-
rithm based on marginal equiquantization, described in
Sec. 4 4.3 above.

Histograms obtained from the 1000 CMI estimates, us-
ing the time series length N = 1024 samples, are plotted
in Fig. 27a. We can see the relatively large variance of the
estimates and the clear bias of I(φ2;∆τφ1|φ1) in the un-
coupled direction, however, the distinction between the
coupled and the uncoupled directions is still clear. When
we use the time series length N = 512 samples (Fig. 27c),
the variance increases, and the bias in the uncoupled di-
rection rises so that the values of I(φ1;∆τφ2|φ2) (solid
lines) and I(φ2;∆τφ1|φ1) (dashed lines) partially over-
lap. It is clear that we need some statistical approach to
establish critical values of the CMI estimates from which
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we could infer that the CMI is nonzero due to a coupling
and not due to the estimator bias. In other words, we
need to find out what bias and variance we can expect
from our data, if there is no coupling. And this is again
the task for statistical testing using the surrogate data.
Paluš and Vejmelka [223] show that the bias in CMI es-
timates depends on relative complexity of the dynamics
in the sense that the CMI are biased in the direction
from the less complex (e.g., periodic) to the more com-
plex (e.g., chaotic) systems. When the systems have a
comparable complexity, the bias is influenced by the ra-
tio of dominant frequencies of the studied systems, in the
sense that the CMI are biased in the direction from the
slower to the faster system. Therefore, in the surrogate
data we need to preserve the frequency content of the
original data. For this purpose we use the well-known
FT surrogate data, introduced in Sec. 4 4.2. Since we
use the equiquantal estimator of the conditional mutual
information which is independent of the marginal distri-
bution of the data, we do not use any histogram trans-
formation. The surrogate data are constructed from the
original time series and then the phases φ1, φ2 are com-
puted from each surrogate realization in the same way as
from the original data.

Studying interactions between processes, various null
hypotheses can be specified which are reflected in vari-
ous types of the uni-, bi- or multivariate surrogate data
[227]. Our null hypothesis is independence between the
phases φ1, φ2. Therefore we construct univariate FT
surrogate data for each time series, i.e., the two time se-
ries {x(t)} and {y(t)} are randomized independently. If
a specifically nonlinear causality is of interest, then the
bivariate surrogate data [228, 229] can be constructed,
which preserve cross-correlation functions in addition to
the autocorrelation functions.

Histograms of estimates of I(φ1;∆τφ2|φ2) (solid lines)
and I(φ2;∆τφ1|φ1) (dashed lines) from the FFT surro-
gate data using series lengths N = 1024 and N = 512
samples are plotted in Fig. 27b and Fig. 27d, respec-
tively. We can see that the average bias of the CMI
I(φ2;∆τφ1|φ1) in the direction Y → X in the surrogate
data is a bit larger than in the original data (cf. Fig. 27a
and Fig. 27b). This fact helps us to avoid false detections
of causality (positive information flow) in the uncoupled
direction: Even though I(φ2;∆τφ1|φ1) from the data
gains positive values, these values are not greater than
the values from the (uncoupled) surrogates and thus such
positive CMI values cannot be considered as the evidence
for causality, nor for a directional interaction. In order to
translate these considerations into a statistical test, we
integrate the histogram of the surrogate CMI values into
a cumulative histogram and find the CMI critical values
giving 95% of the CMI distribution, counting from the
left side. If a CMI value from the tested data is greater
than this critical value, the result is significant at the
level α = 0.05 and the null hypothesis of independence is
rejected. Here we employ the Neyman-Pearson approach
of hypothesis testing since we do not infer causality from
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FIG. 28: Sensitivity (a,c) and the rate of false positives (b,d)
as functions of time series length N for the tests using the cou-
pled Rössler systems (43),(44) with the frequency ratio 1:1 for
different amounts of noise in the data. The portions of noise
are in (a,b) 0% (dotted line), 10% (dashed line), 20% (dash-
and-dotted line) and 30% (solid line); in (c,d) 50% (dashed
line), 70% (dash-and-dotted line) and 100% (solid line).

a single experimental data. Using the cumulative his-
tograms obtained from the 1000 surrogate realizations
and having set the nominal value for the significance,
α = 0.05, leading to a critical value for each test, we use
the 1000 realizations of the data from the Rössler systems
(43),(44) for the evaluation of the performance of the test.
Comparing the values of I(φ2;∆τφ1|φ1) in the uncoupled
direction with their critical values we obtain the rate of
false positive results (type I error, see Sec. 3 3.1), while
using I(φ1;∆τφ2|φ2) in the coupled, causal direction we
count the rate of the correctly positive results, so that
we evaluate the sensitivity of the test. If we write the
sensitivity as 1− β, then β is the type II error.

The distribution of I(φ1;∆τφ2|φ2) from the surrogate
data with N = 1024 (Fig. 27b, solid line) allows 100%
sensitivity, i.e. values of I(φ1;∆τφ2|φ2) from all 1000 re-
alizations of the original Rössler time series were correctly
detected as significant, reflecting truly nonzero causal in-
formation flow from {X} to {Y }. In the opposite di-
rection (cf. the histograms plotted by the dashed lines
in Fig. 27a and Fig. 27b) we have got eight false de-
tections from 1000 realization, i.e. the false detection
rate is 0.008, still well under the nominal α = 0.05. Us-
ing N = 512 samples the sensitivity is worse, giving the
value 0.866, i.e. 134 realizations from 1000 were not rec-
ognized by the test. The false detection rate, however,
was 0.001. With an insufficient amount of data the sensi-
tivity of the test could be lowered, however, the surrogate
test prevents false detections very well. The dependence
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of the sensitivity as well as of the rate of false positives
(actual type I error) on the series length is plotted, using
the dotted line, in Fig. 28a, and Fig. 28b, respectively.
As stated above, 100% sensitivity (actual type II error
β = 0) is reached from the time series length N = 1024
samples. With N = 512 samples, the actual type II error
β = 0.134, and for shorter data β → 1 (Fig. 28a, dot-
ted line), i.e., the test looses its sensitivity. On the other
hand, the actual type I error is well under the nomi-
nal α = 0.05 (Fig. 28b, dotted line), so that the false
detections of causality do not occur. In other words, a
properly done surrogate data test prevents from the false
detection of causality, however, in order to safely detect
the true causality we need, at least, about a thousand
samples of properly sampled data [223]. This result was
obtained using the chaotic oscillators of close frequencies.
If the frequencies of the two systems are different, even
more data are necessary in order to have sensitive tests
for causality [223].

Considering applications to real data, influence of noise
on the presented test should also be evaluated. Gaussian
noise has been added to the raw data from the coupled
Rössler systems (43),(44) with the frequency ratio 1:1
(exactly 1.015:0.985). The amount of added noise is char-
acterized by the noise standard deviation (SD) expressed
in the percentage of the SD of the original data, e.g., 10%
of noise means SD(noise)=0.1SD(data), or 100% of noise
means SD(noise)=SD(data). The noised data were pro-
cessed and tested in the same way as the noise-free data
above. The test sensitivity, i.e., the rate of true positive
detections of causality, as well as the rate of false pos-
itives, i.e., the rate of formal detections of causality in
uncoupled directions, as functions of time series length
N are illustrated in Fig. 28. The higher the amount of
noise in the data, the more data samples are required in
order to obtain 100% sensitivity of the test (Fig. 28a).
For moderate amounts of noise, the rate of false posi-
tives remains well under or about the nominal test crit-
ical value α = 0.05 (Fig. 28b). With large amounts of
noise, however, the attainment of the 100% sensitivity
is followed by an increase of the rate of false positives.
With 100% of noise in the data, the rate of false posi-
tives goes to 1 (i.e., to 100%) even before the sensitivity
rises from 0 to 1, i.e., the detection ability of the test is
completely lost. For amounts from 50% of noise there is
a bounded range of time series lengths for which the test
is reliable, e.g., from 8k to 32k samples for 50%, but only
around 16k samples for 70% of noise. The applicability
of the test is limited when the data are contaminated by
a large amount of noise.

9.6. Testing the direction of the cardiorespiratory
interaction

In order to demonstrate how the discussed approach
can be applied to real data, we use cardiac and res-
piratory data from an animal experiment described in
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FIG. 29: Tests of causal influences of cardiac oscillations on
respiratory oscillations measured by I(φC ;∆τφR|φR) (a, c)
and of the influence of the respiratory rhythm on the cardiac
oscillations given by I(φR;∆τφC |φC) (b, d). Values from the
tested data are marked by the vertical lines, the surrogate
ranges are illustrated by the histograms obtained from 2500
surrogate realizations. (a,b) The test of bias using data from
two animals; (c,d) a real test for one of the animals.

[198]. Detailed account of the causality analysis in the
cardio-respiratory interactions of anaesthetized rats can
be found in Ref. [230]. Using the inter-beat and inter-
breath intervals we construct so-called marked events
phases φC , φR for the cardiac and respiratory dynamics,
respectively. Let tk and tk+1 be the times of two consec-
utive events, here peaks in the signal (ECG – electrocar-
diogram, or the respiratory signal). The instantaneous
phases are then linearly interpolated as [198]:

φ(t) = 2π
t− tk

tk+1 − tk
, tk ≤ t < tk+1. (52)

Considering, in applications of the marked events phases,
that the only available data are the event times
. . . , tk, tk+1, . . . , or the inter-event intervals . . . , tk+1 −
tk, . . . , a simple way to construct surrogate data is a ran-
dom permutation of the inter-event intervals before the
surrogate marked events phases are computed according
to (52).

We estimated I(φC ;∆τφR|φR) and I(φR;∆τφC |φC)
from 33-minute recordings which gave, after subsampling
to 40 Hz, the series length N = 80, 000 samples. Thus
we can expect a good performance of the tests using the
marked events phases from experimental, possibly noisy
data. In the first test, presented in Figs. 29a,b, we tried
to evaluate the bias of the CMI estimator and the ability
of the surrogate data test to prevent possible false detec-
tions. For this test we used the cardiac data from one
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animal and the respiratory data from another animal, so
no true causality cannot exist in this case. The CMI esti-
mates are positive (although small, but this is typical us-
ing the marked events phases [223]) in both the directions
and the value of I(φR;∆τφC |φC) (Fig. 29b) reflecting
the influence of the (slower) respiratory rhythm on the
(faster) cardiac dynamics is larger than I(φC ;∆τφR|φR)
(Fig. 29a) in the opposite direction. Both values from
the tested data, however, lie well inside the surrogate
histograms. The latter result means that the CMI values
are not significantly larger than zero and no causality,
or no information flow exists in the either direction, as
we expected using the data from two different animals.
The situation is different when analyzing data from a sin-
gle animal. While there is no significant influence of the
cardiac dynamics on the respiration (Fig. 29c), the in-
fluence of the respiratory rhythm on the cardiac dynam-
ics is clearly significant, since I(φR;∆τφC |φC) from the
tested data lies outside the surrogate I(φR;∆τφC |φC)
distribution (Fig. 29d) and thus even this small value
I(φR;∆τφC |φC) = 0.0033 nat is significantly positive
with p = 0. The null hypothesis of independence, re-
alized by the randomly permutated heartbeats and res-
piratory cycles, was rejected using the direction-specific
dependence measure I(φR;∆τφC |φC) indicating a signif-
icantly positive information flow from the respiration to
the heart dynamics. Thus we can infer that the respira-
tory rhythm influences the heart rhythm.

9.7. Towards reliable inference of causality

In the construction of a test for causal relations, or,
more precisely, for the direction of interaction from time
series, the first step is a careful choice of the discrimi-
nating statistic. As we have seen in Sec. 9 9.3, not every
asymmetric dependence measure is suitable. As noted
by Paluš et al. [202], the direction of coupling can be in-
ferred when two systems are coupled, but not yet fully
synchronized. This can be understood considering the
example of identical synchronization. Once the (iden-
tical) systems are synchronized, they produce identical
time series and there is no way how to infer the correct
causality relation just from the measured data. In the
case of generalized synchronization, there is a one-to-one
relation between the states of the systems. Time series
{x(t)} can be predicted from time series {y(t)} and vice
versa. Although some dependence measures, including
those based on prediction errors, can give different val-
ues for the relations x → y and y → x, these values
are not given by the causality relations but rather by
properties of the functional relation between the states
of the systems, e.g. by its Jacobian. The causal relation
can be inferred only when coupling is weaker than that
necessary for emergence of synchronization, or when the
synchronized state is frequently perturbed by variability
in coupling or by internal or external noise driving the
systems out of the synchronized state. Then the relation

between the system states is not deterministic, but prob-
abilistic, and can be measured by measures of statistical
dependence, such as the above introduced information-
theoretic measures.

Various asymmetric measures of dependence can have
nonzero values even in the uncoupled direction in cases of
unidirectional coupling. This holds for both probabilistic
and deterministic measures. Even though no determin-
istic relation exists before the systems are synchronized,
the deterministic measures, estimated in a coarse-grained
approximation, reflect the statistical dependence which
occurs in both direction even in the case of unidirec-
tional coupling. Mutual comparison of these positive val-
ues or positivity/negativity of their difference (sometimes
rescaled to some ‘directionality indices’) does not neces-
sarily indicate the correct causal direction. For a correct
inference of causality it is desirable to have a measure
which vanishes in the uncoupled direction in the case of
unidirectional coupling so that we can identify the causal
direction by its statistically significant digression from
zero, while in the uncoupled direction the measure does
not cross the borders of a ‘statistical zero’. The latter
is given by the range obtained from appropriate surro-
gate data, separately for each direction. As a measure
fulfilling this requirement we introduced the conditional
mutual information (CMI).

The proper conditioning which assures the vanishing
CMI in the uncoupled direction should contain full in-
formation about the future in the uncoupled state of the
system, influence on which is evaluated. It means that
in a case of m-dimensional dynamical system, or a vari-
able which can be modelled by a (possibly nonlinear)
autoregressive process of order m, the proper condition
is an m-dimensional vector. The order m should be es-
timated from studied data before causality tests are ap-
plied. Then the estimation of m + 2 dimensional prob-
ability distribution functional can also be a nontrivial
problem. It can be helpful, if the studied coupling can be
reflected in the dynamics of instantaneous phases, since,
in the case of phase dynamics, one-dimensional condi-
tioning is sufficient in many cases.

Having an appropriate asymmetry dependence mea-
sure, asymptotically vanishing in the uncoupled direc-
tion, the inference of causality can be complicated by a
bias in estimation from a limited amount of possibly noisy
data. Therefore we need to establish a statistical signif-
icance of the obtained result, e.g., by the application of
the surrogate data testing approach. The surrogate data,
however, should reflect statistical and dynamical proper-
ties of the tested data, since those can be the source
of bias. It is necessary to test that the surrogate data
preserve the frequency distribution of the original data,
which might be more important than the amplitude dis-
tribution. For instance, it might be entirely incorrect to
make tests using the white noise (IID, scrambled) sur-
rogates, obtained by the random permutation of ampli-
tude time series, even though they preserve amplitude
distributions. Exceptional care must be applied when
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we study relations between systems which have different
main frequencies, or different complexity of dynamics, or
even different variability.

In many applications of the surrogate data testing, the
significance of the departure of the tested values from
the surrogate range is based on the (not always explic-
itly stated) assumption of a normal distribution of the
test statistics estimated using the surrogate data. It is
necessary, however, to study the surrogate distributions
from large enough surrogate ensembles in order to estab-
lish the test significance independently of the form of the
distribution of the discriminating statistics.

Before any real data application, it is always useful
to assess the performance of any test, using appropriate
model data, in order to estimate the amount of data nec-
essary for reliable inference. Subsampled data can cause
problems, while increasing the data amount by oversam-
pling does not improve the test performance. As we
demonstrated above, when evaluating the performance
of a test, the Neyman-Pearson’s hypothesis testing ap-
proach is appropriate. Having a possibility to perform
a reliable test, secured by the appropriateness of both
the discriminating statistic and the null hypothesis, in-
ference of causality or any other phenomenon from a par-
ticular experimental time series of a sufficient length is
based on the Fisher’s significance testing approach. For
processing a larger ensemble of experimental data, the
Neyman-Pearson’s hypothesis testing approach can also
be appropriate. In such a task, the principal aim of the
data processing is not an inference of a phenomenon or a
property, but rather a distinction of groups according to
a presence/absence of a property or a phenomenon. In
any case, an appropriate null hypothesis should be cho-
sen and carefully realized using suitable surrogate data.
Interpreting the obtained results, provided one used an
appropriate testing approach, it is necessary to keep in
mind the used null hypothesis and its possible negations
in order to consider physically plausible alternative hy-
potheses if the null hypothesis is improbable or rejected.

10. CONCLUSION

We have described the way how the statistical testing
became a method frequently discussed in the physical
literature related to nonlinear dynamics and the theory
of deterministic chaos. The question ‘Is it noise, or is
it chaos?’ asked about experimental data is a partic-
ular case of general questions of inference asked about
processes underlying experimental data. The traditional
field of mathematical statistics provides both a language
and a toolbox for dealing with the questions of inference
that emerge in analyses of data, recorded in complex sys-
tems for which the relation theory – model – data is not
straightforward, but sophisticated statistical methods are
used in order to distinguish repetitive patterns from ran-
dom effects. In particular, we discussed the computa-
tionally intensive Monte Carlo approaches in which dis-

tributions of discriminating statistics are numerically ob-
tained, using suitable models or randomization schemes.
The latter provide the so-called surrogate data, numeri-
cal realizations of the considered null hypothesis.

Frequently in the physical literature, the surrogate
data are understood as realizations of a linear stochas-
tic process and serve as a testing ground for detecting
nonlinear deterministic explanations of observed complex
dynamics. We have discussed this concept, pointed out
to many pitfalls that could lead to false detections of
nonlinearity or deterministic chaos. We have proposed
to test for specific nonlinear properties, really existing in
the data, rather then to evaluate some abstract ‘chaotic
measures’. We have demonstrated our considerations in
concrete examples in tests for nonlinearity in atmospheric
data, sunspot numbers and brain signals. Further, we
have generalized the notion of surrogate data as a gen-
eral computational framework for numerical realizations
of null hypotheses in inference of dynamical mechanisms
and interactions from time series. We have described in
detail an approach for detecting directional interactions,
or causality from bivariate time series. Possible sources of
false causality detections on various levels were discussed,
from the choice of the discriminating statistics and suit-
able dynamical and/or statistical models, to the correct
estimation of the test significance using the empirical dis-
tribution of the discriminating statistic under the null
hypothesis. We have demonstrated that the correct ap-
plication of the statistical testing in inference problems,
emerging in the physics of complex systems, is far from
trivial, however, can be of a non-negligible value when
the tests are correctly performed and interpreted.

We hope that this review will be useful for physicists
working in different fields and will inspire researchers
to use the statistical tests as well as help to avoid
underestimations of the results obtained by the statical
inference from experimental data. The results inferred
from experimental data should be considered as an
inspiration for formulating new physical theories, rather
then proposing theories without analysing data, since, as
Sherlock Holmes said to Dr. Watson [231]: ‘It is a capital
mistake to theorize before one has data. Insensibly one
begins to twist facts to suit theories, instead of theories
to suit facts.’
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(1993) 203.
[151] M. Paluš, in: [65], pp. 387–413.
[152] R.G. Miller, Simultaneous Statistical Inference

(Springer New York-Heidelberg-Berlin, 1980).
[153] F. Mosteller and J.W. Tukey, Data Analysis and Re-

gression (Addison-Wesley, Reading, Mass., 1977).
[154] G. Hommel, Biometrical J. 25 (1983) 423.
[155] D. Morgerstern, Metrika 27 (1980) 171.
[156] D. Prichard and J. Theiler, Physica D 84 476 (1995).
[157] G. Sugihara, M. Casdagli, E. Habjan, D. Hess, P. Dixon

and G. Holland, PNAS 96 (25) 14210 (1999).
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