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Introduction

This dissertation thesis contains several results of the author that lie on the

borderline of descriptive set theory, forcing and analysis. Thematically, one can

divide the thesis into two parts. The first one, comprised of chapters 2-4, is

related to the topic of the recent book [18] of author’s supervisor. The second

one, contained in the last chapter, investigates universality and homogeneity in

Polish metric structures and it is related to descriptive set theory, (continuous)

model theory, and metric geometry.

We give a brief summary of all chapters here.

The first chapter is just a preliminary chapter that reviews the material that

the reader should know in order to understand the rest of the thesis. It contains

no results due to the author and it is written in a rather dense “definition-fact”

style. With a single exception for which we could not find a reference (we do not

claim that the result is not known among the experts though) we do not provide

proofs there and always refer to the literature for them. The main area that we

review there is mainly the basics of descriptive set theory that are essential for the

whole work. A large part of that chapter is also devoted to definable equivalence

relations, a fundamental notion from chapters 2, 3 and 4. There are sections

devoted to “Idealized forcing” and “Canonical Ramsey theory on Polish spaces”,

a specific topic to which the work from those three chapters (2, 3 and 4) directly

relates. Included is a small section on the method forcing as we explicitly use

it in the fourth chapter. The last section of the preliminary chapter deals with

Fräıssé theory, a subarea of model theory that is used for constructions in the

last chapter. The reader needs to understand the notions and facts (resp. the

statements, knowledge of their proofs is not essential) from this section in order
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to read the last chapter.

The main part of the thesis begins with Chapter 2. That chapter gives a

canonization result (in the sense of [18]) for the classical Silver forcing/ideal. It

extends the results from the author’s article [3]. We note that in [3] we prove

the canonization for equivalences defined by Fσ P -ideals, while in Chapter 2

we extend it to equivalences defined by arbitrary analytic P -ideals. Moreover,

Chapter 2 gives some classification, resp. anti-classification, results concerning

subequivalences of E0 on the Silver forcing.

Chapter 3 deals with another classical forcing notion (resp. σ-ideal on a Polish

space) - Laver forcing/ideal. We prove the canonization for equivalences defined

by Fσ P -ideals. We note that the content of this chapter is written up in an

article [4] that was under peer review when this thesis was finished.

Chapter 4 deals with a σ-ideal that is derived from the Carlson-Simpson (Dual

Ramsey) theorem. We prove a total canonization for all analytic equivalence re-

lations in case when we deal with a two element alphabet. For larger alphabets

we identify a finite set of canonical equivalence relations and sketch a proof that

every analytic equivalence relation can be canonized to one of them. One can

view it as a generalization of some weak form of the Dual Ramsey theorem. The

article [5] containing results from this chapter was in preparation when the thesis

was submitted. It will contain a full proof for the case of alphabets of more than

two elements which is only sketched here.

The second part of the thesis, thematically different than chapters 2-4, is

contained in Chapter 5. That chapter extends the universality and homogeneity

properties of the Urysohn universal metric space. We enrich the Urysohn space

by some additional structure and prove that this enriched Urysohn space is still

universal and ultrahomogeneous for (Polish) metric spaces equipped with the

same type of structure. Namely, we enrich the Urysohn space by adding finitely

or countably many closed relations of an arbitrary arity; by adding a closed subset

of the product of the Urysohn space and an arbitrary other Polish metric space;

finally, by adding a Lipschitz function (with an arbitrary Lispchitz constant) from
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the Urysohn space to an arbitrary compact metric (thus again Polish) space.

The motivation is to provide a way of (Borel) coding of such Polish metric

structures; i.e. a method how to use descriptive set theory in classification of such

structures. Simiarly as in case with Chapter 4, the article [6] containing results

from this chapter was in preparation when the thesis was submitted.
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Chapter 1

Preliminaries

1.1 Descriptive set theory

Here we review the concepts of descriptive set theory that will be used through

the rest of the thesis. We divide this section into two subsections. The first one

summarizes the basics of descriptive set theory that have something to do with

the next chapters. It contains mainly definitions but also a list of basic facts. The

second one gives a basic overview of the theory of definable equivalence relations.

1.1.1 Basics

Definition 1.1.1 (Polish spaces and Polish metric spaces). A topological space

(X, τ) is called a Polish space if it is separable and completely metrizable (i.e.

there exists a metric on X that induces the topology τ and X is complete with

respect to this metric). In the rest of the text, we will always omit τ from the

notation.

We shall also use the term Polish metric space. In such a case we assume that

some fixed metric is given together with the space.

Examples.

• All finite or countable spaces with discrete topology.

• R with the standard Euclidean topology.

• Finite or countable products of Polish spaces with the product topology;
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e.g. ωω or 2ω (where the topology on ω and 2 is discrete). We call the

former space the Baire space, the latter the Cantor space.

• All compact metrizable spaces.

• All separable Banach spaces.

• LetX be compact metrizable, Y a separable metrizable. Then C(X,Y ), the

space of all continuous functions from X to Y endowed with the compact-

open topology, is Polish. If dY is a compatible metric on Y then we can

define a compatible metric on C(X, Y ) as follows: if f, g ∈ C(X, Y ) then

d(f, g) = sup{dY (f(x), g(x)) : x ∈ X}.

• Let (X, dX) and (Y, dY ) be two Polish metric spaces. Then L(X, Y ), the

space of all Lipschitz functions from X to Y endowed with the pointwise-

convergence topology, is Polish. There is no canonical metric on L(X, Y )

though; i.e. that can be defined directly from dX and dY .

• Let X be Polish. Then K(X), the space of all compact subsets of X en-

dowed with the Vietoris topology, is Polish.

We have the following characterization of all Polish spaces.

Fact 1.1.2 (see [20]; Theorem 4.17). Every Polish space is homeomorphic to

some closed subspace of Rω.

Definition 1.1.3 (Borel sets). Let X be a Polish space, B ⊆ P(X) a countable

base of topology on X. A subset B ⊆ X is Borel if it belongs to the σ-algebra

Borel(X) on X generated by B.

Let Σ0
1(X) denote the set of all open subsets of X. Let α be an arbitrary

countable ordinal. Then we set Σ0
α+1(X) = {

∪
n∈ω(X \An) : (An)n∈ω ⊆ Σ0

α(X)}.

If α is limit then we set Σ0
α(X) =

∪
β<αΣ

0
β(X). Moreover, we set Π0

α(X) =

{X \ A : A ∈ Σ0
α(X)}.

Π0
1(X) are closed subsets of X, of course. Moreover, Σ0

2(X) sets, resp. Π0
2(X)

sets, will be called Fσ sets, resp. Gδ sets. Occasionally, we will refer to Π0
3(X)

sets as Fσδ sets.
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Fact 1.1.4 (Lebesgue; see [27]; Theorem 2.5). If X is an uncountable Polish

space then for every α < ω1 Σ0
α(X) ̸= Σ0

α+1(X).

Fact 1.1.5 (see [20]; Theorem 3.11). Let X be a Polish space, Y ⊆ X some

subspace. Then Y is Polish iff Y is Gδ in X.

Fact 1.1.6 (see [20]; Theorem 7.9). Let X be a Polish space. Then there exists

a continuous surjection π : ωω → X. In addition, there exists a closed subset

F ⊆ ωω and a continuous bijection πF : F → X.

For compact metrizable spaces there is a similar fact involving the Cantor

space.

Fact 1.1.7 (see [20]; Theorem 4.18). Let X be a compact metrizable space. Then

there exists a continuous surjection π : 2ω → X.

Definition 1.1.8 (Borel function). Let X,Y be two Polish spaces and A ⊆

X,B ⊆ Y two Borel subsets. A function f : A → B is Borel if preimages of all

(relatively) open subsets of B are Borel.

Definition 1.1.9 (Analytic and coanalytic sets). Let B be a Borel set. A subset

A ⊆ B is analytic if it is a Borel image of a Borel set; i.e. there exist a Borel set

C and a Borel function f : C → B such that f [C] = A.

A ⊆ B is coanalytic if B \ A is analytic.

We shall also denote Σ1
1(B), resp. Π1

1(A), the classes of analytic, resp. coan-

alytic, subsets of B.

Usually, some other definition of analytic set is given and the definition above

is shown to be equivalent with it. For some other definitions of analytic sets and

equivalences between them we refer to [20]. Compare the previous definition with

the following fact.

Fact 1.1.10 (Luzin-Souslin; see [20]; Theorem 15.1). Let B and C be Borel sets.

Let f : B → C be an injective Borel function. Then f [B] is Borel.

Fact 1.1.11 (Perfect set theorem; see [20]; Theorem 29.1). Let X be a Polish

space and A ⊆ X an uncountable analytic subset. Then there exists a non-empty

perfect (i.e. closed without isolated points) subset P ⊆ A.
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Fact 1.1.12 (see [20]; Theorem 14.12). Let A,B be two Borel sets. A function

f : A→ B is Borel iff the graph of f is an analytic subset of A×B.

Fact 1.1.13 (the Borel isomorphism theorem; see [20]; Theorem 15.6). Let A,B

be two Borel sets of the same cardinality. Then they are Borel isomorphic; i.e.

there exists a bijection between A and B that is a Borel function (note that the

previous fact implies that the inverse is also a Borel function).

In particular, the previous fact says that any two uncountable Polish spaces are

Borel isomorphic. Thus if we are interested in Borel (not topological) properties

of some uncountable Polish space then it does not matter which one we choose

to work with.

It also justifies the following definition.

Definition 1.1.14 (Standard Borel space). Let (X,ΣX) be a measurable space.

We call X (we omit the symbol for the σ-algebra on it) a standard Borel space

if it is Borel isomorphic to some (equivalently any) uncountable Borel set. The

elements of ΣX are then called Borel subsets of X.

An important example of a standard Borel space is provided in the following

definition. We shall use it in the last chapter.

Definition 1.1.15 (the Effros-Borel structure). Let X be a Polish space. Let us

denote F (X) the set of all closed subsets of X. Consider a σ-algebra Σ on F (X)

generated by the following sets GU = {F ∈ F (X) : F ∩ U ̸= ∅} where U varies

over all basic open subsets U of X.

We call (F (X),Σ) the Effros-Borel structure of F (X).

Fact 1.1.16 (see [20]; Theorem 12.6). For any infinite Polish space X the Effros-

Borel structure (F (X),Σ) is a standard Borel space.

In the rest of this subsection we shall deal with Polish groups.

Definition 1.1.17 (Polish group). A topological group G is Polish if its group

topology is Polish.

Examples.
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• (R,+) or (R+, ·).

• The additive group of any separable Banach space.

• The group of permutations of ω, usually denoted as S∞. Note that S∞ is a

Gδ subset of ω
ω.

• The group of homeomorphisms of any compact metrizable space X. Note

that such a group is a Gδ subset of C(X,X).

• The group of surjective isometries of some Polish metric space X. Note

that such a group is a Gδ subset of L(X,X).

• Any Gδ (which is in fact always closed) subgroup of a Polish group. Also,

any finite or countable product of Polish groups.

• Any quotient G/H, where G is a Polish group and H a closed normal

subgroup, is a Polish group.

We also provide a definition of a more general type of groups that somehow

connect to the results in the next two chapters.

Definition 1.1.18 (Polishable Borel groups). A group G is called a standard

Borel group if it is both a group and a standard Borel space and moreover, the

group operations are Borel.

A standard Borel group G is Polishable if there exists a Polish topology on G

that produces the same Borel structure on G and such that the group operations

become continuous.

We conclude this subsection by defining Polish and Borel actions of Polish

groups on Polish, resp. standard Borel spaces.

Definition 1.1.19 (Polish and Borel G-space). Let G be a Polish group, X a

Polish space and Z a standard Borel space. A group action aX : G×X → X is

called a Polish action if the action is continuous. X together with this action is

then called a Polish G-space.

Similarly, a group action aZ : G×Z → Z is called a Borel action if the action

is Borel. Z together with this action is then called a Borel G-space.

We shall usually write just g · x instead of aX(g, x).
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1.1.2 Definable equivalence relations

Definition 1.1.20 (Definable equivalence relations). Let Γ be some “definable”

pointclass, i.e. class of definable subsets (of Polish, or sometimes even standard

Borel, spaces) of some sort, usually closed under continuous preimages; e.g. Σ0
α

sets for some α < ω1 (such a pointclass is defined only on Polish spaces, not on

standard Borel spaces), Borel sets, analytic sets, etc.

Let X be a Polish (or standard Borel) space. We say that E ⊆ X × X is a

Γ-equivalence relation if it is an equivalence relation and E ∈ Γ(X ×X).

Examples.

• Let X be a standard Borel space. By id(X) we denote the identity relation

on X. It is a Borel equivalence relation. By ev(X) we denote the “full”

relation on X, i.e. a Borel equivalence relation with a single equivalence

class.

• Let X be a standard Borel space. Let Γ be a definable pointclass closed

under finite products (i.e. if A,B ∈ Γ(X) then also A × B ∈ Γ(X × X))

and under countable unions. Let (Pn)n∈ω be a partition of X into subsets

from Γ(X). Let E be a relation on X where xEy if ∃n(x, y ∈ Pn). It is a

Γ-equivalence relation.

• Consider the Cantor space 2ω. Let us define a relation E0 on it. For any

x, y ∈ 2ω we have xE0y if {n : x(n) ̸= y(n)} is finite. It is an Fσ-equivalence

relation.

• More generally, let I be an ideal on ω such that I ∈ Γ(2ω) for some

pointclass Γ (note that we identify the ideal I with a subset of 2ω via

the function sending a subset of ω to its characteristic function). Then we

define a relation EI on 2ω as follows: for any x, y ∈ 2ω we have xEIy if

{n : x(n) ̸= y(n)} ∈ I. It is a Γ-equivalence relation. Since this is an im-

portant class of equivalence relations we provide some particular examples

here.

– If I = Fin, i.e. the ideal of all finite subsets of ω, then EI = E0.
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– Let I = ∅ ⊗ Fin = {A ⊆ ω × ω : {n : An /∈ Fin} = ∅}, where

An = {m : (n,m) ∈ A}. Then E∅⊗Fin is an Fσδ-equivalence relation on

2ω×ω which is usually denoted as E3.

– Let I = Fin⊗ ∅ = {A ⊆ ω × ω : {n : An ̸= ∅} ∈ Fin}. Then EFin⊗∅ is

an Fσ-equivalence relation which is usually denoted as E1.

– Let IS be the summable ideal; i.e. IS = {A ⊆ ω :
∑

{1/(n + 1) : n ∈

A} < ∞}. Then EIS is an Fσ-equivalence relation which is usually

denoted as E2.

– Let Z0 be the density zero ideal; i.e. Z0 = {A ⊆ ω : limn→∞
|A∩[0,n+1]|

n+1
=

0}. Then EZ0 is an Fσδ-equivalence relation.

• Similarly, let G be a subgroup of (Rω,+) such that G ∈ Γ(Rω) for some

pointclass Γ. It determines a relation EG on Rω as follows: for any x, y ∈ Rω

we have xEGy if x− y ∈ G. It is a Γ-equivalence relation.

– Let G = ℓp, where p ∈ [1,∞] and ℓp = {x ∈ Rω :
∑

n x(n)
p < ∞} if p

is finite, and ℓ∞ = {x ∈ Rω : ∃B ∈ R∀n ∈ ω(x(n) ≤ B)}. Then Eℓp

is an Fσ-equivalence relation. For p, q ∈ [1,∞] such that p < q the

following holds (see [7]): Eℓp <B Eℓq .

– Let G = c0, where c0 = {x ∈ Rω : limn→∞ x(n) = 0}. Then Ec0 is an

Fσδ-equivalence relation.

• Let P be the Polish space of all probability Borel measures on [0, 1] (see

[20] 17.E for details about this space). For any two measures µ, ν ∈ P we

define µ ≡m ν if they produce the same null ideals; i.e. Iµ = {A ⊆ [0, 1] :

µ(A) = 0} = {A ⊆ [0, 1] : ν(A) = 0} = Iν . It is an equivalence relation

which can be shown to be Fσδ ([11] p. 200).

• Let G be a Polish group and X a Polish or Borel G-space. We define a

relation EG on X where for any x, y ∈ X we have xEGy if ∃g ∈ G(y = g ·x).

We call it an orbit equivalence relation of G on X.

In general, this is an analytic equivalence relation: note that EG is a pro-

jection on the first two coordinates of the Borel (closed if we work with a
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Polish G-space) set {(x, y, g) ∈ X2 ×G : g · x = y}. However, it was shown

by Miller (see [11] Theorem 3.3.2) that all equivalence classes are Borel.

Definable equivalence relations are compared in their complexity. Such a com-

parison will be an important concept in the next three chapters. From now on,

we restrict only on analytic equivalence relations.

Definition 1.1.21 (Definable reducibility between analytic equivalences). Let

X, Y be two Polish (or standard Borel) spaces and E ⊆ X2, F ⊆ Y 2 two analytic

equivalence relations. We say that a function f : X → Y is a reduction of E to

F if ∀x, y ∈ X(xEy ⇔ f(x)Ff(y)).

We say that E is Borel reducible to F , E ≤B F , if there exists a Borel

reduction of E to F . We say that E and F are bireducible, E ≈B F , if E ≤B F

and F ≤B E. Moreover, we write E <B F if E ≤B F but not F ≤B E.

We note that there are other types of reductions in literature, e.g. Baire

measurable reduction, continuous reduction, etc, with obvious definitions. We

restrict only on Borel reductions.

We state here a theorem which we will refer to in subsequent chapters.

Theorem 1.1.22 (Rosendal). Eℓ∞ is a universal Kσ equivalence relation.

See for example [11], Theorem 8.4.2, for the proof.

That means that for any equivalence relation E that is a countable union of

compact sets there exists a Borel reduction of E to Eℓ∞ . Note that Eℓ∞ itself is

Kσ.

Dichotomies for Borel equivalence relations.

It is clear that any Borel equivalence relation E with α-many equivalence classes,

where α ≤ ω, is Borel reducible to any equivalence relation F (which does need to

be Borel or in any other sense definable) with at least α equivalence classes: just

choose α many pairwise F -inequivalent elemenets (xβ)β<α, enumerate equivalence

classes of E as (Cβ)β<α and define f which maps Cβ onto {xβ}. It is clearly a

Borel reduction.
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It is no longer clear for Borel equivalence relations with more than countably

many classes; however, there is the following dichotomy due to Silver.

Theorem 1.1.23 (Silver’s dichotomy). Let X be a Polish (or just standard Borel)

space and E a coanalytic equivalence relation on X. Then either E has at most

countably many classes of equivalence or id(2ω) ≤B E.

See [11] or [17] for proofs. The former uses forcing in the proof, the latter

does not. However, both rely on methods from efective descriptive set theory.

Recently, B. Miller discovered that the graph-theoretic methods, based on work

[22], can be used to prove the Silver’s theorem only by “classical” methods, see

[28].

The Silver’s theorem says that there is no coanalytic equivalence relation

strictly between id(ω) and id(2ω). We say that an equivalence relation E is

smooth if E ≤B id(2ω) (note that this automatically implies that E is Borel). So

every coanalytic (in fact Borel) smooth equivalence relation has either at most

countably many classes or it is bireducible with id(2ω).

Fact 1.1.24 (see [11]; Proposition 6.1.7). The Fσ equivalence relation E0 is not

smooth.

Thus id(2ω) <B E0. The following dichotomy says that E0 is the minimal

non-smooth Borel equivalence relation. We shall use it in the next chapter.

Theorem 1.1.25 (Glimm-Effros dichotomy). Let X be a Polish (or just standard

Borel) space and let E be a Borel equivalence relation on X. Then either E ≤B

id(2ω) or E0 ≤B E.

See again [11] or [17] for proofs. The next corollary immediately follows, it

will also be important in the next chapter.

Corollary 1.1.26. Let E be a Borel equivalence relation on 2ω such that E ⊆ E0.

Then either E ≤B id(2ω) or E ≈B E0.

Particular equivalence relations.

Here we investigate some particular Borel equivalence relations in detail. In fact,

all equivalence relations discussed here are Fσδ.

14



In particular, we will be interested in equivalences of the form EI , where I is

an ideal on ω. We need one set-theoretic definition.

Definition 1.1.27 (P -ideal). An ideal I on an infinite set X is called P -ideal

if for any countable sequence (Xn)n∈ω ⊆ I of elements of the ideal there is

an element of the ideal almost containing every element of the sequence, i.e.

∃X ∈ I∀n(Xn ⊆∗ X), where ⊆∗ denotes “almost inclusion”, i.e. inclusion modulo

a finite set.

It is immediate that Fin is a P -ideal. Also, ∅⊗Fin is a P -ideal, while Fin⊗∅

is not. Recall the summable ideal IS and the density zero ideal Z0. It is an easy

exercise that they are also P -ideals. The following fact connect the equivalence

relations determined by them with equivalence relations from another group,

those defined by subgroups of (Rω,+).

Fact 1.1.28. We have E2 = EIS ≈B Eℓ1 and EZ0 ≈B Ec0.

See [17] for a proof.

The previous fact for Eℓ1 generalizes for p ∈ (1,∞) (not for p = ∞ though).

Fact 1.1.29. For any p ∈ (1,∞) there exists an Fσ P -ideal Ip such that EIp ≈B

Eℓp.

Since we were unable to find a reference for this we provide a proof here;

although that fact is known among experts.

Proof. Fix a bijection π : ω×ω → ω. Let p ∈ [1,∞) be arbitrary. First, we show

that Eℓp � [0, 1]ω ≈B Eℓp . Clearly Eℓp � [0, 1]ω ≤B Eℓp ; the embedding of [0, 1]ω

into Rω is the desired reduction. For the other direction, we define a reduction

f : Rω → [0, 1]ω. We set f(x)(π(n, 2i − 1)) to be 1 if x(n) ≥ i + 1, 0 if x(n) ≤ i

and x(n)− i otherwise; similarly, we set f(x)(π(n, 2i)) to be 1 if x(n) ≥ i+ 3/2,

0 if x(n) ≤ i + 12 and x(n) − i − 1/2 otherwise. It is straightforward to verify

that f is a Borel reduction.

We define Ip as {A ⊆ ω :
∑

n∈ω(
∑

i∈ω χA(π(n, i))/2
i+1)p <∞}. The function

µ sending A ⊆ ω to
∑

n∈ω(
∑

i∈ω χA(π(n, i))/2
i+1)p is a lower semicontinuous

submeasure witnessing that Ip is an Fσ P -ideal. To show that EIp ≤B Eℓp �
[0, 1]ω we define a Borel reduction f : 2ω → [0, 1]ω as follows: we set f(x)(n) =

15



∑
i∈ω x(π(n, i))/2

i+1, and to show that Eℓp � [0, 1]ω ≤B EIp we define a Borel

reduction g : [0, 1]ω → 2ω as follows: we set g(x)(π(n, i)) = 1 iff x(n) ≥ 1/2i+1.

It is easy to check that these are the desired reductions.

We state a theorem due to S. Solecki that characterizes ideals on ω that are

analytic P -ideals. We need to define a notion of lower semicontinuous submeasure.

Definition 1.1.30 (Lower semicontinuous submeasure). A submeasure on P(ω)

(we shall say “a submeasure on ω”) is a function µ : P(ω) → [0,∞] with the

following properties:

1. µ(∅) = 0

2. for A ⊆ B we have µ(A) ≤ µ(B)

3. for any A,B we have µ(A ∪ A) ≤ µ(A) + µ(B)

Moreover, µ is lower semicontinuous if it is a lower semicontinuous function with

respect to the Cantor space topology (recall we can identify elements of P(ω)

with elements of 2ω); which is equivalent to the statement that for any increasing

chain A0 ⊆ A1 ⊆ A2 ⊆ . . . we have µ(
∪
nAn) = supn µ(An).

Definition 1.1.31 (Exh(µ) and Fin(µ)). Let µ be a lower semicontinuous sub-

measure on ω. We define the exhaustive and finite parts of µ:

Fin(µ) = {A ⊆ ω : µ(A) <∞}.

Exh(µ) = {A ⊆ ω : limn µ(A \ n) = 0}.

A simple computation gives that for such µ Fin(µ) is always an Fσ set and

Exh(µ) an Fσδ set. It is also immediate that Exh(µ) ⊆ Fin(µ). The converse is

generally not true; that will be one of the consequences of the next theorem.

Theorem 1.1.32 (Solecki; see [31]). For an ideal I on ω the following are equiv-

alent:

1. I is an analytic P -ideal.

2. There exists a lower semicontinuous submeasure µ on ω such that I =

Exh(µ).
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3. The group (I,△) is Polishable.

In particular, every analytic P -ideal is in fact an Fσδ ideal. It also follows

that for any analytic P -ideal I the equivalence relation EI is an orbit equivalence

relation.

We state the next proposition separately from Theorem 1.1.32. It will be

directly used in Chapter 3.

Proposition 1.1.33 (Solecki; see again [31]). An Fσ ideal I on ω is a P -ideal

if and only if there exists a lower semicontinuous submeasure µ on ω such that

I = Fin(µ) = Exh(ω).

Though not important for our purposes we note that K. Mazur proved a

statement of a similar flavor.

Fact 1.1.34 ([26]). Any Fσ ideal I on ω is of the form Fin(µ) for some lower

semicontinuous submeasure µ on ω.

We conclude the part of this section concerning equivalence relations and

ideals on ω by the following interesting theorem which will not be used in the

rest of the thesis though.

Theorem 1.1.35 (Rosendal; see [30]). Let E be any Borel equivalence relation

(on some Polish or standard Borel space). Then there exists a Borel ideal I on

ω such that E ≤B EI.

Thus the equivalences of the form EI , where I is some Borel ideal, are cofi-

nal in the ordering of Borel equivalences with ≤B. We note that the (minimal

possible) cardinality of such a cofinal family is ℵ1.

The last two notions we define here and which will be important in the next

chapters are those of countable Borel equivalence relations and equivalences clas-

sifiable by countable structures.

Definition 1.1.36 (Countable Borel equivalence relations). We say that a Borel

equivalence relation E is countable if every E-class is countable.

Definition 1.1.37 (Equivalence relations classifiable by countable structures).

Let L be a language consisting of (at most) countably many relations (enumerated
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as (Ri)i∈ω). Let Mod(L) be the set of all countable models of L with ω as the

underlying universe. We can view Mod(L) as Πi2
ωni , where ni is the arity of

Ri, thus as a Polish space (homeomorphic to the Cantor space). We consider a

relation of isomorphism on Mod(L) which we denote EL. Note that it is induced

by an action of S∞ where for any M ∈ Mod(L), g ∈ S∞, i ∈ ω and x̄ ∈ ωni we

have Rg·M
i (x1, . . . , xni) ⇔ RM

i (g−1(x1), . . . , g
−1(xni)).

Let E be an arbitrary equivalence relation (on some Polish or standard Borel

space). We say that E is classifiable by countable structures if there exists a

language L consisting of (at most) countably many relations such that E ≤B EL.

Fact 1.1.38. Every countable Borel equivalence relation is classifiable by count-

able structures.

For the proof see [17] Lemma 6.1.3.

1.2 Set theory

This section reviews some notions from set theory that will be used in the thesis.

Mainly some basic forcing facts and then the main concepts of Idealized forcing

([33]) and Canonical Ramsey theory on Polish spaces ([18]).

1.2.1 Forcing

In all but the fourth chapter (in the second and third; the last chapter does not

deal with notions from forcing at all) we use the term “forcing” as a synonym

for an ordering which is based on the fact that the orderings considered there

were originally investigated in forcing theory. Similarly, the term “condition” is

a synonym for an element of that particular ordering.

However, the fourth chapter uses forcing explicitly. It is not possible to intro-

duce here all notions from forcing used there so we need to assume that a reader

of that chapter has a basic knowledge of forcing; we refer the reader to [25] or

[16] for a general exposition on forcing. Especially, the knowledge of the Forcing

theorem ([16], Theorem 14.6) is necessary.

Let us highlight one particular concept that is used in Chapter 4 and which
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is in fact the only reason why we use forcing there. It is stated in the following

theorem.

Theorem 1.2.1 (Analytic absoluteness). Let M be a transitive model of set

theory, A ⊆ ωω an analytic set that lies (resp. its code) in M . Then for any

x ∈M we have x ∈ A iff M |= x ∈ A.

See for example [16] (Theorem 25.4). This theorem illustrates the idea we

use in Chapter 4: We can use forcing method to show that some statement holds

in some forcing extension, however that statement is simple enough that it also

necessarily holds in the universe.

1.2.2 Idealized forcing

We state some basic concepts from [33] that will be useful in the next chapters.

Definition 1.2.2. Let X be a Polish space, I ⊆ P(X) a σ-ideal on X (i.e. closed

under taking countable unions). By PI we denote the ordering (Borel(X) \ I,⊆)

of I-positive Borel sets ordered by inclusions. Similarly, Borel(X)/I denotes the

quotient σ-algebra of Borel subsets of X modulo the σ-ideal I.

The orderings PI and Borel(X)/I are forcing equivalent.

Proposition 1.2.3 ([33]; Proposition 2.1.2). The ordering PI adds (as a forcing

notion) an element ẋgen ∈ X. If G ⊆ PI is the generic filter then ẋgen =
∩
G and

G = {A ∈ Borel(X) : ẋgen ∈ A}.

In particular, ẋgen does not lie in any ground model Borel set from I.

Recall the definition of proper forcing (see for example [16] Definition 31.1).

The book [33] focuses almost entirely on forcing notions PI that are proper. We

state the characterization of this type of forcing notions that are proper.

Proposition 1.2.4 ([33]; Proposition 2.2.2). Let X be a Polish space and I a

σ-ideal on it. Then PI is proper iff for every countable elementary submodel

M of some Hλ, where λ is “large enough”, and every B ∈ PI ∩ M we have

{x ∈ B : x is M-generic} /∈ I.

We state one more proposition from [33] and then define a related important

notion that will be used in the next two chapters.
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Proposition 1.2.5 ([33]; Proposition 2.3.1). Let X, I be as above and suppose

that PI is proper. Let Y be some other Polish space and suppose that B ∈ PI is a

condition forcing that ẏ ∈ Y . Then there exist a subcondition C ⊆ B and a Borel

function f : C → Y such that f(ẋgen) = ẏ.

Definition 1.2.6 (Continuous reading of names; see [33] Definition 3.1.1). Let

X, I be again as above and suppose that PI is proper. PI has continuous reading

of names if for every Borel function f : B → Y , where B ∈ PI and Y is some

Polish space, there exists a subcondition C ⊆ B such that f � C is continuous.

1.2.3 Canonical Ramsey theory on Polish spaces

The theme of the next three chapters is directly related to the topic of the new

book of V. Kanovei, M. Sabok and J. Zapletal “Canonical Ramsey Theory on

Polish Spaces” ([18]). It is thus essential to introduce the main ideas of the book

here.

Let us begin with the following classical theorem that should serve as a mo-

tivation for what follows.

Theorem 1.2.7 (Canonical Ramsey Theorem; Erdös-Rado [8]). For any n and

any partition (finite or infinite) of [ω]n, equivalently any equivalence relation on

[ω]n, there exist a subset I ⊆ {0, . . . , n−1} and an infinite subset H ⊆ ω such that

∀a, b ∈ [H]n, a and b lie in the same part of partition (in the same equivalence

class) if and only if ∀i ∈ I(a(i) = b(i)), where a(i) is the i-th element of a in the

standard enumeration of ω.

It follows from the Ramsey theorem that the collection of subsets A of [ω]n

with the property that there is no infinite set B ∈ [ω]ω such that [B]n ⊆ A forms

an ideal; let us denote it I. Thus the Erdös-Rado canonical Ramsey theorem

can be restated as follows: For any n there are finitely many (2n) canonical

equivalence relations (Ei)i<2n such that for any equivalence relation E on [ω]n

there are i < 2n and a set H positive with respect to I such that E � H = Ei � H.

In [18], they consider “Polish versions” of the previous theorem. We start

with the crucial definition.
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Definition 1.2.8 (Spectrum of a σ-ideal). LetX be a Polish space and I ⊆ P(X)

a σ-ideal on it. The spectrum of I is the set of all analytic equivalence relations

E ⊆ X2 for which there exists an I-positive Borel set B ∈ PI such that for every

I-positive Borel subset C ⊆ B we have E � C ≈B E; i.e. the complexity of E

remains the same on every I-positive subset of B.

If some analytic equivalence relation E ⊆ X2 is not in the spectrum of I then

its complexity can be decreased on every I-positive set. Typically, we would like

to have some simple class of “canonical” equivalence relations (see the Erdös-

Rado theorem) such that every other equivalence relation from some bigger class

(i.e. class of all smooth equivalences, class of all Borel equivalences, etc.) can be

canonized to one of these on every I-positive Borel set. This is the content of the

next definition.

Definition 1.2.9 (Canonization of equivalence relations). Let X and I be as

before. Let C be some set of (canonical) equivalence relations and let D be

some class of analytic equivalence relations on X (resp. I-positive subsets of X).

We say that I has a canonization for all equivalences from D to C if for every

E ∈ D and for every I-positive Borel set B on which E is defined there is some

equivalence F ∈ C and an I-positive subset C ⊆ B such that E � B ≈B F .

In fact, we shall usually consider a stronger form of canonization. We will

have some set of (canonical) equivalence relations C on X2 and some class of

analytic equivalence relations on X (resp. I-positive subsets of X) D. For every

E ∈ D and for every I-positive Borel set B on which E is defined there is some

equivalence F ∈ C and an I-positive subset C ⊆ B such that E � C = F � C.

The following is the strongest form of canonization.

Definition 1.2.10 (Total canonization). Let X and I be as above. We say that

I has a total canonization for some class D of analytic equivalence relations on X

(resp. I-positive subsets of X) if for every E ∈ D and for every I-positive Borel

set B on which E is defined there is an I-positive subset C ⊆ B such that either

E � C = id(C) or E � C = C × C.

It follows the spirit of canonization results like that of (for example) H.J.

Prömel and B. Voigt [29] and O. Klein and O. Spinas [23].
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Example. Let X = 2ω and I be the σ-ideal of all countable subsets. It follows

from Silver’s theorem 1.1.23 that I has a total canonization for all Borel equiva-

lence relations. To see this, let E be a Borel equivalence relation defined on some

uncountable Borel set B. We define Ē on 2ω as follows: for x, y ∈ 2ω, xĒy if

either both x and y lie in 2ω \B or xEy. Ē is a Borel equivalence relation on 2ω,

thus we may use Theorem 1.1.23. If Ē has at most countably many classes then

so does E and at least one of the classes has an uncountable intersection with B.

This uncountable class C is then an I-positive subset such that E � C = C×C. If

id(2ω) ≤B Ē and it is witnessed by f : 2ω → 2ω then P = f [2ω] is an uncountable

Borel (we use Fact 1.1.10) subset of pairwise Ē-inequivalent elements. However,

Ē contains only one more equivalence class than E, namely 2ω \ B, thus P ∩ B

is still uncountable and E � (P ∩B) = id(P ∩B).

We conclude this section by stating the following theorem from [18] that will

be directly used later.

Theorem 1.2.11 (see [18]; Corollary 4.3.3.). Let I be a σ-ideal on a Polish

space X such that the forcing notion PI is proper, nowhere ccc and adds a mini-

mal forcing extension. Then I has a total canonization for equivalence relations

classifiable by countable structures.

1.3 Fräıssé theory

In 1954, R. Fräıssé published a seminal paper ([10]) where he describes how the

rational numbers with their order relation can be viewed as a certain limit of all

finite linear orderings. Realize that not only does the structure (Q,≤) contain

all finite linear orderings as substructures but it also contains all countable linear

orderings; moreover, any finite order isomorphism between two finite subsets of

Q can be extended to an isomorphism of the whole structure (Q,≤), and the

structure with these properties is unique up to isomorphism.

This Fräıssé’s construction is applicable in other cases too and we shall use it

in the last chapter, thus we give an introduction to this subarea of model theory
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here.

Definition 1.3.1 (Age of a structure). Let L be a relational language and let A

be some L-structure. By age of A, A(A), we denote the class of all isomorphism

types of finite substructures of A.

As usual in mathematics, we shall work with elements of A(A) as if they were

actual finite substructures of A rather than just their isomorphism types. This

simplifies the notation. We fix some countable relational language L from now

on.

Next, instead of starting with some (L-)structure A and considering its age we

start with some class K of isomorphism types of finite L-structures and investigate

whether this class is an age of some L-structure A. We need some definitions.

Definition 1.3.2 (HP and JEP). Let K be a class of isomorphism types of some

finite L-structures. We sayK has the hereditary property (HP) if whenever B ∈ K

and A is a substructure of B then A ∈ K.

We say K has the joint-embedding property (JEP) if whenever A,B ∈ K then

there exists some C ∈ K such that both A and B embedd into C.

The following fact is easy to prove.

Fact 1.3.3 (see [15]; Theorem 7.1.1). Suppose that K is a countable class of

isomorphism types of finite L-structures that has the HP and the JEP. Then

there exists an L-structure A such that A(A) = K.

Realize that A(Q) = A(N). So passing from A to A(A) and then back to an

L-structure via the previous fact need not give the original structure. Observe

that N does not have the homogeneity property of Q we stated at the beginning,

i.e. any finite order isomorphism between two finite subsets of Q can be extended

to an isomorphism of the whole structure (Q,≤). This property is in Fräıssé

theory called ultrahomogeneity. The definition follows.

Definition 1.3.4 (Ultrahomogeneity). Let A be an L-structure. We say that A

is ultrahomogeneous if any finite L-isomorphism between two finite substructures

of A can be extended to an isomorphism of the whole structure A.
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We need another requirement on K.

Definition 1.3.5 (AP). We say K has the amalgamation property (AP) if when-

ever A,B,C ∈ K such that A is embeddable into B via some embedding ϕB and

embeddable into C via some embedding ϕC , then there exists D ∈ K and embed-

dings of B via ψB into D and of C via ψC into D such that ψC ◦ ϕC = ψB ◦ ϕB.

If a countable class of isomorphism types of some finite L-structures K has

the HP, the JEP and the HP, then we call it a Fräıssé class.

We can now state the main theorem of Fräıssé theory.

Theorem 1.3.6 (Fräıssé’s theorem; see [15]; Theorem 7.1.2). Let K be a countable

class of isomorphism types of finite L-structures that has the HP, the JEP and

the AP. Then there exists a unique up to isomorphism countable structure A such

that A(A) = K and A is ultrahomogeneous.

We call such A a Fräıssé limit of K.

The converse is now true too.

Fact 1.3.7 (see [15]; Theorem 7.1.7). If A is a non-empty at most countable L-

structure that is ultrahomogenous, then A(A) is countable, has the HP, the JEP

and the AP.

Let us review the properties of a Fräıssé limit A of some Fräıssé class K.

• Not only does A contain as substructures all finite structures from K, it also

contains as substructures all L-structures B such that A(B) ⊆ K. This does

not immediately follow from Theorem 1.3.6 but it is easy to prove (see [15];

Lemma 7.1.3). This is a generalization of the fact that the rationals contains

as substructures all countable linear orderings.

• A is ultrahomogeneous.

• A is unique up to isomorphism with the property that A(A) is countable,

has the HP, the JEP and the AP.

We finish this section and this chapter by stating one single property of a Fräıssé

limit A that implies all of those three properties above.
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Definition 1.3.8 (One-point extension property). Let A be an L-structure. We

say that A has the one-point extension property if for any finite substructure

B0 ⊆ A and any one-point extension B1 ∈ A(A) of B0, i.e. |B1| = |B0| + 1 and

there exists an embedding ϕ : B0 ↪→ B1, there exists an embedding ψ : B1 ↪→ A

such that id = ψ ◦ ϕ.

Fact 1.3.9 (see [15]; Lemma 7.1.4 (b)). Let A be a (at most) countable L-

structure. A(A) is a Fräıssé class iff A has the one-point extension property.
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Chapter 2

Silver forcing

Introduction

Recall that the Silver forcing is the set {f : A ⊆ ω → 2 : |ω \ A| = ω} ordered

by the reverse inclusion. Though not important for our purposes, we note that

Silver forcing can be presented in the Borel(2ω)/I way as follows. We define I as

the σ-ideal generated by Borel G-independent sets, where G is the graph on 2ω

such that there is an edge between x and y iff there is exactly one n such that

x(n) ̸= y(n) (see [33, p. 212]). We will never use this information. From now on,

I is fixed as the Silver ideal.

S. Grigorieff proved that the Silver forcing adds a minimal real degree and it

follows that it canonizes all smooth equivalences (see [14, Cor. 5.5] and [18] for

the latter). However, one can see that E0 is in the spectrum of the Silver ideal,

so when canonizing an equivalence relation E which is above E0 in the Borel

reducibility order, the best we can hope is that it can be reduced to the identity,

a full equivalence relation or an equivalence relation bireducible with E0, on some

positive subset.

Here we focus on and canonize to the full eqivalence relation or a subset of E0

EI relations where I is an analytic P -ideal on ω. Recall that this class includes

the Eℓp relations for p ∈ [1,∞), E2 ≈B ℓ1 or Ec0 , where only the last one is Fσδ,

the preceding ones are Fσ.

We will work with sets of type Bf , where f : ω → 2 is a partial function
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with a coinfinite domain, defined as Bf = {x ∈ 2ω : x ⊇ f}. These sets form a

dense subset of Borel(2ω)/I isomorphic with the original Silver forcing, so they

are called conditions throughout this chapter. By Hf we will denote the set of

“holes” of the condition Bf , thus Hf is the complement of the domain of f . 2<Hf

in analogy with 2<ω denotes the set of finite functions to {0, 1} with domain con-

tained in Hf . For x ∈ 2ω and A ⊆ ω, x⊙A denotes the element y ∈ 2ω such that

y(n) = x(n) for n ∈ ω \A and y(n) = 1− x(n) for n ∈ A (we write x⊙ n instead

of x⊙{n}). When s, t, u (s, t finite, u may be infinite) are sequences, stu is their

concatenation. We will occasionally use the term “Silver tree” for the condition

Bf when we are interested in properties of initial subsequences of elements of Bf ,

i.e. x � n’s, for x ∈ Bf ,n ∈ ω.

We state a proposition from [18] that we will use later in the proof of the main

theorem. It is an other information information about the spectrum of the Silver

ideal beyond that of Grigorieff mentioned above.

Proposition 2.0.10 ([18]; Theorem 8.2.3.). Let B be a condition in the Silver

forcing and let E be an equivalence relation on B that is classifiable by countable

structures. Then there exists a Silver subcondition C ⊆ B such that E � C is C2

or a subset of E0.

The last assertion follows from Fact 1.1.38. Note that we cannot use Theorem

1.2.11 as the Silver ideal does not add a minimal forcing extension.

2.1 Canonization results

Theorem 2.1.1. Let B be a condition in the Silver forcing, I an analytic P -ideal

and E ⊆ B2 an equivalence relation Borel reducible to EI. Then there exists a

Silver subcondition C ⊆ B such that E � C is C2 or a subset of E0.

Proof of the theorem. We start with a basic observation.

Claim 2.1.2. There is a subcondition Bg ⊆ B such that f � Bg is determined

by a function p : 2<Hg → 2<ω from finite subsets of Hg to finite subsets of ω,

which is monotonous, i.e. p(t) ⊇ p(s) for t ⊇ s, |p(t)| = |t| for all t ∈ 2<Hg and

f(h) =
∪
n p(h � n).
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We will also denote f(x) =
∪
n p(x � n) for x ∈ Bg as p(x), it should not make

any confusion.

Proof. Silver forcing has the continuous reading of names (see [33, Theorem 3.3.2

and the fact the Silver forcing is bounding]) thus we can find a subcondition Br0 of

B on which f is continuous. Pick a hole h0 ∈ Hr0 . It follows from the continuity

of f that we can find a subcondition Br1 with h0 ∈ Hr1 such that the value of

f(x)(0) depends only on the value x(h0) for x ∈ Br1 . We pick next hole h1 and

find again a subcondition such that the value on h1 decides the value of f(x)(1)

for both possible values on h0. Generally, when we have the holes h0, . . . , hn−1

deciding the corresponding finite part of f(x) we pick the next least hole hn, 2
n

times apply the continuous reading of names and find a subcondition so that for

every configuration on holes h0, . . . , hn−1 the value on hn decides the value of

f(x)(n). We end up with a condition Bg, which is an intersection of conditions

obtained along the construction, with Hg = {h0, h1, . . .} from the statement of

the claim.

We will WLOG assume that Hg = ω.

By Theorem 1.1.32 we have a lower semicontinuous submeasure µ : P(ω) →

[0,∞] such that I = Exh(µ).

From now on, we also reserve the letters x, y, z to denote infinite binary se-

quences and other letters, if it is not said otherwise, to denote finite binary

sequences.

We define ∆n(x, y), for x, y ∈ 2≤ω, as µ((p(x) \ n)△ (p(y) \ n)) (= µ((p(x)△

p(y))\n)), where we identify p(x) with the corresponding (finite or infinite) subset

of ω. ∆0(x, y) may be denoted as ∆(x, y).

Note that ∆(x, y) (resp. ∆k(x, y)) is a pseudometric (which may attain an

infinite value though). Symmetricity is obvious; triangle inequality ∆(x, z) ≤

∆(x, y)+∆(y, z) follows from the inclusion p(x)△ p(z) ⊆ (p(x)△ p(y))∪ (p(y)△

p(z)) and monotonicity from subadditivity of µ (similarly for ∆k(x, y)). We will

frequently use this triangle inequality.

We extend the predicate E to finite sequences as follows: sEt iff |s| = |t| and

∀x(sxEtx).
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Moreover, for δ ∈ R+ we define xEδy (resp. sEδt) when ∆(x, y) < δ (resp.

∀x(∆(sx, tx) < δ)) and for finite sequences s, t (of the same length) we will write

sEδt when ∀x(∆|s|(sx, tx) < δ). For the rest of the proof the relation E with a

subscript will always denote one of those just defined and it should not be con-

fused with E0, E2, etc.

The proof splits into three cases.

Case 1 There exists ε > 0 such that the set

S = {s ∈ 2<ω : ∃t(∆(s0t, s1t) ≥ ε ∧ s0tEs1t)}

is somewhere dense (in 2<ω ordered by reverse inclusion).

Assume that S is dense above some d ∈ 2<ω and start with some s0 ⊇ d

in S. There is some t0 such that ∆(s00t0, s01t0) ≥ ε and for every x ∈ 2ω

∆(s00t0x, s01t0x) is finite, so we may in fact assume that t0 is extended enough

so that s00t0E
ε
8 s01t0. Otherwise, there would be t1, t2, . . . such that

∀n(s00t0t1 . . . tn��E
ε
8 s01t0t1 . . . tn)

which would (from the exhaustivity of µ) imply that s00xt��Es01xt, where xt =

t0t1 . . ., a contradiction.

Then find s1 ∈ 2<ω such that s00t0s1 ∈ S. There is t1 such that

∆(s0t0s10t1, s00t0s11t1) ≥ ε. That automatically implies that also

∆(s01t0s10t1, s01t0s11t1) ≥ 3ε
4
. It follows from the fact that

∆|s00t0|(s0t0s1it1, s01t0s1it1) <
ε
8
, for i ∈ {0, 1}, and the triangle inequality.

Again, we may assume that t1 is extended enough that

s0it0s10t1E
ε
16 s0it0s11t1, for i ∈ {0, 1}.

Then we find s2 such that s00t0s10t1s2 ∈ S, obtain t2 so that

s0 . . . 0s2t2E
ε
32 s0 . . . 1s2t2 and continue in the same manner.

The way we have chosen tn’s guarantees that
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∆|s0...sn|(s0i0 . . . in−1tn−1sn0tn, s0j0 . . . jn−1tn−1sn1tn) ≥
ε

2

where im, jm ∈ {0, 1} for m < n. To see this, notice that

∆|s0...sn|(s0i0 . . . in−1tn−1sn0tn, s00 . . . 0tn−1sn0tn) <
ε

8
+ . . .+

ε

22+n
<
ε

4

∆|s0...sn|(s0j0 . . . jn−1tn−1sn1tn, s00 . . . 0tn−1sn1tn) <
ε

8
+ . . .+

ε

22+n
<
ε

4

and finally

∆|s0...sn|(s00 . . . 0tn−1sn0tn, s00 . . . 0tn−1sn1tn) > ε

and use the triangle inequality.

Now let

x = s0i0t0s1i1t1 . . . intn . . .

y = s0j0t0s1j1t1 . . . jntn . . .

where im, jm ∈ {0, 1} for m ∈ ω. If im ̸= jm for infinitely many m’s then it follows

from the construction that there are infinitely many disjoint intervals [km, lm] such

that ∆lm
km
(x, y) ≥ ε

2
, thus p(x)△ p(y) /∈ Exh(µ).

On the contrary, if the set {m : im ̸= jm} is finite, then by transitivity of E,

xEy. It follows that we just found a condition Bh = C on which E is equal to

E0, where

Bh = {x ∈ 2ω : x = s0i0t0s1i1t1 . . . intn . . . , im ∈ {0, 1}}

If Case 1 does not hold then for every ε > 0

Sε = {s ∈ 2<ω : ∃t(∆(s0t, s1t) ≥ ε ∧ s0tEs1t)}

is nowhere dense. For a particular ε and s /∈ Sε that implies that either for every

v there is an infinite extension x ⊇ v such that s0x��Es1x or there is t such that
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s0tEεs1t. Let S
1
ε denote the set of all s’s from the latter case, i.e.

S1
ε = {s : ∃t(s0tEεs1t)}

and S2
ε the set of all s’s from the “either” case, i.e.

S2
ε = {s : ∀v∃x ⊇ v(s0x��Es1x)}

Here we split into the remaining two cases.

Case 2 Assume that S1
1
n

is dense for infinitely many n ∈ ω. Then let us

start with some s0 ∈ S1
1
m0

, where m0 ≥ 2, and we obtain appropriate t0, i.e.

s00t0E 1
m0

s01t0, which may be again sufficiently extended so that s00t0E
1
4 s01t0.

Then we find s1 such that s00t0s1 ∈ S1
1
m1

for some m1 ≥ 4. We again ob-

tain appropriate t1 and extend it if necessary so that s00t0s10t1E
1
8 s0it0s1jt1

for i, j ∈ {0, 1}. Generally, we look for sn such that s00 . . . 0tn−1sn ∈ S1
1
mn

for some mn ≥ 2n+1 and tn is again sufficiently extended, so we always have

s0i0t0 . . . intnE
( 1
mn

+ 1
2n

)s0j0 . . . jntn, for i0, . . . , in, j0, . . . , jn ∈ {0, 1}.

Now let

x = s0i0t0s1i1t1 . . . intn . . .

y = s0j0t0s1j1t1 . . . jntn . . .

where im, jm ∈ {0, 1} for m ∈ ω. Then by the construction

∆(x, y) <
∑

{n:x(n)̸=y(n)}(
1

2n+1 +
1
2n
). Hence we found a condition Bh = C, where

Bh = {x ∈ 2ω : x = s0i0t0s1i1t1 . . . intn . . . , im ∈ {0, 1}}

on which E is the full relation, i.e. E � C = C × C.

Case 3 The remaining case is when there is s0 ∈ 2<ω such that ∀s ⊇ s0∀v∃x ⊇

v(s0x��Es1x). We assume that E does not have I-positive classes and we find a

condition on which E is a subset of E0.
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For s ⊇ s0 and ε > 0, let us denote

T εs = {t : ∃e(∆|s0t|−1(s0te, s1te) ≥ ε)}

Note that T εs is closed under initial segments.

Claim 2.1.3. For every s ⊇ s0 there exists ε > 0 such that the set T εs is some-

where dense above s.

Proof. Otherwise, let us assume that the set

N = {s ⊇ s0 : ∀ε(T εs is nowhere dense above s)}

is dense (above s0). If it were not dense, we could extend s0 so that there would

be no element of N above s0.

Pick some n0 ∈ N . Since T 1
n0

is nowhere dense above s0 we can find v0 so that

there is no element of T 1
n0

above v0, thus ∀t ⊇ v0∀e

∆|n00t|−1(n00te, n01te) < 1

Then find n1 such that n00v0n1 ∈ N . We prove that from triangle inequality we

also have n01v0n1 ∈ N .

To see this, denote for simplicity n00v0n1 as m0 and n01v0n1 as m1. Suppose

that there is ε such that T εm1
is dense above some k ⊇ m1. Since T

ε/4
n0 is nowhere

dense above n0, there exists k̄ ⊇ k such that ∀l ⊇ k̄∀e

∆|m00l|−1(m00le,m10le) ≤ ε/4

and

∆|m01l|−1(m01le,m11le) ≤ ε/4

Then for every t ∈ T εm1
, t ⊇ k̄, there is e such that

∆|m10t|−1(m10te,m11te) ≥ ε
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so we have from the triangle inequality

∆|m00t|−1(m00te,m01te) ≥ ∆|m10t|−1(m10te,m11te)

−∆|m00t|−1(m00te,m10te)−∆|m01t|−1(m01te,m11te) ≥ ε/2

Thus T
ε/2
m0 is somewhere dense above m0 which contradicts that m0 ∈ N .

We can find some v1 so that both v0n1iv1 are outside of T 2−2

n0
(no element of

T 2−2

n0
is above v0n1iv1), for i ∈ {0, 1}, which guarantess that ∀t ⊇ v1∀e

∆|m00t|−1(m00te,m10te) < 2−2

and

∆|m01t|−1(m01te,m11te) < 2−2

and if necessary we can extend v1 so that it is outside of both T 2−2

n0iv0n1
, for i ∈

{0, 1}, which guarantess that ∀t ⊇ v1∀e

∆|n00v0n10t|−1(n00 . . . 0te, n00 . . . 1te) < 2−2

and

∆|n01v0n10t|−1(n01 . . . 0te, n01 . . . 1te) < 2−2

Finally, from triangle inequality ∀t ⊇ v1∀e

∆|n00v0n10t|−1(n00 . . . 0te, n01 . . . 1te) < 2−1

and

∆|n00v0n11t|−1(n00 . . . 1te, n01 . . . 0te) < 2−1

In summary, we have the following inequalities: ∀t ⊇ v1∀e

∆|n0j0...j1t|(n0i0v0n1i1te, n0j0v0n1j1te) < 2−1

In general, once we have nm−1, vm−1 we choose nm so that

n00 . . . nm−10vm−1nm ∈ N and it again follows from triangle inequality that also
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n0i0 . . . nm−1im−1vm−1nm ∈ N for ik ∈ {0, 1}. As above, we can find some vm so

that for every t ⊇ vm and every e

∆|n0j0...jmt|(n0i0v0n1i1v1 . . . imte, n0j0 . . . jmte) < 2−m

for ik, jl ∈ {0, 1}. We obtain a Silver subcondition

B = {x ∈ 2ω : x = n0i0 . . . nmimvm . . . where im ∈ 2∀m ∈ ω}

where the relation reduces to the full relation. To see this, let x, y ∈ B and

n, l ∈ ω. Let m̄ = |n00 . . . 0vn+1| and I = {k0, k1, . . . , kd} be the finite set of

indices of holes where the finite segments x � l and y � l differ and that come

after n00 . . . 0vn+1. We want to prove the following inequality

∀m ≥ m̄(∆m(x � l, y � l) ≤ 2−n

Since n and l were arbitrary, it would give us precisely the condition for p(x)EIp(y),

thus xEy.

Note that from inequalities that we have it holds that

∀m ≥ m̄(∆m(x � l, y � l) ≤ ∆m̄(x � l, y � l) ≤ ∆m̄(x � l, (y ⊙ I) � l)+

∆|...vk0 ik0 |(x � l, (y ⊙ (I \ {ik0})) � l)) + ∆|...vk1 ik1 |(x � l, (y ⊙ (I \ {ik0 , ik1}) � l))

+ . . . ≤ 2−n−1 + 2−n−2 + 2−n−3 + . . .+ 2−n−d−1 ≤ 2−n)

That is a contradiction with the assumption that E has no I-positive class.

So far we have proved that for any s ⊇ s0 there is ε such that T εs is some-

where dense above s; i.e. there is some v ⊇ s such that the set {t ⊇ v :

∃e(∆|s0t|−1(s0te, s1te) ≥ ε)} is dense above v. However, the ε from the state-

ment need not to be optimal. So for example we could have both sets {t ⊇ v :

∃e(∆|s0t|−1(s0te, s1te) ≥ ε)} and {t ⊇ v : ∃e(∆|s0t|−1(s0te, s1te) ≥ 2ε)} being

dense above v.

Let U (unbounded) denote the set of those s ⊇ s0 for which T
ε
s is dense above
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s for an arbitrarily large ε; i.e.

U = {s ⊇ s0 : ∀ε ∈ R+(T εs is dense above s)}

The complement is the set of those s ⊇ s0 such that there is some v and some ε

such that

1. for every e we have ∆|s|(s0ve, s1ve) ≤ ε

2. for an arbitrarily small δ > 0 the set T ε−δs is dense above v

Let B (bounded) denote this complement; i.e.

B = {s ⊇ s0 : ∃v∃ε such that ∀δ > 0T ε−δs is dense above v and

∀e(∆|s|(s0ve, s1ve) ≤ ε)}

If the set B is dense above s0 then by the same argument using triangle

inequality that we used in the proof of Claim 2.1.3 one can show that B is even

symmetric. This means that for any b ∈ B and b0u ∈ B we also have b1u ∈ B,

and moreover if v (used in the definition of B) witnesses that b0u ∈ B then the

same v witnesses that b1u ∈ B. To see this, just note that we are again using the

fact that when {∆(b0e, b1e) : e} is bounded, {∆(b0v0t, b0v1t) : t} is bounded,

then by the triangle inequality {∆(b1v0w, b1v1w) : w} cannot be unbounded.

Thus if B is dense then we can form a Silver subtree such that every splitting

node lies in B. If B is not dense, then we can extend the initial segment s0

sufficiently enough so that we will work only with nodes from U .

So we have two cases. One that we have a Silver subtree with splitting nodes

from U , the second that we have a Silver subtree with splitting nodes from B.

For the further use, let us denote sp(S) the set of splitting nodes of a Silver tree

S. We shall build a tree T .

• We have a Silver subtree with splitting nodes from U : Start with the first

splitting node from U , for simplicity again denoted s0. Choose arbitrarily

some εs0 > 1. Since T
εs0
s0 is dense above s0 we cand find some e0 and

such that ∆|s0|−1(s00e0, s01e0) ≤ εs0). Denote s01, resp. s11, the nodes
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s00e0, resp. s01e0. Again choose some εs01 > 1 and εs11 > 1 such that

T
ε
s01

s01
, resp. T

ε
s11

s11
, is dense above s01, resp. s11. We can find some t1 such

that t1 ∈ T
ε
s01

s01
∩ T

ε
s11

s11
and moreover 0e0t1, 1e0t1 ∈ T

εs0
s0 (this is possible

since these T εs -sets are closed under initial segments). We extend t1 into

some e1 so that ∆|si1|−1(s
i
10e1, s

i
11e1) ≤ εsi0), for i ∈ {0, 1}, and moreover

∆|s01|−1(s
0
10e1, s

1
10e1) > εs0 and ∆|s01|−1(s

0
11e1, s

1
11e1) > εs0 .

Denote obtained nodes s02, . . . , s
3
2 (si2 = s01ie1 for i ∈ {0, 1} and si2 = s11(3−

i)e1 for i ∈ {2, 3}).

Similarly, for every n ∈ ω, we get sin and εsin , 0 ≤ i < 2n, where each

sin is s0i0e0 . . . ik . . . in−1en−1 for some values i0, . . . , in−1, and we have the

following inequalities

∆|s0i0e0...in−1tn−1|−1(s0i0 . . . (ik) . . . in−1en−1,

s0i0 . . . (1− ik) . . . in−1en−1) ≥ εs0i0...ek−1

where ij ∈ {0, 1} for j < n and k < n. This finishes the construction of T .

• We have a Silver tree with splitting nodes from B: Recall that for every

s ∈ B we have some v and εs such that ∀e(∆|s|(s0ve, s1ve) ≤ εs), however

for an arbitrarily small δ we have that T εs−δs is dense above v. From now

on for every s ∈ B and corresponding εs we shall always consider δs = εs/4,

abuse the notation and write T εss for T εs−δss . Such δ’s are small enough with

respect to the proof that we will write ∀t ∈ T εss ∃e(∆|s0t|−1(s0te, s1te)
.
= εs

which is means ∀t ∈ T εss ∃e(∆|s0t|−1(s0te, s1te) ∈ [εs − δs, εs].

We again start with some element from B, for simplicity again denoted s0,

determine the corresponding εs0 and v0 and find some e0 so that

∆|s0v|−1(s0ve, s1ve)
.
= εs0 . Denote s

0
1, s

1
1 the nodes s00v0e0, s01v0e0. WLOG

we may assume they are splitting nodes, i.e. s01, s
1
1 ∈ B. Determine εs01 and

εs11 and recall that there is a common v1 (from the definition of B) for both

s01 and s11. Similarly as in the previous item we can, if necessary, extend v1
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and find e1 so that the following equalities hold

∆|si10v1|−1(s
i
10v1e1, s

i
11v1e1)

.
= εsi1

for i ∈ {0, 1} and

∆|s00v0e0iv1|−1(s00 . . . iv1e1, s01 . . . iv1e1)
.
= εs0

for i ∈ {0, 1}. Denote obtained nodes s02, . . . , s
3
2 (si2 = s01iv1e1 for i ∈ {0, 1}

and si2 = s11(3− i)v1e1 for i ∈ {2, 3}).

Similarly, for every n ∈ ω, we get sin and εsin , 0 ≤ i < 2n, where each sin

is s0i0v0 . . . ik . . . in−1vn−1en−1 for some values i0, . . . , in−1, and we have the

following inequalities

∆|s0i0t0...in−1vn−1|−1(s0i0 . . . (ik) . . . in−1vn−1en−1,

s0i0 . . . (1− ik) . . . in−1vn−1en−1)
.
= εs0i0...tk−1ek−1

where ij ∈ {0, 1} for j < n and k < n. This finishes the construction of T .

Let us now consider two possible cases that may happen. Each of them di-

rectly leads to some form of canonization. We will then prove that we can obtain

a Silver subtree satisfying one of them.

Subcase 3a Assume there is a Silver subtree S of T such that the set {εs :

s ∈ sp(S)} ⊆ R is bounded from below. Then we prove that the equivalence

relation restricted to [S] (a Silver subcondition given by branches of the Silver

tree S) is countable (and we are done by Fact 1.1.38 Proposition 2.0.10). For

this, let ε be the lower bound for this set and suppose for some x ∈ [S] the

set V = {y ∈ [S] : xEy} is uncountable. Then there is an uncountable subset

V m
n ⊆ V such that for every y ∈ V m

n n is the least number where x and y differ

and ∆m(x, y) <
ε
2
. Let y, z ∈ V m

n be any two branches that split above the m-th

level. Then it follows from the construction that ∆m(y, z) > ε and thus from

the triangle inequality either ∆m(x, y) > ε/2 or ∆m(x, z) > ε/2, a contradiction.

37



Thus V m
n must be finite, so V was not uncountable.

Remark 2.1.4. Notice that if we built T from a Silver subtree with splitting nodes

from U we always end up in Subcase 3a and the theorem is proved. Just observe

that in the construction we have guaranteed that for every s ∈ sp(T ) we have

εs > 1. Thus 1 is the lower bound.

Subcase 3b Assume there is a Silver subtree S such that the set {εs : s ∈

sp(S)} ⊆ R is a sequence converging to zero. We may refine the tree so that for

every s ∈ sp(S) εs ≥ 4εs0 , 4εs1 where s0, s1 are immediate splitting successors of s

in S. Then we claim that the equivalence relation restricted to [S] is the identity.

Let x, y be two branches of S and let s ∈ S be their last common node. Then

since εt’s, for t ∈ S, are decreasing quickly, it follows from the triangle inequality

that there are infinitely many n’s such that ∆n(x, y) ≥ 5
12
εs. To see this, let

n0 = |s|, then

∆n0(x, y)
.
= εs ≥

5

12
εs

Let n1 > n0 be the length of some next splitting node s′ and let i0, . . . , ik be the

holes between s and s′ where x and y differ, then

∆n1(x, y) ≥ ∆n1(x, y ⊙ {i0, . . . , ik})−∆n1(y ⊙ {i0, . . . , ik}, y ⊙ {i1, . . . , ik})−

. . .−∆n1(y ⊙ ik, y) ≥ (εs − δs)− εs/4− . . .− ε/4k ≥ 5

12
εs

And so on. So we found a Silver subcondition (given by a subtree) [S] such that

E here is ev, i.e. E � [S] = [S]× [S].

Thus to finish the proof of Theorem 2.1.1 it remains to prove the following

lemma. By Remark 2.1.4 we assume that T was built from a Silver subtree with

splitting nodes from B.

Lemma 2.1.5. There exists a Silver subtree of T satisfying either the condition

from 3a, or the condition from 3b.

Proof. We will try to build a Silver subtree satisfying the condition from

Subacase 3b. If we find an obstacle preventing us from doing that, then we will

be able to build a tree satisfying the condition from Subcase 3a.
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We start with picking v0 such that εv0 < 1. Next we want to find v1 such

that εv00v1 , εv01v1 < 2−1. If such v1 does not exist, then whenever εv00v < 2−1 for

some v, then εv01v ≥ 2−1. But we show that we can build a Silver subtree P with

stem v00 such that ∀s ∈ P (εs < 2−1). But then the symmetric tree above v01

(i.e. for every s v01s is in this tree iff v00s ∈ T ) will satisfy the condition from

Subcase 3a with the bound 2−1. The following simple claim will be the main tool.

Claim 2.1.6. εsiv ≤ 2εs + εs(1−i)v for any s ∈ T , i ∈ {0, 1}, siv ∈ T .

Proof. We use the triangle inequality:

∀t ∈ T εsivsiv ∀e∆|siv0t|−1(siv0te, siv1te) ≤ ∆|siv0t|−1(siv0te, s(1− i)0te)+

+∆|siv0t|−1(siv1te, s(1− i)1te) + ∆|siv0t|−1(s(1− i)v0te, s(1− i)v1te) ≤

≤ 2εs + εs(1−i)v

which is what we wanted to prove.

Building the tree We will be looking for nodes and building the left-most

branch, other nodes of the Silver tree (denoted P ) will be determined automati-

cally. We will ensure that εt < 2−1 for any t in the tree.

Pick any node t0 above v00 such that εt0 is very small compared to 2−1, less

than 2−4 suffices. Than find any t1 such that εt00t1 < 2−8, then t2 such that

εt00t10t2 < 2−16 and so on.

Observe that

εt00t11t2 < 2 · 2−8 + 2−16 < 2−1

εt01t10t2 < 2 · 2−4 + 2−16 < 2−1

and

εt01t11t2 < 2 · 2−4 + 2 · 2−8 + 2−16 < 2−1

Generally, let s ∈ P be arbitrary and let ts be the node of the same length

lying on the leftmost branch. Let n be the number of bits where s and ts differ
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and m(≥ n) the number of splitting nodes in P up to the length of ts. Then

εs < 2 · 2−4 + 2 · 2−8 + . . .+ 2 · 2−2n+1

+ 2−2m+1

< 2−1

Hence we really are able to find v1 so that εv00v1 , εv01v1 < 2−1. Next we want

to find v2 such that εv0iv1jv2 < 2−2 for i, j ∈ {0, 1}.

As in the previous paragraph we can build a Silver subtree P0 above the node

v00v10 such that for any node t ∈ P0 we have εt < 2−2. Now put the same tree

above v00v11. Either the set of its ε’s is bounded, we are then in Subcase 3a,

or we can refine it and obtain a Silver subtree P1 such that for any node t ∈ P1

we have εt < 2−2. Do the same for remaining two nodes and obtain P3 which is

a Silver subtree of Pi, i < 3. We can then pick any node from v00v10P3 above

v00v10 as v2.

Then build the next level with ε-value 2−3. It is now clear that we either end

up with a Silver tree satisfying the condition from Subcase 3b, or we fail on some

level and then build a Silver subtree satisfying the condition from Subcase 3a.

This finishes the proof of Lemma 2.1.5 and of Theorem 2.1.1.

Although it may seem that the previous proof can be possibly generalized

to all Fσ ideals using the Mazur’s theorem (1.1.34), it is not the case as we

essentially used the exhaustivity of µ associated to analytic P -ideals. In fact, there

is a counter-example among Fσ non-P -ideals. Zapletal found a Kσ equivalence

relation on the Cantor space which is in the spectrum of the Silver ideal [18]. The

relation (denoted here as EKσ) is defined as

xEKσy ≡ ∃n∀m(|♯{k ≤ m : x(k) = 1} − ♯{k ≤ m : y(k) = 1}| ≤ n)

We remark that for a finite set A, ♯A denote the number of elements of A.

This relation is Borel bireducible to EIW where

IW = {A ⊆ ω : A does not contain arbitrarily large arithmetic progressions} is

the van der Waerden ideal which is Fσ non-P . This relation is moreover Borel
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bireducible to Eℓ∞ , i.e. a universal Kσ equivalence relation (see 1.1.22). We

present both proofs.

Fact 2.1.7. The relation EKσ is Borel bireducible with Eℓ∞.

For the simplicity we shall consider Eℓ∞ � (R+)ω which is clearly bireducible

with Eℓ∞ : one direction is simple, for the other consider f : Rω → (R+)ω such

that if x(n) ≥ 0 then f(x)(2n) = x(n) and f(x)(2n+1) = 0 and if x(n) < 0 then

f(x)(2n) = 0 and f(x)(2n+ 1) = |x(n)|.

Proof. To define a Borel function f : (R+)ω → 2ω witnessing Eℓ∞ ≤B EKσ we

split ω into intervals (Ik)k≥1 such that |Ik| = 2k,

Ik = {i0k, i1k, . . . , i2k−1
k }, for every k ∈ ω.

Let π : ω → (ω \ {∅}) be some surjection such that the preimage π(−1)(k) is

infinite for every k ∈ ω \ {∅}.

Let x ∈ R+ω and n ∈ ω be given. For k < n, f(x)(ikn) = 1 iff x(π(n)) ≥ k.

And for n ≤ k < 2n f(x)(ikn) = 1 iff x(π(n)) < k. So for every x ∈ (R+)ω,

♯{i ∈ Ik : f(x)(i) = 1} is always equal to k for every k.

It is clear that f is Borel and it is easy to check that xEℓ∞y ≡ f(x)EKσf(x).

For the other direction, one can use the general Rosendal’s result (1.1.22) that

Eℓ∞ is the universal Kσ equivalence relation. It can be directly shown as follows:

for x ∈ 2ω let f(x)(n) = ♯{k ≤ n : x(k) = 1}. This f is Borel and witnesses the

reduction EKσ ≤B Eℓ∞ .

Fact 2.1.8. The relation EKσ is Borel bireducible with EIW .

Proof. Since we have EIW ≤ Eℓ∞ again by 1.1.22 and from the previous fact we

have Eℓ∞ ≤B EKσ , it suffices to show that EKσ ≤B EIW . We define the Borel

reduction f : 2ω → 2ω as follows: for any x ∈ 2ω f(x)(n) = 1 ≡ ∃k ∈ ω(n ∈

[2k+1 − 2, 2k+1 − 2 + k] ∧ n − 2k+1 + 1 ≤ ♯{m ≤ k : x(m) = 1}). We leave

the verification to the reader. We just note that ∃n ≥ 3∀m(|♯{k ≤ m : x(k) =

1} − ♯{k ≤ m : y(k) = 1}| ≤ n) iff f(x)△ f(y) does not contain an arithmetic

progression of length max{n− 1, 1}.

Zapletal conjectured that all analytic equivalence relations reducible to equiv-

alence relations induced by an action of a Polish group should be canonized for the
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Silver forcing (to the full relation or to a subset of E0). It fits with the fact that

equivalences given by analytic P -ideals are of this kind: by Solecki’s results, every

analytic P -ideal I is Polishable, i.e. there is a topology on I (which produces

the same Borel sets as the Cantor topology restricted on I) such that (I,△)

is a Polish group; and with the fact that EKσ is not an orbit equivalence (see

[21] that E1 is not Borel reducible to any orbit equivalence relation, however by

Theorem 1.1.22 and Fact 2.1.7 we have that E1 ≤B EKσ) and is in the spectrum.

On the other hand, Zapletal showed that the non-orbit equivalence relation E1

is not in the spectrum (note that E1 is defined by Fin ⊗ ∅ which is an Fσ non

P -ideal). That follows either from results from [18] on hyper-smooth equivalences

or there is an argument that uses a technique from the previous proof. Indeed,

for x, y ∈ (2ω)ω set ∆n(x, y) = 1 iff ∃m > n(x(m) ̸= y(m)), apply the previous

proof with this ∆ and check that it works.

2.2 Subequivalences of E0 on Silver forcing

Consider this basic subequivalence Eeven
0 of E0 where x and y are equivalent if

{n : x(n) ̸= y(n)} is of even finite cardinality. Obviously it is not equal to E0 on

any Silver subcondition. More generally, for any n ∈ ω let us denote En
0 ⊆ E0

the equivalence relation, where

xEn
0 y ≡ ∃m(∀j > m(x(j) = y(j)) ∧ ∃k ∈ Z(|{i ≤ m : x(i) = 1}|

−|{i ≤ m : y(i) = 1}| = k · n))

Clearly, E0, resp. Eeven
0 is equal to E1

0 , resp. E2
0 in this notation and any En

0

remains the same on any Silver subcondition (in the sense that it is defined there

by the same formula, just quantifying over the set of holes instead of the whole

ω).

These subequivalences have the property that they are homogeneous, where

by homogeneity we mean the following.

Definition 2.2.1. The subequivalence E ⊆ E0 is homogeneous if whenever

xEx ⊙ {n0, . . . , nm} then also yEy ⊙ {n0, . . . , nm} provided that y(n) = x(n)
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for n ∈ {n0, . . . , nm}.

It turns out that every homogeneous subequivalence of E0 is in fact one of

them.

Theorem 2.2.2. Let Bg be a condition in Silver forcing and E a Borel equivalence

relation on Bg that is either a homogeneous subequivalence of E0 � Bg or E � Bg ⊇

E0
0 � Bg. Then there is a subcondition Bh such that E � Bh is equal to either

id � Bh or En
0 � Bh for some n.

Proof. By 0̄ we denote the element x ∈ 2ω such that for every n ∈ ω x(n) = 0.

We begin the proof just assuming that E is homogeneous. The case when

E � Bg ⊇ E0
0 � Bg is treated in Step 3.

Step 1

We start by proving the following claim by which we decide whether E is on

some subcondition equal to E0 or to some proper subequivalence.

Claim 2.2.3. There is a subcondition Bf ⊆ Bg such that either E � Bf = E0 � Bf

or ∀x ∈ Bf∀n ∈ Hf (x��Ex⊙ n).

Proof.

Case 1: There is an infinite subset I ⊆ Hg such that for every n ∈ I 0̄E0̄ ⊙ n.

Then we fill the holes from Hg \ I arbitrarily and obtain a subcondition Bf ⊆ Bg

such that I = Hf and since E is homogeneous we have ∀x ∈ Bf∀n ∈ Hf (xEx⊙n).

It follows from transitivity of E that ∀x, y ∈ Bf (xE0y ⇒ xEy).

Case 2: The set I from Case 1 is finite. We fill these finitely many holes

arbitrarily and obtain a subcondition Bf ⊆ Bg such that ∀x ∈ Bf∀n ∈ Hf (x��Ex⊙

n). Suppose it is not true. Then for some x ∈ Bf and n ∈ Hf we have xEx⊙ n.

However, since E is homogeneous we would have that also 0̄E0̄ ⊙ n which is a

contradiction.

Step 2

We now work only with the case that we have a condition Bf such that

∀x ∈ Bf∀n ∈ Hf (x��Ex⊙ n).
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Claim 2.2.4. Either there is a subcondition of Bf on which E is a superset of

E0
0 or there is a subconidition on which E is the identity.

Proof. For any n ∈ ω \ {0} let fni , i < 3n − 1, be an enumeration of all func-

tion from n to 3 such that for at least one m < n fni (m) ̸= 2. Moreover, for

any n ∈ ω \ {0} and for any d̄ ∈ [Hf ]
n we shall write d̄ = {d0, . . . , dn−1} where

the elements of d̄ are enumerated according to enumeration of ω. For any such

d̄ ∈ [Hf ]
n let us denote Fi(d̄), i < 3n− 1, the set {j ∈ Hf \ d̄ : 0̄⊙{dm : fni (m) =

1}E0̄⊙ {j} ∪ {dm : fni (m) = 0}}.

Case 1: Suppose that there exist n ∈ ω \ {0}, i < 3n − 1 and d̄ ∈ [Hf ]
n such

that Fi(d̄)∩Hf is infinite. Then WLOG we may assume that Hf ⊆ Fi(d̄). Let us

fill the hole dj from d̄ by 0 if fni (j) = 0 or fni (j) = 2 and by 1 if fni (j) = 1, and

denote Bh the obtained condition; i.e. Hh = Hf \ d̄ and ∀x ∈ Bh∀j < n((fni (j) ≤

1 ⇒ x(dj) = fi(j)) ∧ fni (j) = 2 ⇒ x(dj) = 0).

We claim that E � Bh ⊇ E0
0 � Bh. Because of transitivity of E it suf-

fices to check that for any x ∈ Bh and any n1, n2 ∈ Hh such that x(n1) = 0

and x(n2) = 1 we have xEx ⊙ {n1, n2}. However, since n1, n2 ∈ Fi(d̄) and

E is homogeneous we have x ⊙ Ex ⊙ {n1} ∪ {j : fni (j) ≤ 1} and similarly

x⊙{n1, n2}Ex⊙{n1}∪{j : fni (j) ≤ 1}. The claim then follows from transitivity.

Case 2: Suppose that for every n ∈ ω \ {0}, i < 3n− 1 and d̄ ∈ [Hf ]
n Fi(d̄)∩Hf

is finite.

By induction we construct a condition Bh on which E is the identity. Let us

describe the step 1. Pick some d0 ∈ Hf . Since neither F0(d0)∩Hf nor F1(d0)∩Hf

is infinite, we can find a subcondition Bh1 ⊆ Bf such that Hh1 ∩ F0(d0) = ∅

and Hh1 ∩ F1(d0) = ∅. It follows from homogeneity of E that ∀x ∈ Bh1∀n ∈

Hh1(x��Ex⊙ {d0, n}). Since we are going to do a fusion the hole d0 ∈ Hh1 will be

fixed, i.e. it will remain as a hole in all subsequent conditions.

We describe one more step. Pick next hole, different than d0, d1 ∈ Hh1 .

Since for every i < 32 − 1 Fi({d0, d1}) ∩Hh1 is finite we can find a subcondition

Bh2 ⊆ Bh1 such that Hh2 ∩ Fi({d0, d1}) = ∅ for every i < 32 − 1 (and {d0, d1} ⊆

Hh2 , of course). It again follows from homogeneity of E that for every subset
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D ⊆ {d0, d1}, every n ∈ Hh2 and every x ∈ Bh2 we have x��Ex⊙D ∪ {n}.

Let us describe the general n-th step of the induction. We have condition

Bhn−1 . The first n holes d0, . . . , dn−2 were already fixed. Pick next different hole

dn−1 ∈ Hhn−1 . Since for every i < 3n − 1 Fi({d0, . . . , dn−1}) ∩ Hhn−1 is finite we

can find a subcondition Bhn ⊆ Bhn−1 such that Hhn ∩ Fi({d0, . . . , dn−1}) = ∅ for

every i < 3n − 1 (and again {d0, . . . , dn−1} ⊆ Hhn , of course). It again follows

from homogeneity of E that for every subset D ⊆ {d0, . . . , dn−1}, every m ∈ Hhn

and every x ∈ Bhn we have x��Ex⊙D ∪ {m}.

Once the fusion is finished we have a condition Bh with Hh = {d0, d1, . . .} and

we claim that E � Bh = id(Bh). Let x, y ∈ Bh be such that xE0y. Let dn−1 ∈ Hh

be the last hole where they differ. However, x and y then belong to Bhn and in

the n-th step of the induction we have guaranteed that x��Ey.

Step 3

In the last step we treat the case when we have a condition Bh such that

E � Bh ⊇ E0
0 � Bh. This is one possible output of Step 2 or one possibility from

the statement of Theorem 2.2.2.

For any pair i, j ∈ Hp, let Zi,j be the set {x ∈ Bp : x(i) = x(j) = 0, xE(x ⊙

{i, j})}. If for some pair this set is positive with respect to the Silver ideal, then

we find a condition Br on which E is equal to E2
0 (∀x ∈ Br(xEx ⊙ x{i, j}) and

since E � Bp ⊇ E0
0 � Bp it follows that for any pair). Otherwise, we subtract all

Zi,j from Bp and find a condition which for notational simplicity again denote

Bp. Next, for any triple i, j, k ∈ Hp, let Zi,j,k be the set {x ∈ Bp : x(i) = x(j) =

x(k) = 0, xE(x ⊙ {i, j, k})}. Again, if one of these sets is positive, we find a

condition Br on which E is equal to E3
0 ; otherwise, we subtract all these sets

from the ideal. We continue similarly and find a subcondition such that E is

equal to En
0 on it for some n ∈ ω, n > 0 or subtract all these countable sets from

ideal and get a condition on which E is equal to E0
0 . Note that we used the

fact that if n is the least number such that E ⊇ En
0 , then if we found m > n

such that E ⊇ Em
0 then E would contain Ek

0 , where k is the greatest common

divisor of m and n. That would be a contradiction. This finishes the proof of the

proposition.

Definition 2.2.5. Let E0:n
0 ⊆ E0

0 , n ∈ N and n > 1, be the equivalence relation
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where xE0:n
0 y if xE0

0y and |{k < m : x(k) = 1}| = |{k < m : y(k) = 1}| is

divisible by n, where m is the least number such that ∀l ≥ m(x(l) = y(l)).

To check that it is an equivalence relation, let xE0:n
0 y and yE0:n

0 z. Let m be

the least number such that ∀l ≥ m(x(l) = y(l)) and k the least number such that

∀l ≥ k(y(l) = z(l)). Assume that m ≤ k. Then this k works for the pair x, z and

|{i < k : x(i) = 1}| = |{i < k : y(i) = 1}| = |{i < k : z(i) = 1}| is divisible by n.

We checked the transitivity, the symmetricity and reflexivity are obvious.

The definition is obviously made so that the equivalence is non-homogeneous

as this basic example witnesses: let x ̸= y and assume that for some n > 1 xE0:n
0 y,

then (x⊙0)��E0:n
0 (y⊙0) as |{k < m : (x⊙0)(k) = 1}| = |{k < m : (y⊙0)(k) = 1}|,

wherem is the least number such that ∀l ≥ m((x⊙0)(l) = (y⊙0)(l)), now cannot

be divisible by n.

Note that also the union E0:n0,...,nm
0 = E0:n0

0 ∪ . . .∪E0:nm
0 is a non-homogeneous

subequivalence of E0
0 . To check transitivity, just observe that if xE0:ni

0 y and

yE
0:nj
0 z, i, j ≤ m, m0 is the least number such that ∀l ≥ m0(x(l) = y(l)) and

similarly m1 for the pair y, z, then if m1 ≥ m0 we have that xE
0:nj
0 z since m1 is

the least number such that ∀l ≥ m1(x(l) = z(l)) and |{k < m1 : x(k) = 1}| =

|{k < m1 : z(k) = 1}| is divisible by nj.

The definition can be generalized so that there are non-homogeneous relations

Ep:q
0 , where p is divisible by q, and xEp:q

0 y if xEp
0y and |{k < m : x(m) = 1}| is

divisible by q, where m is the least number such that ∀l ≥ m(x(l) = y(l)).

It turns out that the class of non-homegeneous subequivalences of E0 seems

not to be easily classifiable. We call two E and F , essentially different if they

remain different as subsets on every Silver condition, i.e. E � Bf ̸= F � Bf for

every Silver condition Bf . We can show the following.

Theorem 2.2.6. There are perfectly many essentially different non-homogeneous

subequivalences of E0.

Proof. We will use the non-homogeneous equivalence relations defined above as a

base for our construction. Moreover we define the relation E−0:n
0 where xE−0:n

0 y

if xE0
0y and |{k < m : x(k) = 0}| = |{k < m : y(k) = 0}| is divisible by n, where

m is the least number such that ∀l ≥ m(x(l) = y(l)).
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Let {p1, p2, . . .} be the set of all primes and let z ∈ 2N be given. In the

following, we assume that 0 /∈ N. We define an equivalence relation Fz as follows:

xFzy ≡ x = y or

∃n ∈ N(z(n) = 1 ∧ xE0:p2n
0 y ∧ ∀m ∈ [1, n)(z(m) = 0 ⇒ x��E

−0:p2m−1

0 y))

To check that it is an equivalence relation, first one can easily observe that it is

reflexive and symmetric. For transitivity let x1Fzx2 and x2Fzx3, m1 is the least

number such that ∀l ≥ m1(x1(l) = x2(l)) and m2 the least number such that

∀l ≥ m2(x2(l) = x3(l)). Moreover, let v ∈ N be the number such that z(v) = 1,

x1E
0:p2v
0 x2 ∧ ∀m ∈ [1, v)(z(m) = 0 ⇒ x1��E

−0:p2m−1

0 x2)). Similarly w ∈ N the

number such that z(w) = 1, x2E
0:p2w
0 x3∧∀m ∈ [1, w)(z(m) = 0 ⇒ x2��E

−0:p2m−1

0 x3).

We describe the case m1 ≤ m2, the other case is symmetric. Obviously, m2 is

the least number such that ∀l ≥ m2(x1(l) = x3(l)). Since x1E
0
0x3, |{k < m2 :

x1(k) = 0}| = |{k < m2 : x3(k) = 0}| and |{k < m2 : x1(k) = 1}| = |{k < m2 :

x3(k) = 1}|. Thus x1E
0:p2w
0 x3 and ∀m ∈ [1, w)(z(m) = 0 ⇒ x1��E

−0:p2m−1

0 x3)), so

x1Fzx3.

Now let z, z′ ∈ 2N be different and Bg be a Silver condition. Let n be the least

number such that z(n) ̸= z′(n), let us say z(n) = 1,z′(n) = 0. It suffices to find

x ∈ Bg and h0, h1 ∈ Hg such that xFzx⊙ {h0, h1} but x��F z′x⊙ {h0, h1}.

It follows from the definition of the relations Fz and Fz′ , that this will be

done if we find x ∈ Bg and h0, h1 ∈ Hg with x(h0) = 0, x(h1) = 1 such that

|{m ≤ max{h0, h1} : x(m) = 1}| is divisible by p2n but not divisible by p2k

∀k ∈ [1, n) for which z(k) = 1, and |{m ≤ max{h0, h1} : x(m) = 0}| is divisible

by p2n−1 but not divisible by p2k−1 ∀k ∈ [1, n) for which z(k) = 0. To see

this, notice that in that case it is fulfilled that xE0:p2n
0 x ⊙ {h0, h1} and ∀k ∈

[1, n)(z(k) = 0 ⇒ x��E
−0:p2k−1

0 x⊙{h0, h1}), thus xFzx⊙{h0, h1}. On the contrary,

suppose that also xFz′x ⊙ {h0, h1}. Then there is m such that z′(m) = 1 and

xE0:p2m
0 x ⊙ {h0, h1}. It follows that m > n. However, if we put k = n, then we

get k < m such that z′(k) = 0 and xE
−0:p2k−1

0 x⊙{h0, h1}, thus x��F z′x⊙{h0, h1}.

Finding such x and holes h0, h1 is just elementary number theory. Let p =

(
∏2n

i=1 pi) + 2 and d1, . . . , dp first p holes in Bg, i.e. elements of Hg. We denote
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h0 = d1 and h1 = dp and let x′ ∈ Bg be an element such that x′(h1) = 1 and

x′(h0) = x(d2) = . . . = x′(dp−1) = 0. Let a = |{k ≤ h1 : x′(k) = 1}|. Chinese

remainder theorem says that the following system of congruences has a solution

b ≤ p.

a+ b ≡ 0 (mod p2n)

h1 − a− b ≡ 0 ( mod p2n−1)

for k ∈ [1, n) such that z(k) = 1

a+ b ≡ 1 ( mod p2k)

and for k ∈ [1, n) such that z(k) = 0

h1 − a− b ≡ 1 ( mod p2k−1)

We set x = x′ ⊙ {d2, d3, . . . , db+1} and it follows that this x satisfies the required

conditions.
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Chapter 3

Laver forcing

Introduction

Let us recall that a Laver tree T ⊆ ω<ω is a tree with stem s, the maximal node

such that every other node is compatible with it, such that every node above s

(and including s) splits into infinitely many immediate successors. The set of all

branches of T is denoted as [T ].

We can now state the main result of this chapter.

Theorem 3.0.7. Let T be a Laver tree, I an Fσ P -ideal on ω and E ⊆ [T ]× [T ]

be an equivalence relation Borel reducible to EI. Then there is a Laver subtree

S ≤ T such that E � [S] is either id([S]) or [S]× [S].

We note that the subtree S in general cannot be found as a direct extension

of T .

Recall (Fact 1.1.29) that the list of equivalence relations Borel bireducible

with EI for I an Fσ P -ideal includes for instance Eℓp equivalences for p ∈ [1,∞)

on Rω; or E2(= EIS).

Before proving the main theorem we state existing knowledge about the spec-

trum of Laver ideal and some results about Laver ideal that we will need in the

proof of the theorem.

We add some notation concerning Laver trees and Laver ideal. We say that

a Laver tree S is a direct extension of a Laver tree T , S ≤0 T in symbols, if
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the stem of S is the same as the stem of T . If s ∈ T is a node above the stem

then by Ts we denote the induced subtree with s as the stem, i.e. Ts = {t ∈ T :

t is compatible with s}.

We use the definition of Laver ideal I from [33, p.200]; I ⊆ P(ωω) is the

σ-ideal generated by sets Ag = {f ∈ ωω : ∃∞n(f(n) ∈ g(f � n))}, where g is a

function from ω<ω to ω.

The following proposition, resp. its corollary, will be used extensively.

Proposition 3.0.8 ([33]; Proposition 4.5.14). Let A ⊆ ωω be analytic. Then

either A contains all branches of some Laver tree or A ∈ I.

We will provide a proof of the following corollary. Recall that a barrier B in

a Laver tree T is a subset of nodes such that ∀x ∈ [T ]∃n(x � n ∈ B).

Corollary 3.0.9. Let T be a Laver tree and let A ⊆ [T ] be analytic. Then there

exists a direct extension S ≤0 T such that either [S] ⊆ A or [S] ∩ A = ∅.

Proof. It follows from the proposition above that there is always S ≤ T with that

property which is in general not a direct extension though. The use of “direct

extension property” will give us the desired tree. Let t be the stem of T . If there

exist infinitely many immediate successors s of t such that there exists a direct

extension S ≤0 Ts with the property above, then for infinitely many of them it

holds that [S] ⊆ A, or for infinitely many of them it holds that [S] ∩ A = ∅,

and we use them. So suppose that not, we erase these finitely many exceptions

and proceed to the next level and do the same. At the end we obtain a Laver

tree T ′ ≤0 T . We apply the proposition above and get a node t ∈ T ′ and a

direct extension S ≤0 T
′
t such that either [S] ⊆ A or [S] ∩ A = ∅. That is a

contradicition since such a node was erased during the construction of T ′.

Recall Theorem 1.2.11 from the first chapter. As Laver ideal fulfils these

conditions we immediately get the following corollaries.

Corollary 3.0.10 ([18]). Let T be a Laver tree, E an equivalence classifiable

by countable structures. Then there is a Laver subtree on which E is either the

identity relation or the full relation.
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Since every countable equivalence relation is classifiable by countable struc-

tures (see Fact 1.1.38) we have the corollary that we shall use in this chapter.

Corollary 3.0.11 ([18]). Let T be a Laver tree, E a countable equivalence relation

(i.e. with countable classes). Then there is a Laver subtree on which E is either

the identity relation or the full relation.

J. Zapletal found the following Fσ equivalence relation (with Kσ classes) that

is in the spectrum of Laver.

Definition 3.0.12. For x, y ∈ ωω, we set xKy if ∃b∀n∃mx,my ≤ b(y(n+my) ≥

x(n) ∧ x(n+mx) ≥ y(n)).

The following lemma gives us basic properties of K. The proof may be found

in [18], we provide here the proof of the last item as it is stated slightly differently

in [18]. Notice the difference between Eℓp for p ∈ [1,∞) and Eℓ∞ as the former

can be canonized according to the main theorem.

Lemma 3.0.13.

(a) For any two Laver trees T, S there are branches x1, x2 ∈ [T ] and y1, y2 ∈ [S]

such that x1Ky1 and x2��Ky2.

(b) K is in the spectrum of Laver.

(c) K is Borel bireducible with Eℓ∞ ⊆ Rω × Rω, where xEℓ∞y ≡ x− y ∈ ℓ∞.

Proof.

(a)

(b) We refer to [18] for the proof of the first two items.

(c) • Eℓ∞ ≤B K: We will prove Eℓ∞ ≤B Eℓ∞ � (R+)ω ≤B K. To prove

the first inequality, consider f : Rω → (R+)ω such that if x(n) ≥ 0 then

f(x)(2n) = x(n) and f(x)(2n+1) = 0 and if x(n) < 0 then f(x)(2n) = 0

and f(x)(2n+ 1) = |x(n)|.

For the second, let π : ω2 → ω be a bijection and (Iπ(i,j))i,j a partition of

ω into intervals such that |Iπ(i,j)| = j+1 and Iπ(i,j) = {pi,j0 , p
i,j
1 , . . . , p

i,j
j }.
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We define g : (R+)ω → ωω as follows: Let x ∈ (R+)ω be given,

g(x)(pi,jk ) = min{j, ⌊x(i)⌋+ k} for k < j and g(x)(pi,jj ) = j.

If xEℓ∞y and ∀n(|x(n)−y(n)| ≤ m), then ∀k, ij∃m1,m2 ≤ m(g(x)(pi,jk ) ≤

g(y)(pi,jk+m1
) ∧ g(y)(pi,jk ) ≤ g(x)(pi,jk+m2

)), thus g(x)Kg(y). Just observe

that g(x)(pi,jk ) ≤ j and either j − k ≤ m and we have g(y)(pi,jj ) = j,

or since x(i) − y(i) = m1 ≤ m we have g(y)(pi,jk+m1
) = y(i) + k +m1 =

x(i) + k = g(x)(pi,jk ).

Suppose x��Eℓ∞y, letm be arbitrary and let n be such that |x(n)−y(n)| >

m, let us assume that y(n) − x(n) > m. Then ∀b ≤ m(g(x)(pn,mk+b) <

g(y)(pn,mk )). Since m was arbitrary we have g(x)��Kg(y).

• K ≤B Eℓ∞ : Let (sn)n be an enumeration of ω<ω. We define f : ωω → Rω

as follows: f(x)(n) =

min{b : ∃y ⊇ sn(xKy∧b is the bound from the definition that works)}.

One can easily check that f is Borel. Let xKy such that a bound b

works for this pair and let n be arbitrary. Let z ⊇ sn be arbitrary such

that xKz and b1 works for the pair and yKz and b2 works for the pair.

Then one can check that |b1 − b2| ≤ b so f(x)Eℓ∞f(y).

Suppose that x��Ky and let m be arbitrary. Then there exists n such that

x(n) > y(n + k) for k < m (or vice versa). Let si = x � (n + 1), then

f(x)(n) = 0, however f(y)(n) ≥ m, thus f(x)��Eℓ∞f(y).

3.1 Proof of the theorem

We can now start proving the main theorem, we provide its statement here again

for the convenience.

Theorem 3.1.1. Let T be a Laver tree, I an Fσ P -ideal on ω and E ⊆ [T ]× [T ]

be an equivalence relation Borel reducible to EI. Then there is a Laver subtree

S ≤ T such that E � [S] is either id([S]) or [S]× [S].

Proof. Let f : [T ] → 2ω be the Borel reduction and let µ be the lower semi-

continuous submeasure for I guaranteed by Theorem 1.1.33. The submeasure
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µ induces a pseudometrics (which may attain infinite value though) which we

denote d, i.e. d(x, y) = µ(x△ y) for x, y ∈ 2ω. Moreover, we define dkn(x, y) as

µ(x � (n, k) △ y � (n, k)). When n or k is omitted it means that n = 0, resp.

k = ∞.

We need to refine T to obtain a Laver tree with some special properties. This

will be done in a series of claims. To simplify the notation, after applying each

one of these claims we will still denote the tree as T .

Claim 3.1.2. There exist a direct extension T ′ ≤0 T and a function p : T ′ → 2<ω

which is monotone and preserves length of sequences, i.e. if s ⊆ t, then p(s) ⊆

p(t), and |s| = |p(s)|, such that ∀x ∈ [T ′](f(x) =
∪
n p(x � n)).

In other words, f on [T ′] is Lipschitz.

Proof of the Claim. We will find a direct extension of T and p defined on it

from the statement of the claim. For simplicity we assume the stem of T is the

empty sequence.

Consider the following sets

Ai = {x ∈ [T ] : f(x)(0) = i}

for i ∈ {0, 1}. They are Borel and according to Corollary 3.0.9 one of them

contains a direct extension S of T . We replace T by S, set p(∅) = i and fix the

first level above the stem. Then for any immediate successor s of the stem we

again consider sets A1
i = {x ∈ [Ss] : f(x)(1) = i}. One of them contains direct

extension and we continue similarly. The final tree is obtained by fusion.

Observation 3.1.3. Let s ∈ T be a node above (or equal to) the stem of T .

Then for every n there is a direct extension T ns ≤0 Ts such that ∀x, y ∈ [T ns ]∀m ≤

n(p(x � m) = p(y � m)). We will call such a tree homogeneous up to level n.

We may also suppose that we have T ns ⊆ Tms for n ≥ m. Define then xs ∈ 2ω

such that xs(n) = p(x � n+1)(n) for x ∈ [Tms ], where m ≥ n+1. This definition

does not depend on m ≥ n+ 1 and x ∈ [Tms ].

The following can be done by a basic fusion argument.
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Fact 3.1.4. There exists a direct extension T ′ ≤0 T such that ∀s ∈ T ′ above the

stem if S ≤0 T
′
s is homogeneous up to some level n then ∀x ∈ [S](p(x � n) = xs �

n).

Moreover, if s ∈ S and {s0, s1, . . .} is a set of its immediate successors then

∀n∃m0∀m ≥ m0(xs � n = xsm � n). In other words, limn→∞ xsn → xs.

Let s ∈ T be any node above (or equal to) the stem of T . Let {s0, s1, . . .} be

the set of its immediate successors. We reduce this set so that precisely one of

the following two possibilities happens: ∀n(xsnEIxs) or ∀n(xsn��EIxs).

Definition 3.1.5. If the former case holds then we mark s as “convergent”, if

the latter then we mark it as “divergent”.

Moreover, for every s ∈ S strictly above the stem we define εs as follows: if the

immediate predecessor t of s is marked as convergent, then we set εs = d(xt, xs);

otherwise, we set εs = ∞.

Splitting into cases

We split into two complementary cases (i.e. one holds if and only if the other

does not).

• Case 1 There exists S ≤ T such that every s ∈ S above the stem is marked

as convergent.

• Case 2 For every s ∈ T above the stem there is a barrier B ⊆ Ts of ele-

ments above s that were marked as divergent.

Proof of canonization assuming Case 1. We will do a fusion. Let us denote

the stem of S as s. We will inductively build Un, Sn,mn for every n such that

Sn ≤0 Sn−1, Un ⊆ Sm, for every n ≤ m, is an n+ 1-element subtree {u0, . . . , un}

of S and mn ∈ ω. At the end we will get a direct extension U =
∪
n Un =

∩
n Sn

together with pairwise disjoint sets Cu1 , Cu2 , . . ., where Cui ⊆ (mi−1,mi), such

that ∀x ∈ [U ] (f(x)△ xs) ∩ (mi−1,mi) = Cui if ui ⊆ x and µ(
∪

{i>0:ui*x} f(x) ∩

(mi1 ,mi)) < 1. The following conditions will be satisfied during the n-th step of

the fusion.
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• For every 0 < i ≤ n and any branch x ∈ [Sn] going through ui |dmimi−1
(f(x), xs)−

εui| < 1/2i; more precisely there will be some finite set Cui ⊆ (mi−1,mi)

always defined as (xui △ xs) ∩ (mi−1,mi) such that for any branch x ∈

[Sn] going through ui we will have (f(x) △ xs) ∩ (mi−1,mi) = Cui and

|µ(Cui) − εui| < 1/2i. And for every branch y ∈ [Un] not going through ui

but going through some other uj, d
mi
mi−1

(f(y), xs) < 1/2i; thus it will follow

from the triangle inequality that |dmimi−1
(f(x), f(y)) − εui| < 1/2i−1; resp.

µ((f(x)△ f(y)△ Cui) ∩ (mi−1,mi)) < 1/2i.

• For every i ≤ n dmn(xui , xs) < 1/2n+2.

Suppose at first that such U has been already constructed. Let us consider

the set

A = {x ∈ [U ] : µ(
∞∪

i=|s|+1

Cx�i) <∞}

It is Borel and by Corollary 3.0.9 either there is a Laver subtree V ≤0 U such that

[V ] ⊆ A or there is a Laver subtree V ≤0 U such that [V ]∩A = ∅. In the former

case, V is a Laver subtree such that ∀x, y ∈ [V ](xEy); while in the latter case, V

is a Laver subtree such that ∀x, y ∈ [V ](x��Ey). This follows immediately from the

condition above. Let x, y ∈ [V ] be two different branches splitting on the n-th

level. Then max{µ(
∪∞
i=nCx�i), µ(

∪∞
i=nCy�i)}−

∑∞
j=n−|s|+1 1/2

j ≤ d(f(x), f(y)) ≤

µ(
∪∞
i=nCx�i) + µ(

∪∞
i=nCy�i) +

∑∞
j=n−|s|+1 1/2

j−1.

Let s be the stem of S. Set S0 = S, U0 = {s}, m0 = |s|. Before treating the

general step let us describe the case n = 1. We pick some immediate successor of

the stem s, denote it as u1 and we set U1 = {s = u0, u1}. Since d(xu1 , xs) = εu1

there is some m > m0 such that dm(xu1 , xs) > εu1 − 1/2. There is some m1 ≥ m

such that dm1(xu1 , xs) < 1/23. Then there exist direct extensions E1 ≤0 S0u1

and E0 ≤0 S0 such that for all branches x ∈ [E1] we have f(x)(m) = xu1(m) for

m ≤ m1, and for all branches y ∈ [E0] we have f(y)(m) = xs(m) for m ≤ m1.

We set S1 = E0 ∪E1, i.e. we replace S0u1 in S0 by its direct extension E1 and we

replace S0 \ S0u1 by its direct extension E0. The required conditions are satisfied

and we proceed to a general step.

Now let us suppose that we have already found Sn−1,Un−1 = {s = u0, u1, . . . , un−1}
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and m0 = |s|,m1, . . . ,mn−1. Choose some next node un ∈ Sn−1 for the fusion

such that it is an immediate successor of some ui i < n and xui � mn−1 =

xun � mn−1 (recall Observation 3.1.3). Set Un = Un−1 ∪ {un}. There is some

m such that dmmn−1
(xun , xui) > εum − 1/2n+1. Since we have from the inductive

assumption that dmmn−1
(xui , xs) < 1/2n+1, we get from the triangle inequality

dmmn−1
(xun , xs) > εum − 1/2n. Let mn be the max{m,max{ki : i ≤ n}}, where ki

is any number such that dki(xui , xs) < 1/2n+2. Note that such ki exist because

xuiEIxs. We then find direct extensions Ei ≤0 Sn−1,ui such that for every branch

x ∈ [Ei] we have f(x)(m) = xui(m) for m ≤ mn. We refine them so that they

are mutually disjoint, i.e. Ei ∩ Ej = ∅ for i ̸= j and we set Sn =
∪
i≤nEi. The

induction step is done, all required conditions are satisfied. That finishes the

proof of this case.

Proof of canonization assuming Case 2. We will assume that we have a Laver

tree S ≤ T such that for every s ∈ S above the stem if s is marked as convergent

then there is a barrier B ⊆ Ss of elements above s that are marked as divergent

(if we assume that Case 1 does not hold then we may take S = T ).

The following lemma will be the main tool.

Lemma 3.1.6. For any Laver subtree P ≤ S there is its direct extension Q ≤0 P

such that for any two branches x, y ∈ [Q] splitting from the stem of Q we have

d(f(x), f(y)) > 1.

Once the lemma is proved the rest will be rather easy. We will do a fusion in

which we will be fixing levels. We will construct direct extensions of S S = V0 ≥0

V1 ≥0 V2 ≥0 . . . such that for i < j the i-th level of Vi is equal to the i-th level of

Vj in such a way that the resulting tree S ≥0 V =
∩
i Vi will have the property

that for any two different branches x, y ∈ [V ] we will have d(f(x), f(y)) > 1.

This is not hard to do. We start with stem s of S = V0. We find a direct ex-

tension V1 ≤0 V0 guaranteed by the lemma. We fix the first level {s0, s1, . . .} (the

set of all immediate successors of s) above the stem. Then for every immediate

successor si ∈ V1 of s we apply the lemma with V1si as P and obtain a direct

extension Qi. We set V2 =
∪
iQi ≤0 V1, fix the second level above the stem and

continue similarly.
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Then we are done by the following claim and Corollary 3.0.11.

Claim 3.1.7. E on [V ] is countable.

Proof. Suppose for contradiction that there is some x ∈ [V ] that has uncount-

ably many equivalent branches (yα)α<ω1 ⊆ [V ]. For every α there is n such

that dn(f(x), f(yα)) < 1/2. Since the set of all yα’s is uncountable we may

assume that one single n works for them all. But let yα0 , yα1 be two of such

branches that split above the n-th coordinate. It follows that from our construc-

tion that dn(f(yα0), f(yα1)) > 1, so for one of them, let us say yα0 , must hold

that d(f(x), f(yα0)) > 1/2, a contradiction.

So what remains is to prove the lemma.

Proof of the lemma. Let P ≤ S be given. Denote s its stem. There are two

cases.

• s is marked as divergent: Pick its immediate successor s0. Since s is marked

as divergent, there is n0 such that dn0(xs0 , xs) > 1 and there are direct

extensions Q0 ≤0 Ps0 , P0 ≤0 P \ Ps0 such that ∀x ∈ [Q0]∀y ∈ [P0]∀m ≤

n0(f(x)(m) = xs0(m) ∧ f(y)(m) = xs(m)).

We then pick next immediate successor s1 ∈ P0 of s. There is again some

n1 such that dn1(xs1 , xs) > 1 and we find direct extensions Q1 ≤0 P0s1 ,

P1 ≤0 P0 \ P0s1 such that ∀x ∈ [Q1]∀y ∈ [P1]∀m ≤ n1(f(x)(m) = xs0(m) ∧

f(y)(m) = xs(m)).

We continue similarly until we pick infinitely many immediate successors of

s and find corresponding direct extensions Qi. Then we set Q =
∪
iQi. It

is easy to check it has the required properties.

• s is marked as convergent: There is a barrier B ⊆ P of elements that

were marked as divergent. We may assume that for every b ∈ B and every

s ≤ t < b, t is marked as convergent. We will do a similar fusion to that

in the proof of canonization assuming Case 1. We will inductively build

Qn, Pn,mn such that Pn ≤0 Pn−1, Qn = ({q0 = s, . . . , qn} ∪ R) ⊆ Pm for

n ≤ m, mn ∈ ω. Let {qi : i ∈ C} ⊆ {q0, . . . , qn} be the (possibly empty) set
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of those elements that are immediate successors of some element from B.

Then R =
∪
i∈C Pi,qi . The final tree is again obtained as Q =

∪
iQi =

∩
i Pi.

Conditions that must be satisfied during the n-th step of the fusion are the

following.

– For every i < n if i /∈ C, i.e. qi is not an immediate successor of an

element from B, then for any branch x ∈ [Pn] going through qi we

have dmnmn−1
(f(x), xs) < 1/2n. And if n ∈ C, i.e. qn is an immediate

successor of an element from B, then for any branch y ∈ [Pn] going

through qn we have dmnmn−1
(f(y), xs) > 2; thus it will follow from the

triangle inequality that dmnmn−1
(f(x), f(y)) > 1.

– For every i ≤ n if i /∈ C, i.e. qi is not an immediate successor of an

element from B, then dmn(xqi , xs) < 1/2n+2.

Suppose at first that such Q has been constructed. We need to prove that

for any two branches x, y ∈ [Q] with s as the last common node we have

d(f(x), f(y)) > 1. It follows from the assumption that x goes through some

ui which is an immediate successor of some element from B, similarly y goes

through some different uj with the same property. Assume i < j. Then we

get from the inductive assumption that dmimi−1
(f(x), f(y)) > 1 and we are

done.

In the first step of the induction we set Q0 = {s}, P0 = P and m0 = |s|;

the set R is empty.

Suppose we have already found Qn−1, Pn−1,mn−1. We choose some qn that

is an immediate successor of some qi. We have two cases.

– qi /∈ B, i.e. qn is not an immediate successor of an element from B.

Then we set mn = max{ki : i ≤ n, i /∈ C}, where ki, for i /∈ C, is any

number such that dki(xqi , xs) < 1/2n+2. Note that such ki exist because

xuiEIxs. We then find direct extensions Ei ≤0 Pn−1,qi for i ≤ n, i /∈ C

such that for every branch x ∈ [Ei] we have f(x)(m) = xqi(m) for

m ≤ mn. We refine them so that they are mutually disjoint, i.e.

Ei ∩ Ej = ∅ for i ̸= j and we set Pn = (
∪
i/∈C Ei) ∪R.

58



– qi ∈ B, i.e. qn is an immediate successor of an element from B. We add

n to C. There is some m such that dmmn−1
(xqn , xqi) > 2 + 1/2n+1 since

qi ∈ B is marked as divergent. Since from the inductive assumption

we have dmmn−1
(xqi , xs) < 1/2n+1 we get from the triangle inequality

that dmmn−1
(xqn , xs) > 2. We then set mn = max{m,max{ki : i ≤

n, i /∈ C}}, where ki’s are defined exactly the same as in the first case.

We then again find direct extensions Ei ≤0 Pn−1,qi for i = n and i <

n, i /∈ C such that for every branch x ∈ [Ei] we have f(x)(m) = xqi(m)

for m ≤ mn. We refine them so that they are mutually disjoint, i.e.

Ei∩Ej = ∅ for i ̸= j. We add En to R and we set Pn = (
∪
i/∈C Ei)∪R.

In both cases it is easy to check that all required conditions are satisifed.

3.2 Corollaries

Theorem 3.2.1. Let E ⊆ ωω × ωω be an equivalence relation containing K, i.e.

E ⊇ K, which is Borel reducible to EI for some Fσ P -ideal. Then there exists a

Laver large set contained in one equivalence class.

Recall that K was defined in Definition 3.0.12.

Proof. Consider the set

X = {x ∈ ωω : [x]E contains all branches of some Laver tree}

We use Theorem 3.1.1 to prove that X is non-empty. Suppose it is empty, then by

Theorem 3.1.1 there exists a Laver tree T such that E � [T ] = id([T ]). However,

there must be two branches x, y ∈ [T ] such that xKy and since K ⊆ E, also xEy,

a contradiction.

Thus X is non-empty. We show that it is also E-equivalent, i.e. there is

no pair x, y ∈ X such that x��Ey. Suppose the contrary. Then [x]E contains all

branches of some Laver tree Tx and [y]E contains all branches of Laver tree Ty

and there are branches bx ∈ Tx and by ∈ Ty such that bxKby and since K ⊆ E,

also bxEby, a contradiction.
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So X is a single equivalence class, containing all branches of some Laver tree

T , and thus it is Borel. If it were not Laver large, then the complement would be

a Borel Laver positive set, so by Proposition 3.0.8 it would contain all branches of

some Laver tree S. But we would again have that there are a branch x ∈ [T ] ⊆ X

and a branch y ∈ [S] such that xKy, thus xEy, a contradiction.

Theorem 3.2.2 (Silver dichotomy - under “∀x ∈ R(ωL[x]1 < ω1)”). Let E ⊆

ωω × ωω be an equivalence relation Borel reducible to EI for Fσ P -ideal I. Then

either ωω = (
∪
n∈ω En) ∪ J , where En for every n is an equivalence class of

E and J is a set in the Laver ideal, or there exists a Laver tree T such that

E � [T ] = id([T ]).

This is just a combination of Theorem 3.1.1 and the results from the section

on Silver dichotomy from [18]. It is not known if the assumption “∀x ∈ R(ωL[x]1 <

ω1)” is necessary.

Corollary 3.2.3 (under the same assumption). Let E ⊆ ωω × ωω be an equiva-

lence relation Borel reducible to EI for Fσ P -ideal I and let X ⊆ ωω be an arbi-

trary Laver-positive subset (not necessarily definable) such that ∀x, y ∈ X(x��Ey).

Then there exists a Laver tree T such that E � [T ] = id([T ]).

Proof. Just use the Silver dichotomy from the previous theorem and notice that

the first possibility cannot happen. If ωω = (
∪
n∈ω En)∪ J as in the statement of

the previous theorem, then X \J is still not in the Laver ideal and is uncountable.
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Chapter 4

Carlson-Simpson forcing

Introduction

In [1], Timothy J. Carlson and Stephen G. Simpson prove a strong combinatorial

theorem concerning finite partitions of natural numbers that is in some sense dual

to the classical Ramsey theorem. It is usually called the Dual Ramsey theorem

or the Carlson-Simpson theorem. In this chapter we define a forcing notion,

resp. a σ-ideal on a certain Polish space, that corresponds to the object studied

in the Dual Ramsey theorem and prove a canonization result for this σ-ideal.

More specifically, we identify a finite set of equivalence relations that are in the

spectrum of this ideal and any other analytic equivalence relation canonizes to

one of them.

Let us state one immediate interesting consequence of the result from this

chapter.

Theorem 4.0.4. Let E be any analytic equivalence relation on P(ω) (we identify

elements of P(ω) with elements of 2ω). Then there exists an infinite sequence

(An)n∈ω of pairwise disjoint non-empty subsets of ω (finite or infinite) such that

either for any two different arbitrary unions of such sets (both containing A0

though) they are E-equivalent, or for any two different arbitrary unions both

containing A0 they are E-inequivalent.

Now we introduce the original notation of Carlson and Simpson from [1] and

state their theorem. Then we define the forcing notion and our theorem in their
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language in order to motivate it. However, we will slightly change the notation

in the proof.

Definition 4.0.5. Let A be a finite (at least two-element) alphabet. As in [1],

by (ω)αA, where α ∈ (ω \ |A|) ∪ {ω}, we denote the set of all partitions of A ∪ ω

into α pieces such that two different elements a ̸= b ∈ A lie in two different pieces

of such partitions. For any X ∈ (ω)αA, a piece containing some a ∈ A is called an

a-block, a piece not containing any element of A is called a free block.

For Y ∈ (ω)βA and X ∈ (ω)αA, where β ≤ α, we say Y is coarser than X,

Y ≼ X, if every block of X is contained in some block of Y . For any X ∈ (ω)αA

by (X)βA, where β ≤ α, we denote the set {Y ∈ (ω)βA : Y ≼ X}.

Definition 4.0.6 (Space (ω)0A). Consider the set (ω)0A. We look at it as a set of

all partitions of ω into |A| pieces indexed by A. There is a natural correspondence

between (ω)0A and Aω. The latter carries a product topology if we consider A as a

discrete space which is homeomorphic to the topology of the Cantor space. From

now on we will not distinguish between these two sets and thus be able to speak

about topological properties of (ω)0A.

Definition 4.0.7 (Carlson-Simpson forcing/ideal). We shall consider ((ω)ωA,≼)

as a forcing notion. For X ∈ (ω)ωA we shall write [X] to denote the set (X)0A.

Note that for any such X, [X] is a closed subset of (ω)0A (or Aω).

Let ICn ⊆ P(Aω), where n denotes the cardinality of A, be the set of all Borel

subsets of Aω that do not contain [X] for some X ∈ (ω)ωA.

The following proposition gives some properties of ICn .

Proposition 4.0.8.

1. ICn is a σ-ideal.

2. PICn is forcing equivalent to ((ω)ωA,≼).

3. PICn is proper.

We postpone the proof until we have proved the main theorem 4.1.1. The

reason for that is that the first item of Proposition 4.0.8 will follow easily. We do

not need any part of the proposition in the proof of the main theorem. However,
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let us mention that all items of Proposition 4.0.8 could be proved by a direct

argument without applying the main theorem.

Let us state a restricted version of the Carlson-Simpson (Dual Ramsey) the-

orem for partitions without free blocks.

Theorem 4.0.9 (Carlson-Simpson [1]). For any X ∈ (ω)ωA and any finite parti-

tion [X] = C0∪. . .∪Cn into pieces having the Baire property there exists Y ∈ (X)ωA

and i ≤ n such that [Y ] ⊆ Ci.

4.1 Canonization

Let A be a finite alphabet such that |A| = n ≥ 3. Let B ⊆ A be a proper

subset of A such that |B| ≥ 2. Then we can consider the following equivalence

relation EB on Aω: for x, y ∈ Aω we set xEBy iff ∀n ∈ ω((x(n) ∈ B ⇔ y(n) ∈

B) ∧ (x(n) /∈ B ⇒ y(n) = x(n))).

It is easy to check that EB is a closed equivalence relation that is in the

spectrum of ICn . For a finite alphabet A let BA = {Bi : i < 2n − n − 2} denote

the set of all proper subsets of A of cardinality at least 2.

Theorem 4.1.1. Fix some finite alphabet A with at least two elements. Let

X ∈ (ω)ωA be a condition in the Carlson-Simpson forcing and E an analytic

equivalence relation on [X] (i.e. an analytic subset of [X]2). Then there exists a

subcondition Y ∈ (X)ωA such that E � [Y ] is equal to [Y ] × [Y ] or to id([Y ]) or

there exists B ∈ BA such that E � [Y ] = EB � [Y ].

In particular, we have a total canonization for IC2.

Remark 4.1.2. This is an “almost generalization” of Theorem 4.0.9 as this theorem

can be viewed as a canonization result for equivalence relations having finitely

many classes. We used the term “almost generalization” as the Theorem 4.0.9

holds for partitions into pieces having the Baire property whereas Theorem 4.1.1

generalizes only the case with analytic partitions.

As mentioned in Introduction, we prove the theorem for a two element al-

phabet in full detail. Then we sketch how to obtain it for general A. The more

detailed proof of the general case is in the article [5] which is in preparation.
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As announced, we will slightly change the notation unfortunately. From now

on we consider a two element alphabet A. We consider a forcing notion which is

equivalent to ((ω)ωA,≼) for two element A but will be notationally easier to deal

with in our proof. Few definitions follow.

Definition 4.1.3 (Forcing notion CS). A condition p in the Carlson-Simpson

forcing CS is a pair (ap, bp) where ap ⊆ ω is a coinfinite subset of ω and bp : ω →

P(ω) is an infinite partition of an infinite set Bp which is disjoint with ap; i.e.∪
i∈ω bp(i) = Bp and ap ∩ Bp = ∅. We will moreover assume that if i < j then

min{bp(i)} < min{bp(j)}.

We define p ≤ q if ap ⊇ aq ∧ ap \ aq =
∪
i∈C bq(i), where C ⊆ ω is an arbitrary

coinfinite set, ∀i∃D ∈ [ω]≤ω(bp(i) =
∪
j∈D bq(j)).

By [p] we will denote the set of all subsets of ω that can be obtained from the

condition p; i.e. [p] = {x ⊆ ω : x ⊇ ap ∧ ∃C ⊆ ω(x \ ap =
∪
i∈C bp(i))}.

Remark 4.1.4. Let us describe the correspondence between CS and ((ω)ωA,≼).

Any p ∈ CS can be viewed as an infinite partition where the free blocks are bp(i),

for i ∈ ω, and the two non-free blocks are ap and ω \ (ap ∪
∪
i∈ω bp(i)). On the

other hand, any X ∈ (ω)ωA (let us say that A = {a, b}) can be viewed as pX ∈ CS

such that apX is the non-free block containing b and bpX (i), for i ∈ ω, are free

blocks of X ordered by their minimal elements.

Definition 4.1.5. Let q ∈ CS be a condition and s ∈ 2<ω a finite binary sequence.

By qs we denote the condition for which aqs = aq ∪ {bq(i) : s(i) = 1} and

Bqs = Bq \
∪
i<|s| bq(i) ∧ ∀i(bqs(i) = bq(i+ |s|)).

Note that whenever for some q and s there is r ≤ qs, then there is in fact a

condition t such that t ≤ q and ts = r; i.e. at = ar \
∪
i<|s| bq(i), bt(i) = bq(i) for

i < |s| and bt(i) = br(i−|s|) for i ≥ |s|. From that reason for a condition q and a

finite binary sequence s when we write ts ≤ qs then by t we mean the condition

(≤ q) described above.

We would like to use fusion of conditions, so in the next definition we define

what fusion sequence is.

Definition 4.1.6 (Fusion sequence). We define the suborder ≤n⊆≤ for every
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n. For p, q ∈ CS and n ∈ ω p ≤n q if p ≤ q and ∀m < n(bp(m) ⊇ bq(m)). In

particular, ≤0=≤.

A sequence (pn)n∈ω ⊆ CS is a fusion sequence if ∀n > 0(pn ≤n pn−1). Then

we define the fusion of such a sequence to be the condition p where ap =
∪
n apn

and for every i bp(i) =
∪
n≥i bpn(i).

It is easy to check that p ≤n+1 pn for every n.

Definition 4.1.7 (Reduced products). We define two reduced products of two

copies of the Carlson-Simpson forcing.

We set CS×R0 CS = ({(p, q) ∈ CS× CS : bp = bq ∧min{ap \ aq} ≤ min{aq \

ap}},≤R0). The order relation ≤R0 is induced from the usual product. We denote

it differently to emphasize that we are working with the reduced product.

Moreover, we define a second reduced product CS×R1 CS as follows CS×R1

CS = ({(p, q) ∈ CS × CS : bp = bq ∧ ap ⊆ aq},≤R1). The order relation ≤R1 is

a subrelation of ≤R0 defined as follows: (p, q) ≤R1 (r, t) if (p, q) ≤R0 (r, t) and

ap \ ar ⊆ aq \ at.

We now restate Theorem 4.1.1 in this new language for two element alphabet.

Theorem 4.1.8. Let p ∈ CS be a condition in the Carlson-Simpson forcing and

E an analytic equivalence relation on [p]. Then there exists a subcondition q ≤ p

such that E � [p] is equal to [q]× [q] or to id([q]).

Proof. Consider CS×R0 CS and CS×R1 CS as forcing notions. They both add a

pair (xL, xR) of infinite subsets of ω. More specifically, one can easily check that

CS×R0 CS 
 |xL \ xR| = |xR \ xL| = ω while CS×R1 CS 
 xL ⊆ xR. We will use

the symbol 
1 to specify that we are forcing with CS×R1 CS. Similarly, we will

use 
0 to specify that we are forcing with CS×R0 CS.

The following lemma is the main tool that immediately implies Theorem 4.1.8.

It is more general than Theorem 4.1.8, however we do not have any other appli-

cation of it besides that theorem.

The statement is divided into three items. It could be stated at once but it is

probably more convenient and transparent to have these items separately.

Lemma 4.1.9.

65



(i) Let p ∈ CS be any condition and let M be a countable elementary submodel

of some Hλ, where Hλ is sufficiently large, which contains p and E. Then

there exists q ≤ p such that ∀x, y ∈ [q] if x ⊆ y then the pair (x, y) is

M-generic for CS ×R1 CS, and ∀x, y ∈ [q] if |x \ y| = |y \ x| = ω and

min{x \ y} < min{y \ x} then the pair (x, y) is M-generic for CS×R0 CS.

(ii) Let (s, t) ≤R1 (p, p) be any condition and let M be again a countable ele-

mentary submodel of a large enough structure containing (s, t) and E. Then

there exists (q, r) ≤R1 (s, t) such that ∀x ∈ [q]y ∈ [r] if x ⊆ y then the pair

(x, y) is M-generic for CS×R1 CS.

(iii) Let (s, t) ≤R0 (p, p) be any condition and let M be again a countable ele-

mentary submodel of a large enough structure containing (s, t) and E. Then

there exists (q, r) ≤R0 (s, t) such that ∀x ∈ [q]y ∈ [r] the pair (x, y) is M-

generic for CS×R1 CS.

We postpone the proof for later. First, we show how the theorem follows.

Let us consider the two following cases.

• Case 1 (p, p) 
0 xL��ExR and (p, p) 
1 xL��ExR.

• Case 2 Either ∃(s, t) ≤R1 (p, p)((s, t) 
1 xLExR)

or ∃(s, t) ≤R0 (p, p)((s, t)���≤R1(p, p) ∧ (s, t) 
0 xLExR).

If Case 1 holds then we fix a countable elementary submodel M of some Hλ,

where Hλ is sufficiently large, which contains p and E and we apply Lemma 4.1.9

(i) to obtain corresponding q ≤ p. It follows that for any x, y ∈ [q]M [x, y] � x��Ey
and since E is analytic it follows from the analytic absoluteness (see Theorem

1.2.1) that x��Ey.

If Case 2 holds then either there exists (s, t) ≤R0 (q, q) such that (s, t) 
0

xLExR, or there exists (s, t) ≤R1 (q, q) such that (s, t) 
1 xLExR.

In the former case, we again fix a suitable countable elementary submodel M

and apply Lemma 4.1.9 (iii) to obtain the corresponding (q, r). We have that

for any x ∈ [q], y ∈ [r] M [x, y] � xEy and it again follows from the analytic

absoluteness that xEy. It immediately follows from the transitivity of E that

E � [q] = [q]× [q] (or similarly E � [r] = [r]× [r]).
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In the latter case, we again use some suitable countable elementary submodel

M and Lemma 4.1.9 (ii) to obtain the corresponding (q, r). We now have that for

any x ∈ [q], y ∈ [r] if x ⊆ y then M [x, y] � xEy and by the analytic absoluteness

xEy. We use transitivity of E to show that for any x ∈ [q], y ∈ [r] xEy. Let a

pair x ∈ [q], y ∈ [r] such that x \ y ̸= ∅ be given. Denote d = x \ y. It is easy

to check that y ∪ d ∈ [r]; similarly x \ d ∈ [q] (just note that (q, r) ≤R1 (q, q),

i.e. aq ⊆ ar and bq = br). Thus we have xE(y ∪ d)E(x \ d)Ey and from the

transitivity xEy. It again follows using transivity that E � [q] = [q] × [q] (or

similarly E � [r] = [r]× [r]).

Proof of the lemma. We prove only (i), proofs of the other items are just a routine

modification.

Let us enumerate all open dense subsets of CS×R0CS lying in M as (Dn)n∈ω,

and all open dense subsets of CS×R1 CS lying in M as (En)n∈ω.

Step 1 We find a subcondition p∞ of p such that for all different x, y ∈ [p∞] such

that x ⊆ y the pair (x, y) is M -generic for CS×R1 CS.

Claim 4.1.10. For any r ≤ p and any finite binary sequence u there is s ≤|u|+1 r

such that ∀x ∈ [su0]y ∈ [su1] such that x ⊆ y we have that the pair (x, y) is

M-generic for CS×R1 CS.

Suppose the claim is proved. The fusion producing the condition p∞ goes as

follows. According to the claim there exists p0 ≤1 p such that ∀x ∈ [p00]y ∈ [p10] if

x ⊆ y then the pair (x, y) is M -generic for CS×R1 CS. Then using the claim two

times there exists p1 ≤2 p0 such that ∀x ∈ [p001 ]y ∈ [p011 ] if x ⊆ y then the pair

(x, y) is M -generic for CS×R1 CS, and similarly ∀x ∈ [p101 ]y ∈ [p111 ] if x ⊆ y then

the pair (x, y) is M -generic for CS×R1 CS.

In general, when we have already found pn−1 then using the claim 2n-times

we find a condition pn ≤n+1 pn−1 such that for any binary sequence u of length n

and ∀x ∈ [pu0n ]y ∈ [pu1n ] if x ⊆ y then the pair (x, y) is M -generic for CS×R1 CS.

Let p∞ be the fusion of that sequence. Then for any x ∈ [p∞]y ∈ [p∞] such

that x ⊆ y there exists some i such that the block bp∞(i) lies in y but not in x.

Let i be the minimal such index. Then it follows that x ∈ [pu0i ]y ∈ [pu1i ], for some
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binary sequence u of length i and so we have guaranteed during the fusion that

(x, y) is an M -generic pair for CS×R1 CS.

To prove the claim, again a fusion is needed. Let r ≤ p and a finite binary

sequence u be given. Since E0 is dense there exists s0 ≤1 r
u such that (s00, s

1
0) ∈

E0. Note that we are looking for a pair (s, t) ≤R1 (r
u0, ru1) lying in E0 and this

pair (s, t) is of the form (s00, s
1
0) for some s0 ≤1 r

u. Also note that s0 = s′u0 for

some s′0 ≤1+|u| r.

Suppose we have already found sn−1 (again we may write sn−1 = s′un−1 for

some s′n−1 ≤n+|u| s
′
n−2). Using that En is open dense we extend sn−1 to obtain

sn ≤n+1 sn−1 such that for every pair (v, w) ∈ (2n)2 of binary sequences of length

n such that {i : v(i) = 1} ⊆ {i : w(i) = 1} we have (s0vn , s
1w
n ) ∈ En. To do

this, enumerate all such pairs of binary sequences of length n as {(vi, wi) : i <∑n
i=0 2

i
(
n
i

)
} (denote k =

∑n
i=0 2

i
(
n
i

)
) and set t0 = sn−1. When we already have

ti−1 for i < k − 1 we find ti ≤n+1 ti−1 such that (t
0vi−1

i , t
1wi−1

i ) ≤R1 (t
0vi−1

i−1 , t
1wi−1

i−1 )

and such that (t
0vi−1

i , t
1wi−1

i ) ∈ En. Finally, set sn = tk−1 and the induction step

is done.

Once the fusion sequence is constructed, let s′ be the fusion limit. It is easy

to check that s′ is in fact su where s is the fusion limit of the sequence s′0 ≤2+|u|

s′1 ≤3+|u| s
′
2 ≤4+|u| . . . and this s is the desired condition.

This finishes the proof of the claim and also the proof of Step 1.

Step 2 Now we find a subcondition q ≤ p∞ such that ∀x, y ∈ [q] such that

|x \ y| = |y \ x| = ω and min{x \ y} < min{y \ x} the pair (x, y) is M -generic for

CS×R0 CS which will finish the proof.

Claim 4.1.11. For any r ≤ p∞ and any two finite binary sequences u, v there

exists s ≤|u|+|v|+2 r such that ∀x ∈ [su1v0]y ∈ [su0v1] the pair (x, y) is M-generic

for CS×R0 CS.

Suppose the claim is proved. Then the final fusion producing the condition q

goes as follows.

According to the claim there exists q0 ≤2 p∞ such that ∀x ∈ [q100 ]y ∈ [q010 ] the

pair (x, y) isM -generic for CS×R0CS. Suppose that we have already found qn−1.
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Then using the claim several times (precisely 2n+2 times) we find a condition

qn ≤n+2 qn−1 such that for any two finite (including empty) binary sequences u, v

such that |u| + |v| = n we have that ∀x ∈ [qu1v0n ]y ∈ [qu0v1n ] the pair (x, y) is

M -generic.

Let q be the fusion limit. Then for any x, y ∈ [q] such that min x\y < min y\x

there exists the least block bq(i) such that it lies in x but not in y and also there

exists the least block bq(j) such that it lies in y but not in x (note that i < j).

It follows that x ∈ [qu1v0j−1 ]y ∈ [qu0v1j−1 ], where |u| = i and |v| = j − i − 1 for some

binary sequences u, v, and so we have guaranteed during the fusion that the pair

(x, y) is M -generic for CS×R0 CS.

It remains to prove this last claim to finish the proof of Lemma 4.1.9 and

Theorem 4.1.8. The proof is similar to the proof of Claim 4.1.10.

Let r ≤ p∞ and a finite binary sequences u, v be given. Since D0 is dense

there exists s0 ≤|u|+|v|+2 r such that (su1v00 , su0v10 ) ∈ D0. Note that we are looking

for a pair (s, t) ≤R1 (ru1v0, ru0v1) lying in D0 and this pair (s, t) is of the form

(su1v00 , su0v10 ) for some s0 ≤|u|+|v|+2 r.

Suppose we have already found sn−1. Using that Dn is open dense we ex-

tend sn−1 to obtain sn ≤|u|+|v|+n+2 sn−1 such that for every pair (w,w′) ∈ (2n)2

of binary sequences of length n we have (su1v0wn , su0v1w
′

n ) ∈ Dn. To do this,

enumerate all such pairs of binary sequences of length n as {(wi, w′
i) : i <

22n} and set t0 = sn−1. When we already have ti−1 for i < 22n − 1 we find

ti ≤|u|+|v|+n+2 ti−1 such that (t
u1v0wi−1

i , t
u0v1w′

i−1

i ) ≤R1 (t
u1v0wi−1

i−1 , t
u0v1w′

i−1

i−1 ) and such

that (t
u1v0wi−1

i , t
u0v1w′

i−1

i ) ∈ Dn. Finally, set sn = t22n−1 and the induction step is

done.

Once the fusion sequence is constructed we set s to be the fusion limit and it

is a routine to check that this is the desired s.

The proof of the generalization for an alphabet containing more than two

elements is sketched here. It uses induction on the cardinality of A.

Theorem 4.1.12. Let A be a finite alphabet such that |A| ≥ 3. Let X ∈ (ω)ωA be a

condition in the Carlson-Simpson forcing and E an analytic equivalence relation
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on [X]. Then there exists a subcondition Y ∈ (X)ωA such that E � [Y ] is equal to

[Y ]× [Y ] or to id([Y ]) or there exists B ∈ BA such that E � [Y ] = EB � [Y ].

Sketch of the proof. Let n = |A| and enumerate A as {a0, . . . , an−1}. For every

i < n let us denote ×Ri the reduced product of (ω)ωA such that (Z, Y ) ∈ (ω)ωA×Ri

(ω)ωA iff for every j ̸= i the aj-block of Z is contained in the aj-block of Y and

the free blocks of Z and Y are the same. Moreover, let ×Rn denote the reduced

product of (ω)ωA such that (Z, Y ) ∈ (ω)ωA ×Rn (ω)
ω
A iff for every j < n neither the

aj-block of Z is contained in the aj-block of Y nor the aj-block of Y is contained

in the aj-block of Z, and the free blocks of Z and Y are the same. Notice how

this generalizes Definition 4.1.7 for an arbitrary alphabet.

The following lemma is proved by analogous means as Lemma 4.1.9.

Lemma 4.1.13.

(i) Let X ∈ (ω)ωA be any condition and let M be a countable elementary sub-

model of some Hλ, where Hλ is sufficiently large, which contains X and E.

Then there exists Y ≼ X such that ∀z, y ∈ [Y ] if there is i < n such that

for every j ̸= i the aj-block of z is contained in the aj-block of y then the

pair (z, y) is M-generic for (ω)ωA×Ri (ω)
ω
A, and ∀x, y ∈ [q] if for every j < n

neither the aj-block of z is contained in the aj-block of y nor the aj-block

of y is contained in the aj-block of z then the pair (z, y) is M-generic for

(ω)ωA ×Rn (ω)
ω
A.

(ii) Let i < n and let (Z ′, Y ′) ≤Ri (X,X) be any condition and let M be

again a countable elementary submodel of a large enough structure con-

taining (Z ′, Y ′) and E. Then there exists (Z, Y ) ≤Ri (Z ′, Y ′) such that

∀z ∈ [Z]y ∈ [Y ] if for every j ̸= i the aj-block of z is contained in the

aj-block of y then the pair (z, y) is M-generic for (ω)ωA ×Ri (ω)
ω
A.

(iii) Let (Z ′, Y ′) ≤Rn (X,X) be any condition and let M be again a countable

elementary submodel of a large enough structure containing (Z ′, Y ′) and E.

Then there exists (Z, Y ) ≤Rn (Z ′, Y ′) such that ∀z ∈ [Z]y ∈ [Y ] if for every

j < n neither the aj-block of z is contained in the aj-block of y nor the aj-
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block of y is contained in the aj-block of z then the pair (z, y) is M-generic

for (ω)ωA ×Rn (ω)
ω
A.

We again have two cases. Note that for each i ≤ n the forcing notion (ω)ωA×Ri

(ω)ωA again adds a pair of reals again denoted as xL and xR.

• Case 1 ∀i ≤ n((X,X) 
i xL��ExR).

• Case 2 ∃i ≤ n∃(Z, Y ) ≤Ri (X,X)((Z, Y ) 
i xLExR).

If Case 2 holds then as in Theorem 4.1.8 using analytic absoluteness and tran-

sitivity of E we prove that there exists a condition Y ≼ X such that E � [Y ] =

[Y ]× [Y ].

Suppose that Case 1 holds. Then as in Theorem 4.1.8 using analytic ab-

soluteness we prove that there is Y ≼ X such that ∀z, y ∈ [Y ] if there is no i < n

such that the ai-block of z is equal to the ai-block of y, then z��Ey. However,

notice that the case when there is some i < n such that the ai-block of z is equal

to the ai-block of y is not treated by Lemma 4.1.13 since in such a case the pair

(z, y) is not generic for (ω)ωA ×Ri (ω)
ω
A for any i ≤ n.

However, consider {a1, . . . , an−1} ∈ BA. We can use by an inductive argument

Theorem 4.1.12 for A′ = {a1, . . . , an−1} to obtain Y0 ≼ Y such that either ∀z, y ∈

[Y0](zEA′y ⇒ z��Ey), or there is some subset B ⊆ A′ (|B| ≥ 2, including the case

when B = A′) such that ∀z, y ∈ [Y0](zEBy ⇒ zEy). If the latter case holds and

B = A′ then we are done. We found a condition Y0 such that E � [Y0] = EB � [Y0].
If B is a proper subset of A′ then consider B′ = B ∪ {a0} and we can again use

by an inductive argument Theorem 4.1.12 for B′. We obtain some Z ≼ Y0 such

that either E � [Z] = EB � [Z] or E � [Z] = EB′ � [Z].
If the former case holds then we will succesively use Theorem 4.1.12 for

{a0, ai}, for every 0 < i < n. Either we end up with a condition Z ≼ Y such that

∀z, y ∈ [Z](z��Ey) or we end up with a condition Z ≼ Y and some 0 < i < n such

that E � [Z] = E{a0,ai} � [Z].

We finish by providing the proofs of Proposition 4.0.8 and Theorem 4.0.4.

Proof of Proposition 4.0.8. Fix an alphabet A with |A| = n ≥ 2. Let us prove (1).

Let An ∈ ICn for all n ∈ ω. Suppose that A =
∪
n∈ω An /∈ ICn . It must contain
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[X] for some X ∈ (ω)ωA. We can define a Borel equivalence relation E on [X]

with countably many classes such that ∀x, y ∈ [X](xEy ⇔ ∃n ∈ ω(x, y ∈ An)).

Applying Theorem 4.1.1 we get Y ≼ X such that E � [Y ] is the full relation, the

identity relation or EB � [Y ] for some B ∈ BA. Since E has only countably many

classes only the first case is possible. Thus E � [Y ] = [Y ]× [Y ], i.e. there is n ∈ ω

such that [Y ] ⊆ An which is a contradiction.

The item (2) follows from (1). For any X ∈ (ω)ωA, [X] is a Borel (closed) ICn-

positive subset; conversely, it follows from (1) that any Borel ICn-positive subset

of Aω contains [X] for some X ∈ (ω)ωA.

We prove (3) only for case |A| = 2 because of our notation introduced for this

special case. Consider the suborders ≤n⊆≤ on CS. It is easy to check that CS

with these relations satisfies Axiom A and thus it is proper (see [16] Definition

31.10 and then Lemma 31.11).

Proof of Theorem 4.0.4. This is just a special case of Theorem 4.1.8 if we consider

p to be the biggest condition in CS, i.e. ap = ∅ and bp(i) = {i} for every i ∈ ω.

Theorem 4.1.8 gives a subcondition q ≤ p on which E is simple. The condition q

determines the sequence (An)n∈ω: A0 = aq and Ai = bq(i− 1) for i ≥ 1.

Let us just note that we cannot eliminate the set A0 from the statement, i.e.

demand it to be empty. Just consider an equivalence relation E on P(ω) where

for a, b ∈ P(ω) we have aEb if min a = min b.
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Chapter 5

Universal and ultrahomogeneous

metric structures

Introduction

In 1927, P. S. Urysohn constructed a metric space U which is now called The

Urysohn universal metric space ([32]). It is a Polish metric space that is both

universal and ultrahomogeneous for the class of all finite metric spaces. The uni-

versality means that every finite metric space can be isometrically embedded into

U and the ultrahomogeneity means that any finite isometry ϕ : {x1, . . . , xn} ⊆

U → {y1, . . . , yn} ⊆ U extends to an isometry ϕ̄ ⊇ ϕ : U → U on the whole

space. These two properties imply that U, in fact, contains an isometric copy of

every separable metric space and that U is unique with these two properties up

to isometry.

The aim of this chapter is to enrich the Urysohn space with some additional

structure so that this enriched Urysohn space is still universal and ultrahomoge-

neous for that specific (Polish) metric structure. The definition of Polish metric

structures considered here is given at the end of this section. A related work has

been done by W. Kubís in [24] (see also [13]).

Our initial motivation was to provide a general way of coding of such classes

of Polish metric structures as standard Borel spaces. Let us say we are given

some class of Polish metric structures and we would like to use methods of de-

scriptive set theory to investigate (e.g. classify) this class. In order to use these
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methods we need to represent such a class as a Polish space or, it is sufficient,

as a standard Borel space. Recall Definition 1.1.15 of an Effros-Borel structure.

Effors-Borel structure is an example of a standard Borel space that can serve in

this direction. Let us illustrate it on examples.

Examples.

• Recall (Fact 1.1.2) that every Polish space X is homeomorphic to a closed

subset of RN. Thus the Effros-Borel space of F (RN) can be interpreted as

a standard Borel space of all Polish spaces.

• Recall the classical result of Banach and Mazur that every separable Ba-

nach space can be be embedded by a linear isometry into the separable

Banach space C([0, 1]), i.e. the Banach space of all real-continuous func-

tions on [0, 1]. Consider the following subset of the standard Borel space

F (C([0, 1])), which can be checked to be Borel, Subs = {X ∈ F (C([0, 1])) :

X is a linear subspace}. It is a standard Borel space of all separable Ba-

nach spaces (that has been used, for instance, by V. Ferenczi, A. Louveau

and C. Rosendal in [9] for a classification result of separable Banach spaces

with the relation of linear isomorphism). There are a lot of Borel subsets of

Subs that represent certain subclasses of separable Banach spaces (see [2]

for example).

• Because of the properties of U the standard Borel space F (U) can serve as a

coding of all Polish metric spaces. We remark that this approach was used

by Gao and Kechris in [12] in their classification of Polish metric spaces up

to isometry.

The Effros-Borel structure of F (S), where S will be one of the structures we

investigate here, should serve in a similar way. Let us state the main definitions

of this chapter.

Definition 5.0.14 (Polish metric structure). Let Z1, . . . , Zk be a list of Polish

metric spaces. A finite or countably infinite setO is called a signature if it consists

of symbols for closed sets. Moreover, there is a function a : O → ([0, . . . , k]×N)<ω;
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i.e. to each symbol from O it assigns a finite sequence of elements (a, b) where

0 ≤ a ≤ k and b ∈ N. By aF (n, i), for i ∈ {1, 2}, we denote the i-th coordinate

of the n-th element of a(F ).

A Polish metric structure of signature O is a Polish metric space (X, d) such

that for every F ∈ O there is a closed set FX ⊆ Z
aF (1,2)
aF (1,1)

× . . .×ZaF (|a(F )|,2)
aF (|a(F )|,1) , where

by Z0 we denote X.

Definition 5.0.15. Let (X, d,OX) be a Polish metric space of some signature

O. We say that (X, d,OX) is universal if for any Polish metric space (Y, d,OY ) of

the same signature O there is an isometric embedding ϕ : Y ↪→ X that moreover

reduces FY into FX (for every F ∈ O): i.e. for any (y1, . . . , yn), where I ⊂

{1, . . . , n} are the coordinates such that yi ∈ Y iff i ∈ I, we have (y1, . . . , yn) ∈

FY ⇔ (x1, . . . , xn) ∈ FX , where xi = ϕ(yi) if i ∈ I and xi = yi otherwise.

We say that (X, d,OX) is ultrahomogeneous if any isomorphism between two

finite (metric) substructures (F1, d,OF1) and (F2, d,OF2) of (X, d,OX) extends to

an automorphism of the whole (X, d,OX).

Let us illustrate the universality and ultrahomogeneity on examples.

Examples.

• If the signature O is empty then (X, d,OX) is just the Urysohn universal

metric space U, i.e. space containing an isometric copy of every Polish (or

just separable) metric space and with the property that every finite partial

isometry extends to an isometry of the whole space.

• Let us consider the case when the signature OX contains a symbol for one

closed subset C of X. Then for any Polish metric space (Y, d) equipped with

some closed subset D ⊆ Y there is an isometric embedding ϕ : Y ↪→ X

that maps D into C, i.e. ∀y ∈ Y (y ∈ D ⇔ ϕ(y) ∈ C); in other words,

ϕ(Y )∩C = ϕ(D). Moreover, for any two finite subspaces F1, F2 ⊆ X and an

isometry ϕ : F1 → F2 respecting the closed subset, i.e. ϕ(F1 ∩C) = F2 ∩C,

there is an extension to an isometry on the whole space ϕ ⊆ ϕ̄ : X → X

that still respects the closed subset, i.e. ϕ̄(C) = C.
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• Let us consider the case when the signature OX contains a symbol for a

closed subset C of X ×Z where Z is some fixed Polish metric space. Then

for any Polish metric space (Y, d) and a closed subset D ⊆ Y × Z there

is an isometric embedding ϕ : Y ↪→ X such that ∀y ∈ Y ∀z ∈ Z((y, z) ∈

D ⇔ (ϕ(y), z) ∈ C). Moreover, for any two finite substructures F1, F2

and isometry ϕ between them respecting the structure, i.e. ∀f ∈ F1∀z ∈

Z((f, z) ∈ C ⇔ (ϕ(f), z) ∈ C), there is an extension ϕ̄ to the whole space

still respecting the closed set C.

• Let us consider the case when the signature OX contains a symbol f for a

closed subset of X × Z and moreover

(X, d,OX) |= f is a graph of a continuous function, where Z is some fixed

Polish metric space. Then for any Polish metric space (Y, d) equipped with

a continuous function g : Y → Z (i.e. a Polish metric structure of that

signature which also models that this closed set is in fact a graph of a

continuous function) to that fixed space Z there is an isometric embedding

ϕ : Y ↪→ X that maps the graph of g into the graph of f ; in other words,

∀y ∈ Y (g(y) = f ◦ ϕ(y)). Moreover, for any two finite metric substructures

F1, F2 ⊆ X and an isometry ϕ between them that respects the continuous

function, i.e. ∀x ∈ F1(f(x) = f ◦ϕ(x)), there is an extension to the isometry

on the whole space that still respects the continuous function.

In what follows we shall denote the Polish metric structures somewhat loosely.

For instance the Polish metric structure with two closed sets would be denoted

often as (X,F1, F2) instead of (X, d, F 1
X , F

2
X) where F 1, F 2 are two symbols for

closed sets.

Definition 5.0.16 (Almost universal and ultrahomogeneous structures). Sup-

pose now that the signature O on (X, d) consists of countably many symbols

for closed sets of the same type, e.g. countably many closed subsets of X or

countably many continuous functions (resp. graphs of them) from X to some

fixed metric spaces. In such a case we will usually not be able to maintain uni-

versality and ultrahomogeneity in the full strength. Let us have O enumerated

as {On : n ∈ N}. We say that (X, d, (On)n∈N) is almost universal and ultraho-

mogeneous if for any Polish metric space (Y, d, (Fn)n∈N), where (Fn) are of the
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same type as (On) there is an isometric embedding ϕ : Y ↪→ X and an injection

π : N → N such that ϕ maps Fn into Oπ(n). Moreover, let F1, F2 be two finite

subspaces of X such that there is a finite isometry ϕ between F1 and F2 and

two sets of indices {k1, . . . , kn} ⊆ N and {l1, . . . , ln} ⊆ N such that ϕ maps the

restriction Oki � F1 into the restriction Oli � F2, for all i ≤ n. Then there is an

isometry ϕ̄ ⊇ ϕ of the whole space X extending ϕ and a bijection π : N → N,

such that π(ki) = li for i ≤ n, such that ϕ̄ maps Om into Oπ(m) for all m ∈ N.

We remark that in all cases the underlying Polish metric space X for a given

structure is isometric to the Urysohn universal space U, thus from now on we will

always denote it as U. We will comment on this in Remark 5.1.7 after the proof

of Theorem 5.1.2.

Notational convention. For any metric space X we will denote the metric as

either dX but more often, when there is no danger of confusion, just as d. When

working with a metric on a product of metric spaces we always consider the sum

metric, i.e. d((x1, x2), (y1, y2)) = d(x1, y1) + d(x2, y2).

We usually denote tuples (x1, . . . , xm), for an arbitrary m ∈ N clear from the

context, by x⃗. When ϕ is some mapping we denote (ϕ(x1), . . . , ϕ(xm)) by ϕ
m(x⃗).

5.1 Universal closed relations

Theorem 5.1.1. Let n1 ≤ . . . ≤ nm be an arbitrary non-decreasing sequence of

natural numbers. Then there exist closed relations (subsets) Fni ⊆ Uni, for i ≤ m,

such that the structure (U, Fn1 , . . . , Fnm) is universal and ultrahomogeneous and

it is unique (up to isometry preserving the relations) with this property.

Instead of giving a proof of this theorem we prove the theorem below which is

“almost” more general. In remarks after the proof of Theorem 5.1.2 we indicate

how to modify the proof so that it works also for Theorem 5.1.1.

Theorem 5.1.2. There exists an almost universal and ultrahomogeneous struc-

ture (U, (F n
m)n,m∈N) where F

n
m ⊆ Un is a closed n-ary relation (i.e. a closed subset

of the n-th power of U). It is also unique with this property (up to permutation

of the set of n-ary relations for each n and isometry preserving the relations).
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Remark 5.1.3. Let us elaborate more on the statement of the theorem. Let (X, d)

be a Polish metric space equipped with closed sets Gn
m, for all m,n ∈ N, where

Gn
m ⊆ Xn. Then there exist an isometric embedding ψ : X ↪→ U and injections

πn : N → N, for each n ∈ N, such that ∀n,m ∈ N(ψ(X)n ∩ F n
πn(m) = ψn(Gn

m)), or

in other words ∀n,m ∈ N∀x⃗ ∈ Xn(x⃗ ∈ Gn
m ⇔ ψn(x⃗) ∈ F n

πn(m)).

In particular, ψn : Gn
m ↪→ F n

πn(m) is an isometric embedding.

Moreover, let M1,M2 ⊆ U be two finite metric subspaces, some nM ≤ |M1| =

|M2|, for each n ≤ nM there are finite sets of indices IM1
n , IM2

n ⊆ N such that

|IMi
n | = nM − n + 1, for i ∈ {1, 2}, and for each n ≤ nM there are bijections

πn : IM1
n → IM2

n and an isometry ψ :M1 →M2 such that ∀n ≤ nM∀m ∈ IM1
n ∀x⃗ ∈

Mn
1 (x⃗ ∈ F n

m ⇔ ψn(x⃗) ∈ F n
πn(m)); i.e. ψ reduces the closed relation F n

m into F n
πn(m).

Then there are an isometry ψ̄ : U → U and bijections π̄n : N → N, for each i ∈ N,

such that ∀n,m ∈ N∀x⃗ ∈ Un(x⃗ ∈ F n
m ⇔ ψ̄n(x⃗) ∈ F n

π̄n(m)), and ψ̄ extends ψ and

π̄n extends πn for each n ≤ nM .

We will construct these sets along with the underlying metric space (universal

Urysohn space) as a Fräıssé limit of a certain countable class K of finite structures.

This is basically also an original method of construction of the Urysohn universal

space eventhough the general Fräıssé theory did not exist at that time! We note

that there is another construction of the Urysohn space due to M. Katětov ([19]).

Let us make another notational convention here. In the languages of struc-

tures that we will use there will always be defined (partial) functions into some

fixed countable set, e.g. a function with rational values. It is clear that each such

function can be replaced by countably many predicates; for example, a rational

function f can be replaced by predicates fq, for each q ∈ Q, and then we could

demand that for each element a of our structure there is precisely (or at most)

one q ∈ Q such that fq(a) holds. We will always implicitly assume this.

Let L be a countable language consisting of n-ary pnm functions with values in

nonnegative rationals for every pair m,n ∈ N and binary function d with values

in nonnegative rationals. For any structure A we will usually write just pnm (or

d) on A instead of (pA)nm (or dA). However, we may use the latter in few cases

where there is a possibility of confusion.
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Definition 5.1.4 (The class K). A finite structure A (we will not notationally

distinguish a structure and its underlying set) for the language L of cardinality

k > 0 belongs to K if the following conditions are satisfied:

1. A is a rational metric space; i.e.

• d is a total function (defined on all pairs) on A

• ∀x, y ∈ A(d(x, y) = d(y, x))

• ∀x, y ∈ A(d(x, y) = 0 ⇔ x = y)

• ∀x, y, z ∈ A(d(x, y) ≤ d(x, z) + d(z, y))

Thus we will interpret d as a metric.

2. There is some nA ≤ k (recall that k is the cardinality of A) such that for

every n ≤ nA and m ≤ nA+1−n pnm is a total function on A; on the other

hand, for n > nA or m > nA + 1 − n pnm is defined on no n-tuple from A;

i.e.

∃nA ≤ k

• ∀n,m ∈ N∀a⃗ ∈ An(pnm(⃗a) is defined ⇔ n ≤ nA ∧m ≤ nA + 1− n)

We consider pnm as a function to rationals with an interpretation that it

gives a rational distance (in a “sum” metric on An) of an n-tuple from one

of the desired set F n
m′ . We note that m and m′ will not necessarily be equal.

3. In order to satisfy the joint embedding property and the amalgamation

property we must put some additional restrictions on these structures.

• ∀m,n ∈ N(n ≤ nA ∧m ≤ nA + 1 − n ⇒ ∀a⃗, b⃗ ∈ An(pnm(⃗a) ≤ pnm(⃗b) +

d(⃗a, b⃗))

The previous formula is interpreted as follows. Consider the ”sum” metric

d on An, i.e. d(⃗a, b⃗) = d(a1, b1) + . . . + d(an, bn). The function pnm assigns

to each n-tuple a non-negative rational. We interpret this function as a

distance function from a fixed closed set in the sum metric. The previous

formula says that a distance of some n-tuple from this closed set must be
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less or equal to the sum of a distance of another n-tuple from the same

closed set and the distance between these two n-tuples. In particular, if

this distance is 0 for some n-tuple a⃗, i.e. we demand it will lie in the closed

set, then this distance for some other n-tuple b⃗ must be less or equal to the

distance between a⃗ and b⃗.

There is still one more condition which we must demand on these structures in

order to satisfy the amalgamation property and to have only countably many iso-

morphism types of finite structures. We specify when we consider two structures

to be isomorphic and what an embedding of one structure into another is. Infor-

mally, an isomorphism between two structures does not respect the enumeration

of the rational functions pnm for every power n, i.e. for example we consider struc-

tures A = {a1, a2} and B = {b1, b2} such that p11(a1) = q, p11(a2) = 0, p12(a1) = h,

p12(a2) = 0 and p21 is equal to 0 on all pairs, and p11(b1) = h, p11(b2) = 0, p12(b1) = q,

p12(b2) = 0 and p21 is equal to 0 on all pairs to be isomorphic although the roles of

p11 and p12 are switched in these two structures.

The precise definition follows.

Definition 5.1.5 (Isomorphism and embedding). An isomorphism between two

finite structures A,B in the language L is a pair ϕ, (πϕn)) where ϕ is an isometry

between A and B for every n ≤ nA(= nB) π
ϕ
n : {1, . . . , nA+1−n} → {1, . . . , nB+

1− n} is a permutation such that

∀n ≤ nA∀m ≤ nA + 1− n∀a⃗ ∈ An

(pnm(⃗a) = q ⇔ pnπn(m)(ϕ
n(⃗a)) = q)

Two structures are isomorphic if there exists an isomorphism (pair) between

them.

Similarly, an embedding of a structure A into a structure B is a pair (ϕ, (πn))

such that ϕ : A ↪→ B is an isometric embedding and for every n ≤ nA (≤ nB)

πn : {1, . . . , nA + 1− n} → {1, . . . , nB + 1− n} is an injection such that

∀n ≤ nA∀m ≤ nA + 1− n∀a⃗ ∈ An
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(pnm(⃗a) = q ⇔ pnπn(m)(ϕ
n(⃗a)) = q)

Now we must prove that K is countable, satisfies the hereditary, joint embed-

ding and amalgamation property.

Lemma 5.1.6. K is a Fräıssé class.

Proof. We will prove that K is countable, satisfies the hereditary property, joint

embedding property and amalgamation property.

For the cardinality, there are only countably many finite rational metric

spaces. For each finite rational metric space A of cardinality n there are n + 1

choices for nA (recall that nA ≤ n = |A|) and for each such a choice only finitely

many rational functions pnm can be defined, hence the claim follows.

The hereditary property is obvious. To check the joint embedding prop-

erty, consider two structures A,B ∈ K. Let mA = max{q : (A � pq (⃗a)) ∧

pq is either dq or p
n
q,m for some n ≤ nA,m ≤ nA + 1 − n, a⃗ ∈ An}; mB is de-

fined similarly for B. Let m = max{mA,mB}. Let C = A
⨿
B be the dis-

joint union of A and B. For a ∈ A and b ∈ B we may set d(a, b) = 2m,

so we extend the metric on the whole C. To extend other predicates, we set

nC = max{nA, nB} and it is easy to see that for every n ≤ nC and m ≤ nC+1−n

and every n-tuple (c1, . . . , cn) ∈ Cn on which pnm has not been already defined

there is always a choice which is consistent. For instance, for any n ≤ nC and

m ≤ nC + 1− n and (c1, . . . , cn) ∈ Cn for which pnm has not been yet defined we

may set pnm(c1, . . . , cn) = 0; this is consistent.

Finally, we need to check the amalgamation property. Let A,B,C ∈ K be

structures, we can assume WLOG that A is a substructure of both B and C and

for all n ≤ nA and m ≤ nA − n (pB)nm = (pC)nm. Let D = A
⨿
(B \ A)

⨿
(C \ A).

The metric is extended in a standard way, i.e. for b ∈ B and c ∈ C we set

d(b, c) = min{d(b, a) + d(a, c) : a ∈ A}.

Let us set nD = nB + (nC − nA) (note that nA ≤ min{nB, nC}). We reenu-

merate some rational functions on D (see Definition 5.1.5).

• For all n ≤ nB, m ≤ nB + 1 − n and b⃗ ∈ Bn ⊆ Dn we let (pD)nm(⃗b) =

(pB)nm(⃗b), i.e. we keep the enumeration from the original one in B.
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• For all n ≤ nA, m ≤ nA + 1− n and c⃗ ∈ Cn ⊆ Dn we again let (pD)nm(c⃗) =

(pC)nm(c⃗), i.e. keep the previous enumeration.

• For n ≤ nA and nA + 1− n < m ≤ nC + 1− n or for nA < n ≤ nC and any

m ≤ nC + 1 − n and c⃗ ∈ Cn we set (pD)nm+(nB−nA)(c⃗) = (pC)nm(c⃗), i.e. we

change the enumeration by adding nB − nA.

We need to check that this metric extension along with the reenumeration of

some predicates is consistent.

Specifically, we need to check that the following formula still holds true when-

ever the function pnm is defined on both b⃗ and c⃗:

∀⃗b, c⃗ ∈ Dn(pnm(b1, . . . , bn) ≤ pnm(c⃗) + d(b1, c1) + . . .+ d(bn, cn))

Let some n,m, b⃗ and c⃗ in Dn such that both pnm(⃗b) and pnm(c⃗) are defined be

given.

• If nA < n ≤ nB and m ≤ nB + 1 − n then it follows that both b⃗ and c⃗ are

from Bn and the formula holds in D since it holds in B.

• For any n if m > nB + 1− n then it follows that both b⃗ and c⃗ are from Cn

and the formula holds in D since it holds in B with m′ = m− (nB − nA).

• Finally, assume that n ≤ nA and m ≤ nA+1−n. If b⃗ and c⃗ are either both

from Bn or both from Cn then the formula holds in D since it holds in B,

resp. in C. So let us assume that b⃗ is originally from Bn and c⃗ is originally

from Cn (the opposite case is the same of course). From definition, for every

i ≤ n there is some ai ∈ A such that d(bi, ci) = d(bi, ai)+ d(ai, ci). We have

pnm(⃗b) ≤ pnm(⃗a) + d(b1, a1) + . . .+ d(bn, an)

since this formula holds true in B. Similarly, we have

pnm(⃗a) ≤ pnmc⃗) + d(a1, c1) + . . .+ d(an, cn)
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since this formula holds true in C. Putting together, we obtain

pnm(⃗b) ≤ pnm(c⃗) + d(b1, c1) + . . .+ d(bn, cn)

which is what we wanted to prove.

For any other m,n that were not listed above the functions pnm were not yet

defined. So for n ≤ nD and m ≤ nD + 1 − n that were not listed above we

may set pnm(d⃗) = 0 for all d⃗ ∈ Dn for instance. For any fixed pair n ≤ nD and

m ≤ nD+1−n that was listed above but pnm was not yet defined on some d⃗ ∈ Dn

we define it canonically as follows (but there are other possible definitions too):

We set pnm(d⃗) = max{0,max{pnm(d⃗′)−d(d⃗′, d⃗) : pnm was defined on d⃗′}}. Note that

even if we used this definition on some n-tuple on which pnm had been already

defined then it would get the same value. That is why we call it canonical. To

check it is consistent let d⃗0, d⃗1 ∈ Dn be some n-tuples. Assume at first that

pnm(d⃗0) > 0 and pnm(d⃗1) > 0 and let d⃗′0, d⃗
′
1 ∈ Dn be such that pnm(d⃗0) = pnm(d⃗

′
0) −

d(d⃗′0, d⃗0) and pnm(d⃗1) = pnm(d⃗
′
1) − d(d⃗′1, d⃗1). Then pnm(d0) = pnm(d⃗

′
0) − d(d⃗′0, d⃗0) ≤

pnm(d⃗
′
0)− d(d⃗′0, d⃗1) + d(d⃗0, d⃗1) ≤ pnm(d⃗

′
1) + d(d⃗0, d⃗1). The case when pnm(d⃗0) = 0 or

pnm(d⃗1) = 0 is similar and the proof is left to the reader.

Since K is a Fräıssé class it has a Fräıssé limit which we denote U . Besides

other things it is a metric space. In fact it is a countable universal homogeneous

rational metric space (see Remark 5.1.7). By U we denote its metric completion

which is the universal Urysohn space. For every natural n we also have the set

Fn of countably many rational functions on Un without an enumeration arising

from the Fräıssé limit though. We choose some enumeration and denote the set

Fn as {fnm : m ∈ N} for every n. For every m,n ∈ N the set F̃ n
m of all n-tuples

u⃗ from U such that fnm(u⃗) = 0 is a closed subset of Un. By F n
m we denote the

closure of F̃ n
m in the completion U (thus we have F n

m ∩ U = F̃ n
m). This finishes

the construction of the sets from the statement of Theorem 5.1.2. We must now

prove the almost universality and ultrahomogeneity of these sets which we do in

the following section.
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5.1.1 The one-point extension property

When constructing the Fräıssé limit we had to work only with rational metric

spaces and rational functions pnm on them in order to have the class K countable

and to have the limit U . The one-point extension property holds for substruc-

tures of U (see 1.3.9). We formulate it here for convenience again. We call it here

“rational one-point extension property”.

Rational one-point extension property. Let A ∈ K be a finite rational metric

space such that the rational functions fnm, for n ≤ nA ≤ |A| and m ≤ nA+1−n,

are defined on it. Let B ∈ K be a one point extension of A, i.e. |B|− |A| = 1 and

there is an embedding (ι, (πιn)) : A ↪→ B. Assume that there is an embedding

(ϕ, (πϕn)) : A ↪→ U . Then there is an embedinng (ψ, (πψn )) : B ↪→ U extending

(ϕ, (πϕn)), i.e. (ϕ, (π
ϕ
n)) = (ψ, (πψn )) ◦ (ι, (πιn)).

Before we proceed further we use this place for the following remark.

Remark 5.1.7. We still owe the explanation that the underlying metric space

of our (almost) universal and ultrahomogeneous structure is isometric to the

Urysohn universal metric space. To prove it it suffices to check that the underly-

ing metric structure U of the countable Fräıssé limit is isometric to the universal

rational metric space (as its completion is isometric to the Urysohn space). How-

ever, realize that a countable rational metric space X is isometric to the universal

rational metric space if and only if it has the rational one-point metric extension

property: for any finite metric subspace F ⊆ X and any one-point extension

G ⊇ F which is still a rational metric space, there is an isometric embedding

ι : G ↪→ X such that ι � F = id.

However, U has this rational one-point metric extension property. Here,

and also in the next section, its rational one-point extension property is always

stronger.

However, since we made the completion U we want to have this kind of one-

point extension property for all finite substructures of U, not just for those that

are actually substructures of U . In this section we prove this full one-point

extension property. The almost universality and homogeneity, and uniqueness
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will follow by a standard argument. We define a generalized class K̄ of structures

(that correspond to finite substructures of (U, (F n
m))).

Definition 5.1.8. A substructure A ∈ K̄ is a finite metric space, moreover there

is some nA ≤ |A| and for each n ≤ nA there is a finite set of indices IAn ⊆ N such

that |IAn | = nA − n + 1. For each n ≤ nA and m ∈ IAn there is a closed subset

Gn
m ⊆ An. By pnm we shall again denote the distance function from the set Gn

m.

An embedding of a substructure A into a substructure B is a pair (ϕ, (πn))

where ϕ : A ↪→ B is an isometric embedding and for each n ≤ nA πn : IAn → IBn

is an injection such that ∀n ≤ nA∀m ∈ IAn ∀x⃗ ∈ An(pnm(x⃗) = pnπn(m)(ϕ
n(x⃗))).

Thus we just drop the condition that the metric and functions pnm have to

have rational values.

Proposition 5.1.9 (One-point extension property). Let A be a finite substruc-

ture of (U, (F n
m)) and let B ∈ K̄ be such that |B| = |A| + 1 and there is an

embedding (ϕ, (πϕn)) of A into B. Then there exists an embedding (ψ, (πψn )) of B

into (U, (F n
m)) such that id = (ψ, (πψn )) ◦ (ϕ, (πϕn)).

Before we provide a proof we show that the almost universality and homo-

geneity and also the uniqueness follow from Proposition 5.1.9.

Claim 5.1.10 (Almost universality). (U, (F n
m)) is almost universal.

Proof of the Claim. Let (X, d) be a Polish metric space (in fact, it can be just

separable metric) equipped with sets (Gn
m)m,n∈N where for each n andmGn

m ⊆ Xn

is a closed subset of the n-th power of X. Let D ⊆ X be a countable subset with

the following properties:

• D is a dense subset of X

• For every m and n Dn ∩Gn
m is a dense subset of Gn

m.

We prove that there exist an isometric copy D′ of D in U and injections πi from

N to N for all i such that for every m and n and d⃗ ∈ Dn we have d⃗ ∈ Gn
m ⇔ d⃗′ ∈

F n
πn(m) and if d⃗ /∈ Gn

m then d(d⃗, Gn
m} = dU(d⃗′, F

n
πn(m)), where d⃗

′ corresponds to d⃗

in the copy. Then we will extend the isometry to the closure of D which is the
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whole space X and we will be done. To see that, let m,n ∈ N and x⃗ ∈ Xn be

arbitrary.

If x⃗ ∈ Gn
m then there is a sequence (dj1, . . . , d

j
n)j ⊆ Dn converging to x⃗ such

that d⃗j ∈ Gn
m for every j. From our assumption, d⃗′j ∈ F n

πn(m) and since F n
πn(m) is

closed the image of x⃗ also lies in F n
πn(m).

If x⃗ /∈ Gn
m and ε = d(x⃗, Gn

m) then there is d⃗ ∈ Dn such that d(x⃗, d⃗) < ε/3. It

follows that d(d⃗, Gn
m) > 2ε/3, thus dU(d⃗′, F

n
πn(m)) > 2ε/3 and thus the image of x⃗

also does not lie in F n
πn(m).

Let us enumerate the set D as {d1, d2, . . .}. The construction of D′ is by

induction, just a series of applications of Proposition 5.1.9. Let B1 be a one-

point structure containing d1, nB1 = 1 and IB1
1 = {1}. Let A1 be an empty

structure and use Proposition 5.1.9 to get an embedding of B1 into U. The

embedding determines a point u1 ∈ U and also an injection π1 : IB1
1 → N. We

have d(d1, G
1
1) = p1π1(1)(u1) = dU(u1, F

1
π1(1)

).

Assume we have found u1, . . . , uk−1. Consider a structure Bk containing

{d1, . . . , dk}, nBk = k, for i ≤ k IBki = {1, . . . , k − i + 1}. Let Ak be a sub-

structure of (U, (F n
m)) containing {u1, . . . , uk−1}, nAk = k − 1 and for i ≤ k − 1

IAki = {πi(1), . . . , πi(k − i)}. There is an obvious embedding of Ak into Bk so we

can use Proposition 5.1.9 to extend Ak by some new point uk. We also extend

the domain of πi, for i ≤ k − 1, by k − i+ 1 and obtain a new injection πk with

domain {1}. This finishes the induction.

Claim 5.1.11 (Almost ultrahomogeneity). (U, (F n
m)) is almost ultrahomogeneous.

Sketch of the proof. Let A and B be two isomorphic substructures (witnessed by

(ϕ, (πϕn))) of (U, (F n
m)). WLOG assume that for every n ≤ nA = nB we have

IAn = IBn = {1, . . . , nA − n + 1} and πϕn is the identity on IAn . Let D = {un :

n ∈ N} ⊆ U be a countable dense subset such that for every m,n Dn ∩ F n
m

is dense in F n
m. By a back-and-forth series of use of the one-point extension

property (Proposition 5.1.9) we shall be extending the isomorphism (ϕ, (πϕn)) into

a chain (ϕ, (πϕn)) ⊆ (ϕ1, (π
ϕ1
n,1)) ⊆ (ϕ2, (π

ϕ2
n,2)) ⊆ . . . so that for every m ∈ N um is

both in the domain and range of ϕm and m is in the domain and range of πm,1.∪
m(ϕm, (π

ϕm
n,m)) is the desired isomorphism of (U, (F n

m)).
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Claim 5.1.12 (Uniqueness). (U, (F n
m)) is unique with the almost universality and

ultrahomogeneity property.

This is again done by a standard back-and-forth argument using Proposition

5.1.9.

Before we prove Proposition 5.1.9 we need the following lemma that will be

useful in the next section too.

Lemma 5.1.13. Let M = {d1, . . . , dk} be a given finite metric space. Also,

for every i < k let (uji )j ⊆ U be a given rational Cauchy sequence from the

rational Urysohn space such that d(uji , u
j+1
i ) ≤ 1/2j+1 for all j and moreover,

dU(limn u
n
i , limn u

n
j ) = dM(di, dj) for every i, j < k.

Moreover, let l ∈ N be given and let {u1k, . . . , ul−1
k } ⊆ U (if l = 1 then it is an

empty sequence) be a given finite rational sequence with the following property:

for every j < l and every i < k we have dM(dk, di)+1/(k ·2j+1) ≤ d(ujk, u
j+k+2
i ) ≤

dM(dk, di) + 1/2j.

Then if we consider the space Ak = {ul+k+2
1 , . . . , ul+k+2

k−1 , ul−1
k } (resp. Ak =

{ul+k+2
1 , . . . , ul+k+2

k−1 } if l = 1) then there exists a rational metric extension U ⊇

Mk = Ak ∪ {gk} such that dM(dk, di) + (2i − 1)/(k · 2l+1) ≤ d(gk, u
l+k+2
i ) ≤

dM(dk, di) + (2i)/(k · 2l+1 for all i < k and if l > 1 then also d(gk, u
l−1
k ) = 1/2l.

Proof of the lemma.

We will treat separately two cases. Case 1 is when l = 1 and Case 2 is when we

are moreover given a non-empty finite sequence {u1k, . . . , ul−1
k }, i.e. l > 1.

Case 1: l = 1.

Let i1, . . . , ik−1 be a permutation of {1, . . . , k−1} such that we have d(dk, di1) ≥

d(dk, di2) ≥ . . . ≥ d(dk, dik−1
). For each j < k we shall denote vj the element

ul+k+2
j . We have that dU(vj, uj) ≤ 1/2l+k+2. We now work with {v1, . . . , vk−1}.

For j < k let γj ∈ R+ be arbitrary positive real numbers such that (2j − 1)/(k ·

2l+1) ≤ γj ≤ (2j)/(k · 2l+1) and ηj = d(dk, dij) + γj ∈ Q. We claim there exists

gk ∈ U such that dU(gk, vj) = ηj. We just need to check that the triangle inequal-

ities are satisfied, then it will follow that such an element gk does exist from the

one-point (metric) extension property of U .
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Let i < j < k, we shall check that ηi − ηj ≤ d(vii , vij) ≤ ηi + ηj. We have

|d(vii , vij) − d(dii , dij)| < 1/2l+k+1 ≤ 1/(k · 2l). Since ηi − ηj ≤ d(dk, dii) −

d(dk, dij)−1/(k ·2l+1) ≤ d(dk, dii)−d(dk, dij)−1/2l+k+1, thus ηi−ηj ≤ d(vii , vij).

Since ηi+ηj ≥ d(dk, dii)+d(dk, dij)+1/(k ·2l+1) ≥ d(dk, dii)+d(dk, dij)+1/2l+k+1,

thus also d(vii , vij) ≤ ηi + ηj.

So by the one-point extension there exists such gk ∈ U .

Case 2: l > 1. We proceed identically as in Case 1, we just need to care about

the element ul−1
k . Let again i1, . . . , ik−1 be a permutation of {1, . . . , k − 1} such

that we have d(dk, di1) ≥ d(dk, di2) ≥ . . . ≥ d(dk, dik−1
). For each j < k we shall

denote vj the element ul+k+2
j . We work with the space {ul−1

k , v1, . . . , vk−1}. For

j < k let γj ∈ R+ be arbitrary positive real numbers such that (2j−1)/(k ·2l+1) ≤

γj ≤ (2j)/(k · 2l+1) and ηj = d(dk, dij) + γj ∈ Q. We claim there exists gk ∈ U

such that dU(gk, vj) = ηj and moreover dU(gk, u
l−1
k ) = 1/2l. We again just need

to check that the triangle inequalities are satisfied, then it will follow that such

an element gk does exist.

For i < j < k the verification that ηi − ηj ≤ d(vii , vij) ≤ ηi + ηj holds is the

same as in Case 1.

Now let j < k be given. We need to check that ηj − 1/2l ≤ d(vij , u
l−1
k+1) ≤

ηj + 1/2l. Note that

d(ul−1
k , uk+l+1

ij
)− d(uk+l+1

ij
, vij) ≤ d(vij , u

l−1
k )

and

d(vij , u
l−1
k ) ≤ d(ul−1

k , uk+l+1
ij

) + d(uk+l+1
ij

, vij)

The following estimates on d(ul−1
k , uk+l+1

ij
) follow from the assumption from the

statement of the lemma. We have

d(dij , dk) + (2j − 1)/(k · 2l) ≤ d(ul−1
k , uk+l+1

ij
) ≤ d(dij , dk) + (2j)/(k · 2l)

Similarly, we have the following estimates on ηj:

d(dij , dk) + (2j − 1)/(k · 2l+1) ≤ ηj ≤ d(dij , dk) + (2j)/(k · 2l+1)
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We check the inequality ηj−1/2l ≤ d(vij , u
l−1
k ). Putting the previous inequalities

together it suffices to check that

d(dij , dk) + (2j)/(k · 2l+1)− 1/2l ≤ d(dij , dk) + (2j − 1)/(k · 2l)− 1/2k+l+2

By subtracting from both sides we get

(−2j + 2)/(k · 2l+1)− 1/2l ≤ −1/2k+l+2

which clearly holds.

To check the other inequality d(vij , u
l−1
k ) ≤ ηj + 1/2l using the previous in-

equalities it suffices to check that

d(dij , dk) + (2j)/(k · 2l) + 1/2k+l+2 ≤ d(dij , dk) + (2j − 1)/(k · 2l+1) + 1/2l

By subtracting from both sides we get

(2j + 1)/(k · 2l+1) + 1/2k+l+2 ≤ 1/2l

Since j ≤ k − 1 we have

(2j + 1)/(k · 2l+1) + 1/2k+l+2 ≤ (2k − 1)/(k · 2l+1) + 1/2k+l+2

and the following equality holds

(2k − 1)/(k · 2l+1) + 1/2k+l+2 = 1/2l − 1/(k · 2l+1) + 1/2k+l+2

The right hand side is clearly less or equal to 1/2l so we are done.

So again by the one-point (metric) extension property there exists such gk ∈

U .

Proof of Proposition 5.1.9. Let us at first treat the case when A is empty and B

is a one-point structure {b1}. We have nB = 1 and WLOG assume that IB1 = {1}.

Thus we only need to find some a1 ∈ U and m ∈ N such that p1m(a1) = p11(b1).

For every n ∈ N let δn ∈ Q+
0 be any non-negative rational number such that
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p11(b1) ≤ δn ≤ p11(b1) + 1/2l+2. We use the rational one-point extension property

to define a sequence (uj1)j ⊆ U and to obtain m ∈ N such that for every j ∈ N

p1m(u
j
1) = δj and dU(u

j
1, u

j+1
1 ) = 1/2j+1. It is straightforward to check that we

have p1m(a1) = p11(b1) where a1 is the limit of the sequence (uj1)j.

We now assume that A is non-empty. Let us enumerate A as {a1, . . . , ak−1}

and B as {b1, . . . , bk} so that the embedding ((ϕ, (πϕn)) of A into B sends ai to

bi for every i < k. We extend A by adding a point ak. We will find a Cauchy

sequence of elements from U such that the limit will be this desired point ak.

For each l < k let us choose a converging sequence (ujl )j ⊆ U of elements from

the Fräıssé limit such that limj u
j
l = al, dU(u

j
l , al) < 1/2j and for i < j we have

dU(u
j
l , a) < dU(u

i
l, a).

In order to simplify the notation we assume that nB = nA+1 and for each n ≤

nA I
A
n = {1, . . . , nA−n+1} and also for each n ≤ nB I

B
n = {1, . . . , nB−n+1} and

the injections πϕn are the identities. Consider a structure S1 = {uk+3
1 , . . . , uk+3

k−1}

with nS1 = nA and for every n ≤ nS1 , m ≤ nS1 − n + 1 and x⃗ ∈ Sn1 pnm(x⃗) =

dU(x⃗, F
n
m). Thus S1 ∈ K and for any i, j < k we have |dU(uk+3

i , uk+3
j )−d(bi, bj)| <

1/2k+2. We use Lemma 5.1.13 to define a metric one-point extension M1 =

{uk+3
1 , . . . , uk+3

k−1, g} of S1 such that for all i < k we have d(bi, bk) ≤ dU(u
k+3
i , g) ≤

d(bi, bk) + 1/2. We define a structure V1 with nV1 = nS1 + 1 = nB such that

M1 is its underlying (rational) metric space. We need to define (rational) pnm on

all n-tuples containing g for all n ≤ nB and m ≤ nB − n + 1 and also on all

n-tuples (not necessarily containing g) for n ≤ nB and m = nB − n+1 to obtain

a one-point extension V1 of S1.

Fix such a pair n,m. Let us enumerate all n-tuples x⃗ ∈Mn
1 as (x⃗1j)j<J so that

all n-tuples not containing g precede every n-tuple containing g. Also, for any n-

tuple x⃗ ∈Mn
1 let b⃗x⃗ denote the corresponding n-tuple y⃗ from Bn (via the function

sending uk+3
i to bi for i < k and g to bk). We inductively define pnm on x⃗1j ’s. Let x⃗

1
j ,

for some j < J , be given. Let ε1j = pnm(⃗bx⃗1j ). It is not necessarily a rational number.

Let r1j ∈ Q be an arbitrary rational number such that ε1j ≤ r1j ≤ ε1j+n/2
k+3. Also,

let m1
j = max{pnm(x⃗) − d(x⃗1j , x⃗) : x⃗ ∈ Mn

1 ∧ pnm has been already defined on x⃗}

and M1
j = min{pnm(x⃗) + d(x⃗1j , x⃗) : x⃗ ∈ Mn

1 ∧ pnm has been already defined on x⃗}.
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If m1
j ≤ r1j ≤ M1

j then we set pnm(x⃗
1
j) = r1j . If r1j < m1

j , resp. r
1
j > M1

j then we

set pnm(x⃗
1
j) = m1

j , resp. p
n
m(x⃗

1
j) = M1

j . Note that if n ≤ nA and m ≤ nA − n + 1

and x⃗1j ∈ Sn1 then m1
j = M1

j = pnm(x⃗
1
j), thus by our assigning we really obtain an

extension of S1. Thus by a weak one-point extension property we obtain some

u1k ∈ U playing the role of g.

Assume we have already constructed u1k, . . . , u
l−1
k ⊆ U such that dU(u

i
k, u

i+1
k ) =

1/2i+1 for 0 ≤ i < l − 1. Consider a structure Sl = {uk+l+2
1 , uk+l+2

k−1 , ul−1
k } with

nSl = nB and for every n ≤ nSl , m ≤ nSl − n+ 1 and x⃗ ∈ Snl p
n
m(x⃗) = dU(x⃗, F

n
m).

Thus Sl ∈ K and for any i, j < k we have |dU(uk+l+2
i , uk+l+2

j ) − d(bi, bj)| <

1/2k+l+1. We again use Lemma 5.1.13 to obtain a metric one-point extension

Ml = {uk+l+2
1 , uk+l+2

k−1 , ul−1
k , g} of Sl such that such that for all i < k we have

d(bi, bk) ≤ dU(u
k+l+2
i , g) ≤ d(bi, bk) + 1/2l.

For n ≤ nB and m ≤ nB−n+1 we need to define pnm on all n-tuples fromMn
l

containing the new element g. We do it as before: Fix such a pair n,m. Let us

again enumerate all n-tuples x⃗ ∈Mn
l as (x⃗lj)j<K so that all n-tuples not containing

g precede any n-tuple containing g. Also, for any n-tuple x⃗ ∈ Mn
l let again b⃗x⃗

denote the corresponding n-tuple y⃗ from Bn (via the function sending uk+l+2
i to bi

for i < k and ul−1
k and g to bk). We inductively define pnm on x⃗lj’s. Let x⃗

l
j, for some

j < K, be given. Let εlj = pnm(⃗bx⃗lj). It is not necessarily a rational number. Let

rlj ∈ Q be an arbitrary rational number such that εlj ≤ rlj ≤ εlj + n/2k+l+2. Also,

let ml
j = max{pnm(x⃗) − d(x⃗lj, x⃗) : x⃗ ∈ Mn

l ∧ pnm has been already defined on x⃗}

and M l
j = min{pnm(x⃗) + d(x⃗lj, x⃗) : x⃗ ∈ Mn

l ∧ pnm has been already defined on x⃗}.

If ml
j ≤ rlj ≤ M l

j then we set pnm(x⃗
l
j) = rlj. If r

l
j < ml

j, resp. r
l
j > M l

j then we set

pnm(x⃗
l
j) = ml

j, resp. p
n
m(x⃗

l
j) =M l

j.This is again a consistent extension of Sl. Thus

by a weak one-point extension property we obtain some ulk ∈ U playing the role

of g.

Assume the induction is finished. We have found a sequence (ujk)j. Moreover,

realize that for every n ≤ nB and m = nB−n+1 there is some ϖn ∈ N such that

for every x⃗ ∈ {uji : i ≤ k, j ∈ N}n we have pnm(x⃗) = dU(x⃗, F
n
ϖn). Since for any

j ∈ N we have dU(u
j
k, u

j+1
k ) = 1/2j+1, this sequence is Cauchy with a limit that

we denote ak. We define an embedding (ψ, (πψn )) of B into (U, F n
m) as follows:

ψ(bi) = ai for every i ≤ k and for n ≤ nB we set πψn (i) = i if i < nB − n + 1
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and πψn (i) = ϖn if i = nB − n+ 1. It follows from the use of Lemma 5.1.13 that

dU(ai, ak) = d(bi, bk) for every i < k. We must check that pmn (x⃗) = pn
πψn (m)

(ψn(x⃗))

for all n ≤ nB, m ≤ nB − n+ 1 and x⃗ ∈ Bn.

Claim 5.1.14. For every j < K and l ∈ N we have εlj − n/2k+l+2 ≤ pnm(x⃗
l
j) ≤

εlj + n/2k+l+2.

Once the claim is proved the assertion follows. So it remains to prove the

claim.

Proof of the Claim. We prove it for every j < K by induction on l.

Step 1.

Suppose l = 1. Let us prove that pnm(x⃗
1
j) ≤ ε1j + n/2k+3. We have pnm(x⃗

1
j) =

max{r1j ,m1
j}. Since r1j ≤ ε1j + 1/21+1 it suffices to prove that m1

j ≤ ε1j + (2n +

1)/21+1.

Realize that m1
j = pnm(x⃗

1
p)− d(x⃗1j , x⃗

1
p) for some x⃗1p.

1. There exists x⃗1p ∈ Sn1 such that m1
j = pnm(x⃗

1
p) − d(x⃗1j , x⃗

1
p). Let x⃗1p =

(uk+3
i1

, . . . , uk+3
in

). Since for every m ≤ n we have d(uk+3
im

, aim) ≤ 1/2k+3,

we have that d(x⃗1p, (ai1 , . . . , ain)) ≤ n/2k+3, thus pnm(x⃗
1
p) ≤ ε1p + n/2k+3. We

also have that d(⃗bx⃗1p , b⃗x⃗1j ) ≤ d(x⃗1p, x⃗
1
j). Finally, since ε1p ≤ ε1j + d(⃗bx⃗1p , b⃗x⃗1j ),

putting the inequalities together we obtain m1
j ≤ ε1j + n/2k+3.

2. There does not exist such x⃗1p ∈ Sn1 . We claim that then m1
j = pnm(x⃗

1
p) −

d(x⃗1j , x⃗
1
p) where pnm(x⃗

1
p) = r1p. Once we prove this is true then from the

same series of inequalities as in the item above we prove the desired in-

equality. Suppose it is not true. Then m1
j = pnm(x⃗

1
p) − d(x⃗1j , x⃗

1
p) and

pnm(x⃗
1
p) = pnm(x⃗

1
q1
) − d(x⃗1p, x⃗

1
q1
) for some x⃗1q1 . If still pnm(x⃗

1
q1
) ̸= r1q1 then

pnm(x⃗
1
q1
) = pnm(x⃗

1
q2
) − d(x⃗1q1 , x⃗

1
q2
) for some x⃗1q2 . We continue until after fi-

nitely many steps we reach x⃗1qn such that pnm(x⃗
1
qn) = r1qn . However, observe

that it follows from the series of triangle inequalities that pnm(x⃗
1
j) = m1

j =

pnm(x⃗
1
qn)− d(x⃗1j , x⃗

1
qn) and we are done.

Let us now prove that ε1j − n/2k+3 ≤ pnm(x⃗
1
j). Since we have pnm(x⃗

1
j) =

min{r1j ,M1
j } it suffices to prove that M1

j ≥ ε1j − n/2k+3. Again realize that
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M1
j = pnm(x⃗

1
p) + d(x⃗1j , x⃗

1
p) for some x⃗1p. There are again two cases:

1. There exists x⃗1p ∈ Sn1 such that M1
j = pnm(x⃗

1
p) + d(x⃗1j , x⃗

1
p). Then since ε1j ≤

ε1p + d(⃗bx⃗1p , b⃗x⃗1j ) we get from the inequalities above that ε1j − n/2k+3 ≤M1
j .

2. If there is no such x⃗1p ∈ Sn1 then as in item (2) above we can find x⃗1p such

that M1
j = pnm(x⃗

1
p) + d(x⃗1j , x⃗

1
p) and pnm(x⃗

1
p) = r1p. Then the verification is

again analogous.

Step 2. Now we assume that l > 1 and for all m < l the claim has been proved.

If pnm(x⃗
l
j) = rlj then it is clear. So we only have to prove thatml

j ≤ εlj+n/2
k+l+2

and εlj − n/2k+l+2 ≤ M l
j. We only prove the former, the latter is completely

analogous.

We have ml
j = pnm(x⃗

l
p)− d(x⃗lj, x⃗

l
p) for some x⃗lp. As in Step 1 we find out that

there (now) three possibilities (the verification that there precisely one of these

three possibilities happens is similar to the verification that precisely one of those

two possibilities in Step 1 happens).

1. There exists x⃗lp ∈ (Sl \ {ul−1
k })n such that ml

j = pnm(x⃗
l
p)− d(x⃗lj, x⃗

l
p). Then it

is analogous to the item (1) in Step 1.

2. There exists x⃗lp such that ml
j = pnm(x⃗

l
p)− d(x⃗lj, x⃗

l
p) and p

n
m(x⃗

l
p) = rlp. This is

analogous to the item (2) from Step 1.

3. There exists x⃗lp such that ml
j = pnm(x⃗

l
p) − d(x⃗lj, x⃗

l
p) and x⃗lp is an n-tuple

obtained from x⃗lj by replacing all occurences of g by ul−1
k , thus x⃗lp is in

fact equal to some x⃗l−1
q and εlj = εl−1

q . By induction hypothesis we have

that pnm(x⃗
l−1
q ) ≤ εlj + (2n + 1)/2l. Since d(ul−1

k , g) = 1/2l we have that

d(x⃗l−1
q , x⃗lj) ≥ 1/2l ≥ n/2k+l+2, thus ml

j = pnm(x⃗
l−1
q ) − d(x⃗l−1

q , x⃗lj) ≤ εlj +

n/2k+l+2 as desired.

Remark 5.1.15. The previous proof can be slightly modified so that it proves

Theorem 5.1.1. We consider a language containing a symbol for rational metric

and for every ni, i ≤ m, a symbol for rational ni-ary function pni . These functions

are interpreted as distance functions from the desired closed sets Fni . Since there
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are only finitely many such rational functions they are all defined on all finite

structures from K. The restrictions are the same, i.e. for any finite structure

A ∈ K we have for all i ≤ m that ∀a⃗, b⃗ ∈ Ani(pni (⃗a) ≤ pni (⃗a) + d(a1, b1) + . . . +

d(ani , bni)). The verification that such K is a Fräıssé class is similar (only easier)

as in Lemma 5.1.6. Similarly, the proof one-point extension property is similar,

just easier, as in the proof of Proposition 5.1.9.

Observation 5.1.16. The method used in the proof of Theorem 5.1.2 to obtain

countably many almost universal closed sets can be repeated in other instances.

What we describe below is a general scheme. Note that we are very informal

there and we refer to the proof of Theorem 5.1.2 for an example with details.

Suppose we have a proof of universality and ultrahomogeneity of some metric

structure using a Fräıssé limit of some class K of structures in some language L

consisting of rational metric and some other predicates or functions p1, . . . , pn with

values in some fixed countable set. We may consider a new language consisting of

the rational metric and predicates or functions pi1, . . . , p
i
n with values in the same

fixed countable set for each i ≤ N. A structure A belongs to this new class of

structures K̃ if there is some nA (e.g. |A|) such that for all i ≤ nA the functions

(or predicates) pi1, . . . , p
i
n are defined on A with the same restrictions for each

i as in K for a single set of these functions (or predicates). The isomorphism

and embedding relation between structures in K̃ is as in Definition 5.1.5. The

verification that K̃ is a Fräıssé class is similar as in Lemma 5.1.6. The one-point

extension property is also similar as in the proof of Proposition 5.1.9.

5.2 Universal and ultrahomogeneous closed sub-

sets of U × K and Lipschitz functions from

U to Z

In this section we consider a universal closed subset of U × K, where K is an

arbitrary fixed compact metric space, and a universal L-Lipschitz function from

U to Z, where L is an arbitrary fixed positive real number and Z is an arbitrary

fixed Polish metric space.
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Theorem 5.2.1. Let K be an arbitrary compact metric space, Z an arbitrary

Polish metric space and L ∈ R+. Then the structure (U, C, F ) is universal and

ultrahomogeneous and unique with this property, where C ⊆ U × K is a closed

subset and F : U → Z is an L-Lipschitz function.

See the third and fourth example.

Proof. We split the proof into two parts. In order to increase transparency of the

proof we separately prove that there is such a universal closed set C ⊆ U × K

and then that there is such a universal L-Lipschitz function F : U → Z. It

will be a routine modification to prove that are ”simultaneously” universal and

ultrahomogeneous. We will again use Fräıssé theory.

The closed set C.

Let Q = {qn : q ∈ N} be an enumeration of a countable dense subset of K.

We define the set F ⊆ (Q+
0 )

N of all suitable functions. A function f : N → Q+
0

belongs to F if there is a finite set F ⊆ N and non-negative rationals ri ≥ 0 for

i ∈ F such that f(j) = max{0,max{ri − dK(qj, qi) : i ∈ F}} and it is always

the case that f(i) = ri for every i ∈ F ; i.e. f has the domain N, however it is

uniquely determined only by values on the finite set F . For f ∈ F we will denote

such a finite set as Ff (it is not unique, however there is unique such a set Ff

that is minimal in inclusion). Note that F is countable.

Let p be an unary function with values in the set F . Also, we again consider

the binary rational function d for metric. Let L be a language consisting precisely

of these functions.

We now define the new class K of finite structures of the language L.

Definition 5.2.2. A finite structure A for the language L of cardinality k > 0

belongs to K if the following conditions are satisfied.

1. A is a finite rational metric space; i.e. it satisfies the same requirements as

in the definition 5.1.4.

2. The function p is a total function, i.e. defined on all elements of A.
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The interpretation of this functions is as follows: if p(a)(n) = q > 0 then

the distance between (a, qn) and C is at least (in fact precisely) q; on the

other hand, if p(a)(n) = 0 then (a, qn) ∈ C.

3. Here we describe the restriction that we must put on these functions.

• ∀a, b ∈ A∀n,m ∈ N(p(a)(n) ≤ p(b)(m) + dK(qn, qm) + d(a, b)

This requirement resembles the restriction from the proof of Theorem 5.1.2.

The value p(a)(n) determines a rational distance of (a, qn) in the sum metric

from the set C. Thus in case that for example p(a)(n) = 0, i.e. (a, qn) ∈ C

and p(b)(m) = q, i.e. the distance in the sum metric of (b, qm) from C is at

least q, then necessarily the distance between (a, qn) and (b, qm) is at least

q, i.e. d(a, b) + dK(qn, qm) ≥ q.

We must check that K is again countable (up to isomorphism classes), satisfies

hereditary, joint embedding and amalgamation property. The first two properties

are clear. The verification of the third one is similar as in Theorem 5.1.2, we

can just put the structures sufficiently far apart from each other. To check the

amalgamation property, suppose we have structures A,B,C such that A is a

substructure of both B and C. We can again define D with underlying set

A
⨿
(B\A)

⨿
(C \A) with metric extended so that d(b, c) = min{d(b, a)+d(a, c) :

a ∈ A} for b ∈ B and c ∈ C, and pD(b) = pB(b), resp. pD(c) = pC(c), for b ∈ B,

resp. c ∈ C of course. Let us check that this works. Let b ∈ B, c ∈ C and

n,m ∈ N. We check that p(b)(n) ≤ p(c)(m) + d(b, c) + dK(qn, qm). Let a ∈ A be

such that d(b, c) = d(b, a) + d(a, c). Then we have p(b)(n) ≤ p(a)(m) + d(b, a) +

dK(qn, qm) ≤ p(c)(m)+d(a, c)+d(b, a)+dK(qn, qm) = p(c)(m)+d(b, c)+dK(qn, qm).

We again denote by U the Fräıssé limit which is besides other things again

a rational Urysohn space. We define the set C ⊆ U × K in the completion U

as follows: (a, r) ∈ C ≡ ¬∃(u, g) ∈ U × Q∃n ∈ N(g = qn ∧ d(a, u) + dK(r, g) <

p(u)(n)). It is obviously closed.

Let us now state and prove the following useful claim that confirms that p is

really the distance function from the closed set.

Claim 5.2.3. For any u ∈ U and n ∈ N we have p(u)(n) = d((u, qn), C) = q.
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Proof of the claim. We prove that for an arbitrary ε > 0 there exists v ∈ U such

that d(u, v) < q + ε and p(v)(n) = 0. It follows that q ≤ d(u, qn), C) ≤ q + ε

for an arbitrary ε > 0, thus p(u)(n) = d((u, qn), C) = q. So let ε > 0 be given.

Let dε ∈ Q+ be an arbitrary positive rational number so that q ≤ dε < q + ε.

Moreover, let qε ∈ Q+
0 be an arbitrary nonnegative rational number smaller or

equal to dq − q. Let F = {i ∈ Fp(u) : p(u)(i) > dε}. We define f ∈ F such that

Ff = F , and for i ∈ F we set f(i) = p(u)(i) − dq + qε. We define a one-point

extension of {u} as follows: the underlying set is {u, v}, we set d(u, v) = dε and

p(v) = f . We claim it belongs to K. Then by one-point extension property we

can find such v in U and it is as desired: we need to prove that p(v)(n) = 0.

Suppose not, then there is i ∈ Ff such that p(v)(i) − dK(qi, qn) > 0. However,

since p(u)(i) = p(v)(i)− qε + dq we would have p(u)(n) ≥ p(u)(i)− dK(qi, qn) =

p(v)(i)− qε + dq − dK(qi, qn) > q, a contradiction.

It remains to prove that {u, v} ∈ K. Let n,m ∈ N be given. We prove

that p(u)(n) ≤ p(v)(m) + d(u, v) + dK(qn, qm). If p(u)(n) ≤ d(u, v) then it

is clear, so let us suppose that p(u)(n) > d(u, v) and let i ∈ F be such that

p(u)(n) = p(u)(i)− dK(qn, qi). Then p(v)(m) ≥ p(v)(i)− dK(qm, qi) ≥ p(u)(i)−

d(u, v)+qε−dK(qn, qi)−dK(qn, qm). It follows that p(v)(m)+d(u, v)+dK(qn, qm) ≥

p(u)(i)− dK(qn, qi) + qε = p(u)(n) + qε.

Now we prove that also p(v)(m) ≤ p(u)(n)+d(u, v)+dK(qn, qm). If p(v)(m) =

0 then it is trivial, so let us suppose that p(v)(m) > 0 and let i ∈ F be such

that p(v)(m) = p(v)(i) − dK(qm, qi) = p(u)(i) − d(u, v) + qε − dK(qm, qi). Then

p(u)(n) ≥ p(u)(i)−dK(qi, qm)−dK(qn, qm), thus p(u)(n)+d(u, v)+dK(qn, qm) ≥

p(u)(i) − dK(qi, qm) + d(u, v) ≥ p(u)(i) − d(u, v) + qε − dK(qm, qi) and we are

done. Note that the last inequality follows from d(u, v) ≥ −d(u, v) + qε which is

immediate from the definition of d(u, v) and qε.

5.2.1 The one-point extension property for (U, C)

Let K̄ be again the “real” variant of K, i.e. a structure A belongs to K̄ if it is a

finite metric space equipped with a closed subset CA of A × Z, where CA need

not to be finite. For each n ∈ N and a ∈ A we denote by p(a)(n) the distance

of (a, qn) from CA; p(a)(n) in this case need not to be rational. The notions of
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embedding and isomorphism are obvious.

We again prove the one-point extension property for K̄ which simplifies the

proofs of universality, ultrahomogeneity and uniqueness of (U, C). By “rational

one-point extension property” we again mean the one-point extension property

for structures from K.

Proposition 5.2.4 (The one-point extension property). Let (A,CA) be a finite

substructure of (U, C) and let (B,CB) ∈ K̄ be a one-point extension, i.e. |B| =

|A| + 1 and there is an embedding ϕ : A ↪→ B. Then there exists an embedding

ψ : (B,CB) ↪→ (U, C) such that id = ψ ◦ ϕ.

Before we provide the proof we again begin by showing how universality,

ultrahomogeneity and uniqueness follow.

Proposition 5.2.5. The Polish metric structure (U, C) is universal.

Proof. Let (X, d) be a Polish metric space and B ⊆ X × K a closed set. Let

again D = {dn : n ∈ N} ⊆ X be a countable dense set. We will find an

isometric copy D′ of D in U such that for any dn ∈ D and qm ∈ Q we have

d((dn, qm), B) = d((d′n, qm), C). This suffices. We can then extend the isometry,

let us call it ϕ, to the closure of D which is the whole space X. Let (x, r) ∈ X×K

be arbitrary. Assume at first that (x, r) /∈ B. Let ε = d((x, r), B). Then there

exist i, n ∈ N such that d((di, qn), B) ≥ 2ε/3 and d((di, qn), (x, r)) < ε/3, thus

d((d′i, qn), C) ≥ 2ε/3, so (ϕ(x), r) /∈ C. On the other hand, assume that (x, r) ∈

B. Then there exists a sequence (dn, qn)n ⊆ D×Q such that (dn, qn) → (x, r) and

(d(dn, qn), B) → 0. Thus also (d′n, qn) → (ϕ(x), r) and since d((d′n, qn), C) → 0

we have d((ϕ(x), r), C) = 0.

The construction of D′ is again just a series of applications of Proposition

5.2.4.

Claim 5.2.6. The structure (U, C) is ultrahomogeneous and a unique structure

having this kind of one-point extension property.

Proofs are completely analogous to those in the first section.
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Proof of Proposition 5.2.4. Let us again at first treat the case when A is empty

and B = {b1}. We just need to find some a1 ∈ U such that for every n ∈ N we

have p(a1)(n) = p(b1)(n). For every l ∈ N we define fl ∈ F such that for every n

we shall have |fl(n)− p(b1)(n)| < 1/2l.

For every n ∈ N let εn = d((bk, qn), CB) (= p(bk)(n)). Let N ⊆ Q be a 1/2l+2-

net in K, i.e. ∀y ∈ K∃x ∈ N(dK(y, x) < 1/2l+2). N can be supposed to be finite

sinceK is totally bounded (this is the place where we needK to be compact). Let

F be the set of indices of elements from N , i.e. N = {qi : i ∈ F}. For every i ∈ F

let γli ∈ Q+
0 be any non-negative rational number such that 0 ≤ γli − εi < 1/2l+2.

We define fl ∈ F . It suffices to define fl on a finite set F . Let F be equal to

the set {i1, . . . , im}. WLOG we assume that γlij ≥ γlil for j ≤ l ≤ m.

We define fl inductively as follows: at step 1 we set fl(i1) = γli1 . Suppose we

are at step n ≤ m. If ηlin = max{γli − dK(qi, qin) : i ∈ {i1, . . . , in−1}} > γlin then

we set fl(in) = ηlin ; otherwise, we set fl(in) = γlin . If we have finished then we

have defined fl on F (= Ffl) which uniquely determines the values of fl on N. We

now check that for every l, n ∈ N we have |fl(n) − p(b1)(n)| < 1/2l. Let n ∈ N

be arbitrary. There exists i ∈ F such that dK(qi, qn) < 1/2l+2. Since it follows

|εi − εn| < 1/2l+2 and |p(ul1)(n) − p(ul1)(i)| < 1/2l+2 (the functions qi → εi and

qi → p(ul1)(i) are 1-Lipschitz) it suffices to check that for any n ∈ Ffl we have

|p(ul1)(n) − εn| ≤ 1/2l+1. For n ∈ Ffl we either have that p(ul1)(n) = γln or that

p(ul1)(n) = ηln. If the former case holds then it is clear from the choose of γln. If

p(ul1)(n) = ηln then from the definition of ηln we have ηln > γln and there exists

i ∈ F such that p(ul1)(i) = γli and p(u
l
1)(n) = ηln = p(ul1)(i) − dK(qi, qn). Since

ηln > γln ≥ εn − 1/2l+1 it suffices to check that ηln ≤ εn + 1/2l+1. However since

εi ≤ εn + dK(qi, qn) and |γli − εi| ≤ 1/2l+1 this follows.

Now we use the rational one-point extension property to define a sequence

(uj1)j ⊆ U such that for every j ∈ N we have p(uj1) = fj and dU(u
j
1, u

j+1
1 ) = 1/2j+1.

It is straightforward to check that this is possible and since for every j, n ∈ N we

have |p(ul1)(n) − p(b1)(n)| < 1/2l it follows that p(a1)(n) = p(b1)(n), for every

n ∈ N, where a1 = liml u
l
1.

We now assume that A is non-empty. Let us enumerate A as {a1, . . . , ak−1}
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and B as {b1, . . . , bk} in such a way that for every i < k we have ϕ(ai) = bi.

We shall find a new point ak ∈ U such that the structures A ∪ {ak} and B will

be isomorphic. For every i < k let (uji )j ⊆ U be a sequence from the rational

space U converging to ai such that dU(u
j
i , ai) < 1/2i, for every n ∈ N |p(ai)(n)−

p(uji )(n)| < 1/2j+1 and for any pair j < l we have dU(u
j
i , ai) > dU(u

l
i, ai). We

shall find a new sequence from U converging to the desired point ak. This is done

by induction.

Consider a structure S1 = {uk+3
1 , . . . , uk+3

k−1} such that for every i < k and

n ∈ N we have p(uk+3
i )(n) = d((uk+3

i , qn), C). Thus S1 ∈ K. We use Lemma

5.1.13 to define a metric one-point extension M1 = {uk+3
1 , . . . , uk+3

k−1, g} such that

for all i < k we have d(bi, bk) ≤ dU(u
k+3
i , g) ≤ d(bi, bk)+1/2. We define a structure

V1 such that M1 is its underlying (rational) metric space. We need to define p

on g. This will be similar to the definition of p on ul1’s (from case when A was

empty) but more complicated.

For every n ∈ N let εn = d((bk, qn), CB) (= p(bk)(n)). Let N ⊆ Q be a

1/23-net in K, i.e. ∀y ∈ K∃x ∈ N(dK(y, x) < 1/23). N can be supposed to be

finite since K is totally bounded. Let F ′ be the set of indices of elements from

N , i.e. N = {qi : i ∈ F ′}. We set F = F ′ ∪
∪
i<k Fp(uk+3

i ). For every i ∈ F

let δ1i ∈ Q+
0 be any non-negative rational number such that 0 ≤ δ1i − εi < 1/22.

Also, we define m1
i to be max{p(uk+3

j )(i) − dU(g, u
k+3
j ) : j < k} and M1

i to be

min{p(uk+3
j )(i) + dU(g, u

k+3
j ) : j < k}. For every i ∈ F if m1

i ≤ δ1i ≤M1
i then we

set γ1i = δ1i . If δ
1
i < m1

i , resp. M
1
i < δ1i then we set γ1i = m1

i , resp. γ
1
i =M1

i .

We define f ∈ F . It suffices to define f on a finite set F . Let F be equal to

the set {i1, . . . , im}. WLOG we assume that γ1ij ≥ γ1il for j ≤ l ≤ m.

We define f inductively as follows: at step 1 we set f(i1) = γ1i1 . Suppose we

are at step n ≤ m. If η1in = max{γ1i − dK(qi, qin) : i ∈ {i1, . . . , in−1}} > γ1in then

we set f(in) = η1in ; otherwise, we set f(in) = γ1in . If we have finished then we

have defined f on F (= Ff ) which uniquely determines the values of f on N.

We now put p(g) = f . It is straightforward to check it is consistent. We de-

fined an extension V1 ∈ K of S1 and thus there is some u1k ∈ U playing the role of g.

Suppose we have already constructed u1k, . . . , u
l−1
k ⊆ U such that dU(u

i
k, u

i+1
k ) =
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1/2i+1 for any i < l−1. Consider a structure Sl = {uk+l+2
1 , . . . , uk+l+2

k−1 , ul−1
k } with

p(u)(n) = d((u, qn), C) for every u ∈ Sl and n ∈ N. We use Lemma 5.1.13 to

obtain a metric extension Ml = {uk+l+2
1 , . . . , uk+l+2

k−1 , ul−1
k , g} such that such that

for all i < k we have d(bi, bk) ≤ dU(u
k+l+2
i , g) ≤ d(bi, bk) + 1/2l. We need to

define p on g. This is done in the same way as in the first induction step: For

every n ∈ N let εn = d((bk, qn), CB) (= p(bk)(n)). Let N ⊆ Q be a 1/2l+2-net

in K, i.e. ∀y ∈ K∃x ∈ N(dK(y, x) < 1/2l+2). N can be supposed to be finite

since K is totally bounded. Let F ′ be the set of indices of elements from N , i.e.

N = {qi : i ∈ F ′}. We set F = F ′ ∪
∪
i<k Fp(uk+l+2

i ). For every i ∈ F let δli ∈ Q+
0

be any non-negative rational number such that 0 ≤ δli − εi < 1/2l+2. Also, we

define ml
i to be max{p(u)(i) − dU(g, u) : u ∈ {uk+l+2

j : j < k} ∪ {g}} and M l
i

to be min{p(u)(i) + dU(g, u) : u ∈ {uk+l+2
j : j < k} ∪ {g}}. For every i ∈ F if

ml
i ≤ δli ≤M l

i then we set γli = δli. If δ
l
i < ml

i, resp. M
l
i < δli then we set γli = ml

i,

resp. γli =M l
i .

We define f ∈ F . It suffices to define f on a finite set F . Let F be equal to

the set {i1, . . . , im}. WLOG we assume that γlij ≥ γlil for j ≤ l ≤ m.

We define f inductively as follows: at step 1 we set f(i1) = γli1 . Suppose we

are at step n ≤ m. If ηlin = max{γli − dK(qi, qin) : i ∈ {i1, . . . , in−1}} > γlin then

we set f(in) = ηlin ; otherwise, we set f(in) = γlin . If we have finished then we

have defined f on F (= Ff ) which uniquely determines the values of f on N.

We now put p(g) = f . It is straightforward to check it is consistent. We

defined an extension Vl ∈ K of Sl and thus there is some ulk ∈ U playing the role

of g.

Assume the induction is finished. We have produced a sequence (ujk)j ⊆

U such that for every i ∈ N we have dU(u
i
k, u

i+1
k ) = 1/2i+1 thus the sequence

is Cauchy and we denote ak its limit point. It immediately follows from the

construction that dU(ai, ak) = d(bi, bk) for every i < k. It remains to check that

for every y ∈ K d((ak, y), C) = d((bk, y), CB). It obviously suffices to check that

for every n ∈ N d((ak, qn), C) = d((bk, qn), CB).

Claim 5.2.7. Let l, n ∈ N be arbitrary. Then |p(ulk)(n)− εn| ≤ 1/2l.

Once the claim is proved the previous assertion is clear so it remains to prove

the claim.
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Proof of the claim. As in the proof of the analogous Claim 5.1.14 we prove it by

induction on l.

Step 1.

Suppose l = 1 (in some places where it may be confusing we shall still use the

symbol l eventhough it is equal to 1 in Step 1). Let n ∈ N be arbitrary. There

exists i ∈ F such that dK(qi, qn) < 1/2l+2 = 1/22. Since it follows |εi − εn| <

1/2l+2 and |p(u1k)(n)−p(u1k)(i)| < 1/2l+2 (the functions qi → εi and qi → p(u1k)(i)

are 1-Lipschitz) it suffices to check that for any n ∈ F we have |p(u1k)(n)− εn| ≤

1/2l+1.

From the definition of p(u1k) above we have two cases:

• p(u1k)(n) = γ1n. This splits into three subcases:

1. p(u1k)(n) = δ1n. However we defined that 0 ≤ δ1n − εn ≤ 1/2l+1 = 1/22

so we are done.

2. p(u1k)(n) = m1
n. In that case m1

n > δ1n and we must check that m1
n ≤

εn + 1/2l+1.

From the definition there is some i < k such that m1
n = p(uk+l+2

i )(n)−

d(uk+l+2
i , u1k). However, from the assumption we have |p(uk+l+2

i )(n)−

p(ai)(n)| < 1/2k+l+2 and recall that d(bi, bk)+1/(k·2l+1) ≤ d(uk+l+2
i , u1k).

Since p(bi)(n) ≤ εn + d(bi, bk) (recall that p(bi)(n) = p(ai)(n) and

εn = p(bk)(n)), putting these three inequalities together the inequality

m1
n ≤ εn + 1/2l+1 follows.

3. p(u1k)(n) = M1
n. In that case M1

n < δ1n and we must check that

M1
n ≥ ε1n − 1/2l+1. From the definition there is some i < k such

that M1
n = p(uk+l+2

i )(n) + d(uk+l+2
i , u1k). We again use the inequalities

from the previous item, i.e. |p(uk+l+2
i )(n) − p(ai)(n)| < 1/2k+l+2 and

d(bi, bk)+1/(k·2l+1) ≤ d(uk+l+2
i , u1k). Moreover, since εn(= p(bk)(n)) ≤

p(bi)(n)+d(bi, bk), putting these three inequalities together the inequal-

ity M1
n ≥ εn − 1/2l+1 follows.

• p(u1k)(n) = η1n. Then it follows from the definition that there exists some
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i ∈ F such that p(u1k)(i) = γ1i and η1n = γ1i − dK(qn, qi) > δ1n. Since we

already know from the previous item that δ1n ≥ εn − 1/2l+1 and we know

that η1n > δ1n we have that η1n > εn − 1/2l+1. Thus it suffices to check that

η1n ≤ εn + 1/2l+1. We again have three subcases:

1. γ1i = δ1i . We have that p(bk)(i)(= εi) ≤ p(bk)(n)(= εn) + dK(qi, qn).

Since we know from the previous item that δ1i ≤ εi + 1/2l+1 and since

η1n = δ1i − dK(qn, qi) we get that η1n ≤ εn + 1/2l+1.

2. γ1i = M1
i . In that case we have that M1

i < δ1i thus the inequality

η1n ≤ εn + 1/2l+1 follows from (1) immediately above.

3. γ1i = m1
i . In that case there is some j < k such that γ1i = m1

i =

p(uk+l+2
j )(i)+d(uk+l+2

j , u1k). Since p(bj)(i) ≤ εn(= p(bk)(n))+dK(qi, qn)+

d(bi, bk), using the inequalities from (2) and (3) from the previous item

we get that η1n ≤ εn + 1/2l+1.

Step 2.

Now we assume that l > 1 and for all i < l the claim has been proved. Let again

n ∈ N be arbitrary. Then there exists i ∈ F such that dK(qi, qn) < 1/2l+2. Thus

it again suffices to check that for any n ∈ F we have |p(u1k)(n) − εn| ≤ 1/2l+1.

There are again two cases: either p(ulk)(n) = γln or p(ulk)(n) = ηln. Both of them

are treated similarly as in Step 1; let us illustrate it only on the former. We again

have three subcases:

1. p(ulk)(n) = δln. However we defined that 0 ≤ δln − εn ≤ 1/2l+1 so we are

done.

2. p(ulk)(n) = ml
n. In that case ml

n > δln and we must check that ml
n ≤

εn + 1/2l+1.

From the definition there is some u ∈ {uk+l+2
i : i < k} ∪ {ul−1

k } such that

m1
n = p(u)(n)−d(u, ulk). If u ∈ {uk+l+2

i : i < k} then the proof is completely

analogous to the corresponding item in Step 1. So we assume that u = ul−1
k .

However, we have from the induction hypothesis that |p(ul−1
k )(n) − εn| <

1/2l and since d(ul−1
k , ulk) = 1/2l we have that ml

n ≤ εn + 1/2l+1.
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3. p(ulk)(n) = M l
n. In that case M l

n < δln and we must check that M l
n ≥ ε1n −

1/2l+1. From the definition there is some u ∈ {uk+l+2
i : i < k}∪{ul−1

k } such

that M l
n = p(u)(n)−d(u, ulk). Again as in (2) above, if u ∈ {uk+l+2

i : i < k}

then the proof is completely analogous to the corresponding item in Step

1, so we assume that u = ul−1
k . However, we again use the induction

hypothesis that |p(ul−1
k )(n) − εn| < 1/2l and since d(ul−1

k , ulk) = 1/2l we

have that M l
n ≥ ε1n − 1/2l+1.

This finishes the proof of the claim and also of Proposition 5.2.4.

The Lipschitz function F

Let a Lipschitz constant L ∈ R+ be fixed. Let Q = {qn : n ∈ N} be an

enumeration of some fixed countable dense subset Q of the Polish metric space

Z.Let p be an unary function with values in N and d again a binary rational

function. Let L be a language consisting of these functions.

We again define the (new) class K of structures in the language L and then

prove it satisfies the required properties of the Fräıssé theory.

Definition 5.2.8. A finite structure A for the language L of cardinality k belongs

to K if the following conditions are satisified

1. A is again a finite rational metric space, i.e. it satisfies the same require-

ments as in definitions before. We will again interpret d as a metric.

2. The function p is a total function.

The intended interpretation of this function is that the value p(a) deter-

mines the value of the universal continuous function F at a as follows:

F (a) = qp(a).

3. Here we put the restrictions on these structures which is just the demand

that the desired function F is L-Lipschitz. For every a and b from A

dZ(qp(a), qp(b)) ≤ L · d(a, b).

Now we verify that K satisfies all properties needed to have a Fräı ssé limit.

The countability and hereditary property are clear. To check joint embedding
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property, consider two structuresA andB. Consider againmA defined as max{d(a, b) :

a, b ∈ A},mB defined analogously forB and moreover,mF = max{L·dZ(qp(a), qp(b)) :

a ∈ A, b ∈ B}. Set m = max{mA,mB,mF} and define the metric on A
⨿
B as

follows: for a ∈ A, b ∈ B, d(a, b) = 2m. This again works.

Finally, we need to check the amalgamation property. So let A,B,C ∈ K be

structures and we assume that A is a substructure of both B and C. We set

D = A
⨿
(B \ A)

⨿
(C \ A). The metric is again extended in the standard way,

i.e. for b ∈ B and c ∈ C we set d(b, c) = min{d(b, a) + d(a, c) : a ∈ A}.

We need to check that for any b ∈ B and c ∈ C we still have dZ(qp(b), qp(c)) ≤ L·

d(b, c). Let a ∈ A be such that d(b, c) = d(b, a)+d(a, c). We have dZ(qp(b), qp(c)) ≤

dZ(qp(b), qp(a)) + dZ(qp(a), qp(c)) ≤ L · d(b, a) + L · d(a, c) = L · d(b, c).

We again denote the Fräıssé limit as U . We define a function F̃ on U to Z

as follows: F̃ (u) = qp(u). It follows from our construction that F̃ is L-Lipschitz,

thus we may extend F̃ to the completion U; we denote F this unique L-Lipschitz

extension and claim that this is the desired universal L-Lipschitz function to the

Polish metric space Z.

5.2.2 The one-point extension property for (U, F )

We again prove a particular version of one-point extension property. The method

how to use it to derive the universality, ultrahomogeneity and uniqueness is the

same as before. By K̄ we denote the class of all finite metric spaces equipped

with an L-Lipschitz function into Z. Recall that we have the rational one-point

extension property concerning structures from K.

Proposition 5.2.9 (One-point extension property). Let A be a finite substructure

of (U, F ) and let B ∈ K̄ be such that |B| = |A| + 1 and there is an embedding

ϕ of A into B. Then there exists an embedding ψ of B into (U, F ) such that

id = ψ ◦ ϕ.

Proof of the proposition. We again start with the case when A is empty and

B = {b1}. We just need to find some a1 ∈ U such that F (a1) = F (b1). Choose

some sequence (f l1)l ⊆ N such that for every n ∈ N dZ(qfn1 , qfn+1
1

) ≤ L/2n+1 and
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qf l1 → F (b1). Using the rational one-point extension property we find a sequence

(uj1)j ⊆ such that for every n ∈ N we have p(un1 ) = fn1 and dU(u
n
1 , u

n+1
1 ) = 1/2n+1.

This is possible and we have that F (a1) = F (b1) where a1 = limn u
n
1 .

We now assume that A is non-empty. Let us enumerate A as {a1, . . . , ak−1}

and B as {b1, . . . , bk} so that the embedding ϕ of A into B sends ai to bi for every

i < k. We shall find a new point ak ∈ U and define an embedding ψ : B ↪→ (U, F )

sending bi to ai for every i ≤ k. We will find a Cauchy sequence of elements

from U such that the limit will be this desired point ak. For each l < k let us

choose a converging sequence (ujl )j ⊆ U of elements from the Fräıssé limit such

that limj u
j
l = al, dU(u

j
l , al) < 1/2j, for i < j we have dU(u

j
l , a) < dU(u

i
l, a), and

moreover for every natural numbers i > j we have dZ(F (u
j
l ), F (u

i
l)) < L/(k·2j+2).

For every l < k and i ∈ N let f il ∈ N be such that F (uil) = qf il .

Now, let us a choose a sequence (f jk)j ⊆ N of natural numbers such that

∀j ∈ N∀i > j(dZ(qfjk
, qf ik) < L/(k · 2j+2)) and qfjk

→ F (bk). Consider a structure

S1 = {uk+3
1 , . . . , uk+3

k−1}. For every a ∈ S1 we set p(a) = n iff F (a) = qn, thus

S1 ∈ K. We use Lemma 5.1.13 to find a metric extensionM1 = {uk+3
1 , . . . , uk+3

k−1, g}

such that for all i < k we have d(bi, bk)+1/(k ·22) ≤ dU(u
k+3
i , g) ≤ d(bi, bk)+1/2.

We extend M1 into a structure V1 from K. We just need to define p on g. We

set p(g) = f 1
k . To check that this is consistent we need to verify dZ(qf1k , qfk+3

j
) ≤

L · d(uk+3
j , g) for all j < k. However, since dZ(F (bi), f

k+3
j ) ≤ L/(k · 2k+5)) and

d(bj, bk) + 1/(k · 22) ≤ dU(u
k+3
j , g) it follows that

dZ(qf1k , qfk+3
j

) ≤ dZ(F (bj), F (bk)) + L/(k · 2k+5) + L/(k · 23) ≤ L · d(bj, bk)

+L/(k · 22)) ≤ L · d(uk+3
j , g)− L/(k · 22) + L/(k · 22)) ≤ L · d(uk+3

j , g)

Thus V1 ∈ K and there is some u1k ∈ U playing the role of g.

Suppose we have already constructed u1k, . . . , u
l−1
k ⊆ U . We consider a struc-

ture Sl = {uk+l+2
1 , . . . , uk+l+2

k−1 , ul−1
k } with an obvious definition of p on elements

of Sl. We use again Lemma 5.1.13 to obtain a metric extension

Ml = {uk+l+2
1 , . . . , uk+l+2

k−1 , ul−1
k , g} such that for all i, k we have d(bi, bk) + 1/(k ·
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2l+1) ≤ dU(u
k+l+2
i , g) ≤ d(bi, bk)+1/2l. We need to define p on g; we set p(g) = f lk.

The verification that it is consistent is the same as above. So we obtain some

ulk ∈ U playing the role of g. This finishes the induction and the proof.
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