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Introduction

This dissertation thesis contains several results of the author that lie on the
borderline of descriptive set theory, forcing and analysis. Thematically, one can
divide the thesis into two parts. The first one, comprised of chapters 2-4, is
related to the topic of the recent book [18] of author’s supervisor. The second
one, contained in the last chapter, investigates universality and homogeneity in
Polish metric structures and it is related to descriptive set theory, (continuous)
model theory, and metric geometry.

We give a brief summary of all chapters here.

The first chapter is just a preliminary chapter that reviews the material that
the reader should know in order to understand the rest of the thesis. It contains
no results due to the author and it is written in a rather dense “definition-fact”
style. With a single exception for which we could not find a reference (we do not
claim that the result is not known among the experts though) we do not provide
proofs there and always refer to the literature for them. The main area that we
review there is mainly the basics of descriptive set theory that are essential for the
whole work. A large part of that chapter is also devoted to definable equivalence
relations, a fundamental notion from chapters 2, 3 and 4. There are sections
devoted to “Idealized forcing” and “Canonical Ramsey theory on Polish spaces”,
a specific topic to which the work from those three chapters (2, 3 and 4) directly
relates. Included is a small section on the method forcing as we explicitly use
it in the fourth chapter. The last section of the preliminary chapter deals with
Fraissé theory, a subarea of model theory that is used for constructions in the
last chapter. The reader needs to understand the notions and facts (resp. the

statements, knowledge of their proofs is not essential) from this section in order



to read the last chapter.

The main part of the thesis begins with Chapter 2. That chapter gives a
canonization result (in the sense of [18]) for the classical Silver forcing/ideal. It
extends the results from the author’s article [3]. We note that in [3] we prove
the canonization for equivalences defined by F, P-ideals, while in Chapter 2
we extend it to equivalences defined by arbitrary analytic P-ideals. Moreover,
Chapter 2 gives some classification, resp. anti-classification, results concerning
subequivalences of Ej on the Silver forcing.

Chapter 3 deals with another classical forcing notion (resp. o-ideal on a Polish
space) - Laver forcing/ideal. We prove the canonization for equivalences defined
by F, P-ideals. We note that the content of this chapter is written up in an
article [4] that was under peer review when this thesis was finished.

Chapter 4 deals with a o-ideal that is derived from the Carlson-Simpson (Dual
Ramsey) theorem. We prove a total canonization for all analytic equivalence re-
lations in case when we deal with a two element alphabet. For larger alphabets
we identify a finite set of canonical equivalence relations and sketch a proof that
every analytic equivalence relation can be canonized to one of them. One can
view it as a generalization of some weak form of the Dual Ramsey theorem. The
article [5] containing results from this chapter was in preparation when the thesis
was submitted. It will contain a full proof for the case of alphabets of more than

two elements which is only sketched here.

The second part of the thesis, thematically different than chapters 2-4, is
contained in Chapter 5. That chapter extends the universality and homogeneity
properties of the Urysohn universal metric space. We enrich the Urysohn space
by some additional structure and prove that this enriched Urysohn space is still
universal and ultrahomogeneous for (Polish) metric spaces equipped with the
same type of structure. Namely, we enrich the Urysohn space by adding finitely
or countably many closed relations of an arbitrary arity; by adding a closed subset
of the product of the Urysohn space and an arbitrary other Polish metric space;

finally, by adding a Lipschitz function (with an arbitrary Lispchitz constant) from



the Urysohn space to an arbitrary compact metric (thus again Polish) space.
The motivation is to provide a way of (Borel) coding of such Polish metric

structures; i.e. a method how to use descriptive set theory in classification of such

structures. Simiarly as in case with Chapter 4, the article [6] containing results

from this chapter was in preparation when the thesis was submitted.



Chapter 1

Preliminaries

1.1 Descriptive set theory

Here we review the concepts of descriptive set theory that will be used through
the rest of the thesis. We divide this section into two subsections. The first one
summarizes the basics of descriptive set theory that have something to do with
the next chapters. It contains mainly definitions but also a list of basic facts. The

second one gives a basic overview of the theory of definable equivalence relations.

1.1.1 Basics

Definition 1.1.1 (Polish spaces and Polish metric spaces). A topological space
(X, 1) is called a Polish space if it is separable and completely metrizable (i.e.
there exists a metric on X that induces the topology 7 and X is complete with
respect to this metric). In the rest of the text, we will always omit 7 from the
notation.

We shall also use the term Polish metric space. In such a case we assume that

some fixed metric is given together with the space.
Examples.
e All finite or countable spaces with discrete topology.
e R with the standard Euclidean topology.

e Finite or countable products of Polish spaces with the product topology;



e.g. w* or 2¥ (where the topology on w and 2 is discrete). We call the

former space the Baire space, the latter the Cantor space.
e All compact metrizable spaces.
e All separable Banach spaces.

e Let X be compact metrizable, Y a separable metrizable. Then C(X,Y), the
space of all continuous functions from X to Y endowed with the compact-

open topology, is Polish. If dy is a compatible metric on Y then we can

define a compatible metric on C'(X,Y) as follows: if f,g € C(X,Y) then
d(f,g) = sup{dy (f(z),g(x)) - v € X}.

e Let (X,dx) and (Y,dy) be two Polish metric spaces. Then L(X,Y), the
space of all Lipschitz functions from X to Y endowed with the pointwise-
convergence topology, is Polish. There is no canonical metric on L(X,Y)

though; i.e. that can be defined directly from dx and dy.

e Let X be Polish. Then K(X), the space of all compact subsets of X en-

dowed with the Vietoris topology, is Polish.
We have the following characterization of all Polish spaces.

Fact 1.1.2 (see [20]; Theorem 4.17). Ewvery Polish space is homeomorphic to

some closed subspace of R*.

Definition 1.1.3 (Borel sets). Let X be a Polish space, B C P(X) a countable
base of topology on X. A subset B C X is Borel if it belongs to the o-algebra
Borel(X) on X generated by B.

Let ¥9(X) denote the set of all open subsets of X. Let a be an arbitrary
countable ordinal. Then we set X9 (X) = {U,c,(X \ 4n) : (An)new € E5(X)}.
If o is limit then we set ¥3(X) = Ug., Z3(X). Moreover, we set II(X) =
{X\A:AeX(X)}

I19(X) are closed subsets of X, of course. Moreover, ¥.9(X) sets, resp. I15(X)
sets, will be called F, sets, resp. Gs sets. Occasionally, we will refer to TI3(X)

sets as Fs sets.



Fact 1.1.4 (Lebesgue; see [27]; Theorem 2.5). If X is an uncountable Polish
space then for every a < wy X2(X) # X2, (X).

Fact 1.1.5 (see [20]; Theorem 3.11). Let X be a Polish space, Y C X some
subspace. Then'Y 1is Polish iff Y is Gs in X.

Fact 1.1.6 (see [20]; Theorem 7.9). Let X be a Polish space. Then there exists
a continuous surjection w : w¥ — X. In addition, there exists a closed subset

F CwY and a continuous biyjection mp : F' — X.

For compact metrizable spaces there is a similar fact involving the Cantor

space.

Fact 1.1.7 (see [20]; Theorem 4.18). Let X be a compact metrizable space. Then

there exists a continuous surjection m: 2 — X.

Definition 1.1.8 (Borel function). Let X,Y be two Polish spaces and A C
X,B CY two Borel subsets. A function f : A — B is Borel if preimages of all

(relatively) open subsets of B are Borel.

Definition 1.1.9 (Analytic and coanalytic sets). Let B be a Borel set. A subset
A C B is analytic if it is a Borel image of a Borel set; i.e. there exist a Borel set
C and a Borel function f : C' — B such that f[C] = A.

A C B is coanalytic if B\ A is analytic.

We shall also denote X1(B), resp. II}(A), the classes of analytic, resp. coan-
alytic, subsets of B.

Usually, some other definition of analytic set is given and the definition above
is shown to be equivalent with it. For some other definitions of analytic sets and
equivalences between them we refer to [20]. Compare the previous definition with

the following fact.

Fact 1.1.10 (Luzin-Souslin; see [20]; Theorem 15.1). Let B and C' be Borel sets.
Let f : B — C be an injective Borel function. Then f[B] is Borel.

Fact 1.1.11 (Perfect set theorem; see [20]; Theorem 29.1). Let X be a Polish
space and A C X an uncountable analytic subset. Then there exists a non-empty

perfect (i.e. closed without isolated points) subset P C A.
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Fact 1.1.12 (see [20]; Theorem 14.12). Let A, B be two Borel sets. A function
f A — B s Borel iff the graph of f is an analytic subset of A X B.

Fact 1.1.13 (the Borel isomorphism theorem; see [20]; Theorem 15.6). Let A, B
be two Borel sets of the same cardinality. Then they are Borel isomorphic; i.e.
there exists a bijection between A and B that is a Borel function (note that the

previous fact implies that the inverse is also a Borel function).

In particular, the previous fact says that any two uncountable Polish spaces are
Borel isomorphic. Thus if we are interested in Borel (not topological) properties
of some uncountable Polish space then it does not matter which one we choose
to work with.

It also justifies the following definition.

Definition 1.1.14 (Standard Borel space). Let (X, Xx) be a measurable space.
We call X (we omit the symbol for the o-algebra on it) a standard Borel space
if it is Borel isomorphic to some (equivalently any) uncountable Borel set. The

elements of >y are then called Borel subsets of X.

An important example of a standard Borel space is provided in the following

definition. We shall use it in the last chapter.

Definition 1.1.15 (the Effros-Borel structure). Let X be a Polish space. Let us
denote F'(X) the set of all closed subsets of X. Consider a o-algebra ¥ on F'(X)
generated by the following sets Gy = {F € F(X) : FNU # 0} where U varies
over all basic open subsets U of X.

We call (F(X),3) the Effros-Borel structure of F'(X).

Fact 1.1.16 (see [20]; Theorem 12.6). For any infinite Polish space X the Effros-
Borel structure (F(X),X) is a standard Borel space.

In the rest of this subsection we shall deal with Polish groups.

Definition 1.1.17 (Polish group). A topological group G is Polish if its group
topology is Polish.

Examples.



(R, +) or (R, ").
e The additive group of any separable Banach space.

e The group of permutations of w, usually denoted as S,. Note that S is a

Gs subset of w?”.

e The group of homeomorphisms of any compact metrizable space X. Note

that such a group is a G subset of C'(X, X).

e The group of surjective isometries of some Polish metric space X. Note

that such a group is a G subset of L(X, X).

e Any G5 (which is in fact always closed) subgroup of a Polish group. Also,

any finite or countable product of Polish groups.

e Any quotient G/H, where G is a Polish group and H a closed normal
subgroup, is a Polish group.

We also provide a definition of a more general type of groups that somehow

connect to the results in the next two chapters.

Definition 1.1.18 (Polishable Borel groups). A group G is called a standard
Borel group if it is both a group and a standard Borel space and moreover, the
group operations are Borel.

A standard Borel group G is Polishable if there exists a Polish topology on G
that produces the same Borel structure on GG and such that the group operations

become continuous.

We conclude this subsection by defining Polish and Borel actions of Polish

groups on Polish, resp. standard Borel spaces.

Definition 1.1.19 (Polish and Borel G-space). Let G be a Polish group, X a
Polish space and Z a standard Borel space. A group action ay : G X X — X is
called a Polish action if the action is continuous. X together with this action is
then called a Polish G-space.

Similarly, a group action az : G x Z — Z is called a Borel action if the action
is Borel. Z together with this action is then called a Borel G-space.

We shall usually write just ¢ -  instead of ax(g,x).

10



1.1.2 Definable equivalence relations

Definition 1.1.20 (Definable equivalence relations). Let I" be some “definable”
pointclass, i.e. class of definable subsets (of Polish, or sometimes even standard
Borel, spaces) of some sort, usually closed under continuous preimages; e.g. %2
sets for some o < wy (such a pointclass is defined only on Polish spaces, not on
standard Borel spaces), Borel sets, analytic sets, etc.

Let X be a Polish (or standard Borel) space. We say that £ C X x X is a

[-equivalence relation if it is an equivalence relation and £ € I'(X x X).
Examples.

e Let X be a standard Borel space. By id(X) we denote the identity relation
on X. It is a Borel equivalence relation. By ev(X) we denote the “full”
relation on X, i.e. a Borel equivalence relation with a single equivalence

class.

e Let X be a standard Borel space. Let I' be a definable pointclass closed
under finite products (i.e. if A, B € I'(X) then also A x B € I'(X x X))
and under countable unions. Let (P,),e, be a partition of X into subsets
from I'(X). Let E be a relation on X where zEy if In(z,y € B,). It is a

I'-equivalence relation.

e Consider the Cantor space 2¥. Let us define a relation Ey on it. For any
z,y € 2¥ we have xEpy if {n : z(n) # y(n)} is finite. It is an F,-equivalence

relation.

e More generally, let Z be an ideal on w such that Z € I'(2¥) for some
pointclass I' (note that we identify the ideal Z with a subset of 2¥ via
the function sending a subset of w to its characteristic function). Then we
define a relation E7 on 2¢ as follows: for any z,y € 2 we have xFE7y if
{n:z(n) #y(n)} € Z. It is a I'-equivalence relation. Since this is an im-
portant class of equivalence relations we provide some particular examples

here.

— If Z = Fin, i.e. the ideal of all finite subsets of w, then EF7 = Ej.

11



—Let Z=0®Fin = {A Cwxw: {n: A, ¢ Fin} = 0}, where
A, ={m: (n,m) € A}. Then Eygr, is an Fys-equivalence relation on

2¢*% which is usually denoted as Fjs.

—LetZ=Fim0={ACwxw:{n:A,#0} € Fin}. Then Epjgp is

an F,-equivalence relation which is usually denoted as FEj.

— Let Zg be the summable ideal; i.e. Zg ={A Cw: > {1/(n+1):n¢€
A} < oo}. Then Ez, is an F,-equivalence relation which is usually

denoted as Es.

— Let Z; be the density zero ideal; i.e. Zy = {A C w : lim,,_, %ﬁﬂ]' =

0}. Then Ez, is an F,s-equivalence relation.

e Similarly, let G be a subgroup of (R“,+) such that G € T'(R¥) for some
pointclass I'. It determines a relation Eg on R as follows: for any z,y € R*

we have xEqy if x —y € G. It is a I'-equivalence relation.

— Let G ={,, where p € [1,00] and ¢, = {x € R¥ : )~ x(n)? < oo} if p
is finite, and /o, = {x € R¥ : 3B € RVn € w(x(n) < B)}. Then £y,
is an F,-equivalence relation. For p,q € [1,00] such that p < ¢ the
following holds (see [7]): E,, <p Ey,.

— Let G = ¢o, where ¢g = {z € R¥ : lim,, o x(n) = 0}. Then E, is an

F,s-equivalence relation.

e Let P be the Polish space of all probability Borel measures on [0, 1] (see
[20] 17.E for details about this space). For any two measures p,v € P we
define p1 =,, v if they produce the same null ideals; i.e. I, = {A C [0,1] :
u(A) =0} = {A C[0,1] : v(A) = 0} = I,. It is an equivalence relation
which can be shown to be F,s ([11] p. 200).

e Let G be a Polish group and X a Polish or Borel G-space. We define a
relation Eg on X where for any z,y € X we have Eqy if 3g € G(y = g-z).

We call it an orbit equivalence relation of G on X.

In general, this is an analytic equivalence relation: note that Eg is a pro-

jection on the first two coordinates of the Borel (closed if we work with a

12



Polish G-space) set {(z,y,9) € X? x G : g-x = y}. However, it was shown
by Miller (see [11] Theorem 3.3.2) that all equivalence classes are Borel.

Definable equivalence relations are compared in their complexity. Such a com-
parison will be an important concept in the next three chapters. From now on,

we restrict only on analytic equivalence relations.

Definition 1.1.21 (Definable reducibility between analytic equivalences). Let
X, Y be two Polish (or standard Borel) spaces and E C X2, F C Y? two analytic
equivalence relations. We say that a function f : X — Y is a reduction of F to
FifVz,y € X(zEy < f(x)Ff(y)).

We say that E is Borel reducible to F', E <p F, if there exists a Borel
reduction of E to . We say that F and F' are bireducible, £ ~g F, if F <g F

and F' <g E. Moreover, we write £ <g F if E <p F but not F' < FE.

We note that there are other types of reductions in literature, e.g. Baire
measurable reduction, continuous reduction, etc, with obvious definitions. We

restrict only on Borel reductions.

We state here a theorem which we will refer to in subsequent chapters.

Theorem 1.1.22 (Rosendal). E,__ is a universal K, equivalence relation.

o]

See for example [11], Theorem 8.4.2; for the proof.
That means that for any equivalence relation E that is a countable union of
compact sets there exists a Borel reduction of E to Ey_. Note that E,_ itself is

K,.

Dichotomies for Borel equivalence relations.

It is clear that any Borel equivalence relation E with a-many equivalence classes,
where o < w, is Borel reducible to any equivalence relation F' (which does need to
be Borel or in any other sense definable) with at least o equivalence classes: just
choose @ many pairwise F-inequivalent elemenets (x5)s<4, enumerate equivalence
classes of E as (C3)g<q and define f which maps Cyz onto {zz}. It is clearly a

Borel reduction.

13



It is no longer clear for Borel equivalence relations with more than countably

many classes; however, there is the following dichotomy due to Silver.

Theorem 1.1.23 (Silver’s dichotomy). Let X be a Polish (or just standard Borel)
space and E a coanalytic equivalence relation on X. Then either E has at most

countably many classes of equivalence or id(2¥) <p E.

See [11] or [17] for proofs. The former uses forcing in the proof, the latter
does not. However, both rely on methods from efective descriptive set theory.
Recently, B. Miller discovered that the graph-theoretic methods, based on work
[22], can be used to prove the Silver’s theorem only by “classical” methods, see
[28].

The Silver’s theorem says that there is no coanalytic equivalence relation
strictly between id(w) and id(2*). We say that an equivalence relation F is
smooth if E' <p id(2¥) (note that this automatically implies that E is Borel). So
every coanalytic (in fact Borel) smooth equivalence relation has either at most

countably many classes or it is bireducible with id(2%).

Fact 1.1.24 (see [11]; Proposition 6.1.7). The F, equivalence relation Ey is not

smooth.

Thus id(2¥) <p FEp. The following dichotomy says that Fj is the minimal

non-smooth Borel equivalence relation. We shall use it in the next chapter.

Theorem 1.1.25 (Glimm-Effros dichotomy). Let X be a Polish (or just standard
Borel) space and let E be a Borel equivalence relation on X. Then either E <p

id(2¥) or Ey <p FE.

See again [11] or [17] for proofs. The next corollary immediately follows, it

will also be important in the next chapter.

Corollary 1.1.26. Let E be a Borel equivalence relation on 2¥ such that E C Ej.
Then either E <p id(2¥) or E ~p Fj.

Particular equivalence relations.
Here we investigate some particular Borel equivalence relations in detail. In fact,

all equivalence relations discussed here are Fs.

14



In particular, we will be interested in equivalences of the form E7, where Z is

an ideal on w. We need one set-theoretic definition.

Definition 1.1.27 (P-ideal). An ideal Z on an infinite set X is called P-ideal
if for any countable sequence (X,)ne, € Z of elements of the ideal there is
an element of the ideal almost containing every element of the sequence, i.e.
3X € ZVn(X, C* X), where C* denotes “almost inclusion”, i.e. inclusion modulo

a finite set.

It is immediate that Fin is a P-ideal. Also, ) ® Fin is a P-ideal, while Fin ® ()
is not. Recall the summable ideal Zg and the density zero ideal Z,. It is an easy
exercise that they are also P-ideals. The following fact connect the equivalence
relations determined by them with equivalence relations from another group,

those defined by subgroups of (R¥, +).
Fact 1.1.28. We have Ey = Ez, ~p Ey, and Ez, =~p E,,.

See [17] for a proof.

The previous fact for Ey, generalizes for p € (1,00) (not for p = oo though).

Fact 1.1.29. For any p € (1,00) there exists an F, P-ideal I, such that Ez, ~p
Ey

-
Since we were unable to find a reference for this we provide a proof here;

although that fact is known among experts.

Proof. Fix a bijection 7 : w X w — w. Let p € [1,00) be arbitrary. First, we show
that £, [ [0,1]* ~p £, . Clearly E,, [ [0,1]* <p Ej ; the embedding of [0, 1]*
into R“ is the desired reduction. For the other direction, we define a reduction
f:RY = [0,1]“. We set f(z)(m(n,2¢ — 1)) to be 1if x(n) > i+ 1, 0if x(n) <
and x(n) — ¢ otherwise; similarly, we set f(z)(m(n,2i)) to be 1 if x(n) > i+ 3/2,
0if z(n) < i+ 12 and x(n) — i — 1/2 otherwise. It is straightforward to verify
that f is a Borel reduction.

We define Z, as {A Cw: Y, .. (O iy xa(m(n, 1)) /27t1)? < co}. The function
p sending A C w to >, o (3., xa(m(n,i))/2771)P is a lower semicontinuous
submeasure witnessing that Z, is an F, P-ideal. To show that Fz, <p FEy, |

[0,1]* we define a Borel reduction f : 2¢ — [0,1] as follows: we set f(x)(n) =
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> ico (m(n,i))/2, and to show that Ey, [ [0,1]* <p Ez, we define a Borel
reduction g : [0,1]* — 2¢ as follows: we set g(z)(m(n,i)) = 1 iff z(n) > 1/2°F1
It is easy to check that these are the desired reductions.

O

We state a theorem due to S. Solecki that characterizes ideals on w that are

analytic P-ideals. We need to define a notion of lower semicontinuous submeasure.

Definition 1.1.30 (Lower semicontinuous submeasure). A submeasure on P(w)
(we shall say “a submeasure on w”) is a function p : P(w) — [0, 00] with the

following properties:
L. (@) =0
2. for A C B we have u(A) < u(B)
3. for any A, B we have u(AU A) < p(A) + u(B)

Moreover, p is lower semicontinuous if it is a lower semicontinuous function with
respect to the Cantor space topology (recall we can identify elements of P(w)
with elements of 2¢); which is equivalent to the statement that for any increasing

chain Ay C Ay € A, C ... we have u({J, An) = sup, u(4,).

Definition 1.1.31 (Exh(u) and Fin(u)). Let u be a lower semicontinuous sub-
measure on w. We define the exhaustive and finite parts of pu:

Fin(p) ={A Cw: u(A) < oco}.

Exh(pu) = {A Cw: lim, pu(A\ n) = 0}.

A simple computation gives that for such p Fin(u) is always an F, set and
Exh(p) an F,s set. It is also immediate that Exh(x) C Fin(u). The converse is

generally not true; that will be one of the consequences of the next theorem.

Theorem 1.1.32 (Solecki; see [31]). For an ideal T on w the following are equiv-

alent:
1. T 1s an analytic P-ideal.

2. There exists a lower semicontinuous submeasure j on w such that T =

Exh(p).
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3. The group (Z, ) is Polishable.

In particular, every analytic P-ideal is in fact an F,s ideal. It also follows
that for any analytic P-ideal Z the equivalence relation E7 is an orbit equivalence
relation.

We state the next proposition separately from Theorem 1.1.32. It will be
directly used in Chapter 3.

Proposition 1.1.33 (Solecki; see again [31]). An F, ideal T on w is a P-ideal
if and only if there exists a lower semicontinuous submeasure i on w such that

7 = Fin(u) = Exh(w).

Though not important for our purposes we note that K. Mazur proved a

statement of a similar flavor.

Fact 1.1.34 ([26]). Any F,, ideal Z on w is of the form Fin(u) for some lower

semicontinuous submeasure [ on w.

We conclude the part of this section concerning equivalence relations and
ideals on w by the following interesting theorem which will not be used in the

rest of the thesis though.

Theorem 1.1.35 (Rosendal; see [30]). Let E be any Borel equivalence relation
(on some Polish or standard Borel space). Then there ezists a Borel ideal T on

w such that £ <g ET.

Thus the equivalences of the form FE7, where 7 is some Borel ideal, are cofi-
nal in the ordering of Borel equivalences with <. We note that the (minimal
possible) cardinality of such a cofinal family is N;.

The last two notions we define here and which will be important in the next
chapters are those of countable Borel equivalence relations and equivalences clas-

sifiable by countable structures.

Definition 1.1.36 (Countable Borel equivalence relations). We say that a Borel

equivalence relation E is countable if every E-class is countable.

Definition 1.1.37 (Equivalence relations classifiable by countable structures).

Let L be a language consisting of (at most) countably many relations (enumerated
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as (R;)icw). Let Mod(L) be the set of all countable models of L with w as the
underlying universe. We can view Mod(L) as I1;2°", where n; is the arity of
R;, thus as a Polish space (homeomorphic to the Cantor space). We consider a
relation of isomorphism on Mod(L) which we denote Ey,. Note that it is induced
by an action of S, where for any M € Mod(L), g € Sy, i € w and T € W™ we
have R (z1,...,2,,) & RM (g7 (1), ..., 97 (z2,)).

Let E be an arbitrary equivalence relation (on some Polish or standard Borel
space). We say that FE is classifiable by countable structures if there exists a

language L consisting of (at most) countably many relations such that £ <p Ef..

Fact 1.1.38. Every countable Borel equivalence relation is classifiable by count-

able structures.

For the proof see [17] Lemma 6.1.3.

1.2 Set theory

This section reviews some notions from set theory that will be used in the thesis.
Mainly some basic forcing facts and then the main concepts of Idealized forcing

([33]) and Canonical Ramsey theory on Polish spaces ([18]).

1.2.1 Forcing

In all but the fourth chapter (in the second and third; the last chapter does not
deal with notions from forcing at all) we use the term “forcing” as a synonym
for an ordering which is based on the fact that the orderings considered there
were originally investigated in forcing theory. Similarly, the term “condition” is
a synonym for an element of that particular ordering.

However, the fourth chapter uses forcing explicitly. It is not possible to intro-
duce here all notions from forcing used there so we need to assume that a reader
of that chapter has a basic knowledge of forcing; we refer the reader to [25] or
[16] for a general exposition on forcing. Especially, the knowledge of the Forcing
theorem ([16], Theorem 14.6) is necessary.

Let us highlight one particular concept that is used in Chapter 4 and which
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is in fact the only reason why we use forcing there. It is stated in the following

theorem.

Theorem 1.2.1 (Analytic absoluteness). Let M be a transitive model of set
theory, A C w“ an analytic set that lies (resp. its code) in M. Then for any
r € M we have v € A iff M =z € A.

See for example [16] (Theorem 25.4). This theorem illustrates the idea we
use in Chapter 4: We can use forcing method to show that some statement holds
in some forcing extension, however that statement is simple enough that it also

necessarily holds in the universe.

1.2.2 Idealized forcing
We state some basic concepts from [33] that will be useful in the next chapters.

Definition 1.2.2. Let X be a Polish space, I C P(X) a o-ideal on X (i.e. closed
under taking countable unions). By P; we denote the ordering (Borel(X) \ I, C)
of I-positive Borel sets ordered by inclusions. Similarly, Borel(X)/I denotes the

quotient o-algebra of Borel subsets of X modulo the o-ideal I.
The orderings P; and Borel(X)/I are forcing equivalent.

Proposition 1.2.3 ([33]; Proposition 2.1.2). The ordering P; adds (as a forcing
notion) an element Ty, € X. If G C Py is the generic filter then &gen = (G and
G = {A € Borel(X) : gen € A}.

In particular, Tgen does not lie in any ground model Borel set from 1.

Recall the definition of proper forcing (see for example [16] Definition 31.1).
The book [33] focuses almost entirely on forcing notions Py that are proper. We

state the characterization of this type of forcing notions that are proper.

Proposition 1.2.4 ([33]; Proposition 2.2.2). Let X be a Polish space and I a
o-ideal on it. Then Py is proper iff for every countable elementary submodel

M of some Hy, where X is “large enough”, and every B € Pr N\ M we have
{z € B:xis M-generic} ¢ I.

We state one more proposition from [33] and then define a related important

notion that will be used in the next two chapters.
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Proposition 1.2.5 ([33]; Proposition 2.3.1). Let X, be as above and suppose
that Pr is proper. Let'Y be some other Polish space and suppose that B € Py is a
condition forcing that y € Y. Then there exist a subcondition C' C B and a Borel
function f:C =Y such that f(Zgen) = 9.

Definition 1.2.6 (Continuous reading of names; see [33] Definition 3.1.1). Let
X, I be again as above and suppose that P; is proper. P; has continuous reading
of names if for every Borel function f : B — Y, where B € P; and Y is some

Polish space, there exists a subcondition C' C B such that f | C is continuous.

1.2.3 Canonical Ramsey theory on Polish spaces

The theme of the next three chapters is directly related to the topic of the new
book of V. Kanovei, M. Sabok and J. Zapletal “Canonical Ramsey Theory on
Polish Spaces” ([18]). It is thus essential to introduce the main ideas of the book
here.

Let us begin with the following classical theorem that should serve as a mo-

tivation for what follows.

Theorem 1.2.7 (Canonical Ramsey Theorem; Erdés-Rado [8]). For any n and
any partition (finite or infinite) of [w|", equivalently any equivalence relation on
[w]™, there exist a subset I C {0,...,n—1} and an infinite subset H C w such that
Va,b € [H]", a and b lie in the same part of partition (in the same equivalence
class) if and only if Vi € I(a(i) = b(7)), where a(i) is the i-th element of a in the

standard enumeration of w.

It follows from the Ramsey theorem that the collection of subsets A of [w]”
with the property that there is no infinite set B € [w]* such that [B]* C A forms
an ideal; let us denote it /. Thus the Erdos-Rado canonical Ramsey theorem
can be restated as follows: For any n there are finitely many (2") canonical
equivalence relations (E;)i<on such that for any equivalence relation E on [w]™
there are 1 < 2" and a set H positive with respect to I such that E | H=F; | H.

In [18], they consider “Polish versions” of the previous theorem. We start

with the crucial definition.
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Definition 1.2.8 (Spectrum of a o-ideal). Let X be a Polish space and I C P(X)
a o-ideal on it. The spectrum of I is the set of all analytic equivalence relations
E C X? for which there exists an I-positive Borel set B € P; such that for every
I-positive Borel subset C' C B we have E | C' =p F; i.e. the complexity of £

remains the same on every I-positive subset of B.

If some analytic equivalence relation £ C X? is not in the spectrum of I then
its complexity can be decreased on every [-positive set. Typically, we would like
to have some simple class of “canonical” equivalence relations (see the Erdos-
Rado theorem) such that every other equivalence relation from some bigger class
(i.e. class of all smooth equivalences, class of all Borel equivalences, etc.) can be
canonized to one of these on every [-positive Borel set. This is the content of the

next definition.

Definition 1.2.9 (Canonization of equivalence relations). Let X and I be as
before. Let C be some set of (canonical) equivalence relations and let D be
some class of analytic equivalence relations on X (resp. [-positive subsets of X).
We say that I has a canonization for all equivalences from D to C if for every
E € D and for every [-positive Borel set B on which E is defined there is some
equivalence F' € C and an [-positive subset C' C B such that £ | B ~p F.

In fact, we shall usually consider a stronger form of canonization. We will
have some set of (canonical) equivalence relations C on X? and some class of
analytic equivalence relations on X (resp. I-positive subsets of X)) D. For every
E € D and for every [-positive Borel set B on which E is defined there is some
equivalence F' € C and an [-positive subset C' C B such that £ | C' = F | C.

The following is the strongest form of canonization.

Definition 1.2.10 (Total canonization). Let X and I be as above. We say that
I has a total canonization for some class D of analytic equivalence relations on X
(resp. I-positive subsets of X) if for every E € D and for every I-positive Borel
set B on which FE is defined there is an I-positive subset C' C B such that either
ElC=idC)or E|C=CxC.

It follows the spirit of canonization results like that of (for example) H.J.

Promel and B. Voigt [29] and O. Klein and O. Spinas [23].
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Example. Let X = 2“ and [ be the g-ideal of all countable subsets. It follows
from Silver’s theorem 1.1.23 that [ has a total canonization for all Borel equiva-
lence relations. To see this, let E be a Borel equivalence relation defined on some
uncountable Borel set B. We define £ on 2¥ as follows: for z,y € 2¥, xFy if
either both z and y lie in 2*\ B or zFy. E is a Borel equivalence relation on 2,
thus we may use Theorem 1.1.23. If E has at most countably many classes then
so does E and at least one of the classes has an uncountable intersection with B.
This uncountable class C'is then an I-positive subset such that £ | C' = CxC. If
id(2¥) <p E and it is witnessed by f : 2% — 2 then P = f[2*] is an uncountable
Borel (we use Fact 1.1.10) subset of pairwise E-inequivalent elements. However,
E contains only one more equivalence class than £, namely 2¢ \ B, thus PN B

is still uncountable and E [ (P N B) =id(P N B).

We conclude this section by stating the following theorem from [18] that will
be directly used later.

Theorem 1.2.11 (see [18]; Corollary 4.3.3.). Let I be a o-ideal on a Polish
space X such that the forcing notion P; is proper, nowhere ccc and adds a mini-
mal forcing extension. Then I has a total canonization for equivalence relations

classifiable by countable structures.

1.3 Fraissé theory

In 1954, R. Fraissé published a seminal paper ([10]) where he describes how the
rational numbers with their order relation can be viewed as a certain limit of all
finite linear orderings. Realize that not only does the structure (Q, <) contain
all finite linear orderings as substructures but it also contains all countable linear
orderings; moreover, any finite order isomorphism between two finite subsets of
Q can be extended to an isomorphism of the whole structure (Q, <), and the
structure with these properties is unique up to isomorphism.

This Fraissé’s construction is applicable in other cases too and we shall use it

in the last chapter, thus we give an introduction to this subarea of model theory
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here.

Definition 1.3.1 (Age of a structure). Let L be a relational language and let A
be some L-structure. By age of A, A(A), we denote the class of all isomorphism

types of finite substructures of A.

As usual in mathematics, we shall work with elements of A(A) as if they were
actual finite substructures of A rather than just their isomorphism types. This
simplifies the notation. We fix some countable relational language L from now
on.

Next, instead of starting with some (L-)structure A and considering its age we
start with some class K of isomorphism types of finite L-structures and investigate

whether this class is an age of some L-structure A. We need some definitions.

Definition 1.3.2 (HP and JEP). Let K be a class of isomorphism types of some
finite L-structures. We say K has the hereditary property (HP) if whenever B € K
and A is a substructure of B then A € K.

We say K has the joint-embedding property (JEP) if whenever A, B € K then
there exists some C' € K such that both A and B embedd into C.

The following fact is easy to prove.

Fact 1.3.3 (see [15]; Theorem 7.1.1). Suppose that K is a countable class of
isomorphism types of finite L-structures that has the HP and the JEP. Then
there exists an L-structure A such that A(A) = K.

Realize that A(Q) = A(N). So passing from A to A(A) and then back to an
L-structure via the previous fact need not give the original structure. Observe
that N does not have the homogeneity property of Q we stated at the beginning,
i.e. any finite order isomorphism between two finite subsets of QQ can be extended
to an isomorphism of the whole structure (Q,<). This property is in Fraissé

theory called ultrahomogeneity. The definition follows.

Definition 1.3.4 (Ultrahomogeneity). Let A be an L-structure. We say that A
is ultrahomogeneous if any finite L-isomorphism between two finite substructures

of A can be extended to an isomorphism of the whole structure A.
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We need another requirement on K.

Definition 1.3.5 (AP). We say K has the amalgamation property (AP) if when-
ever A, B,C' € K such that A is embeddable into B via some embedding ¢p and
embeddable into C' via some embedding ¢, then there exists D € K and embed-
dings of B via ¥ into D and of C' via 1¢ into D such that ¢¢ o ¢c = ¥p o ¢p.

If a countable class of isomorphism types of some finite L-structures K has
the HP, the JEP and the HP, then we call it a Fraissé class.

We can now state the main theorem of Fraissé theory.

Theorem 1.3.6 (Fraissé’s theorem; see [15]; Theorem 7.1.2). Let K be a countable
class of isomorphism types of finite L-structures that has the HP, the JEP and
the AP. Then there exists a unique up to isomorphism countable structure A such

that A(A) = K and A is ultrahomogeneous.

We call such A a Fraissé limit of K.

The converse is now true too.

Fact 1.3.7 (see [15]; Theorem 7.1.7). If A is a non-empty at most countable L-
structure that is ultrahomogenous, then A(A) is countable, has the HP, the JEP
and the AP.

Let us review the properties of a Fraissé limit A of some Fraissé class K.

e Not only does A contain as substructures all finite structures from K, it also
contains as substructures all L-structures B such that A(B) C K. This does
not immediately follow from Theorem 1.3.6 but it is easy to prove (see [15];
Lemma 7.1.3). This is a generalization of the fact that the rationals contains

as substructures all countable linear orderings.
e A is ultrahomogeneous.

e A is unique up to isomorphism with the property that A(A) is countable,
has the HP, the JEP and the AP.

We finish this section and this chapter by stating one single property of a Fraissé

limit A that implies all of those three properties above.

24



Definition 1.3.8 (One-point extension property). Let A be an L-structure. We
say that A has the one-point extension property if for any finite substructure
By C A and any one-point extension By € A(A) of By, i.e. |By| = |By|+ 1 and
there exists an embedding ¢ : By < B, there exists an embedding ¢ : By — A
such that id = ¥ o ¢.

Fact 1.3.9 (see [15]; Lemma 7.1.4 (b)). Let A be a (at most) countable L-

structure. A(A) is a Fraissé class iff A has the one-point extension property.

25



Chapter 2

Silver forcing

Introduction

Recall that the Silver forcing is the set {f : A Cw — 2 : |w\ A| = w} ordered
by the reverse inclusion. Though not important for our purposes, we note that
Silver forcing can be presented in the Borel(2¥)/I way as follows. We define I as
the o-ideal generated by Borel G-independent sets, where G is the graph on 2¢
such that there is an edge between x and y iff there is exactly one n such that
z(n) # y(n) (see [33, p. 212]). We will never use this information. From now on,
I is fixed as the Silver ideal.

S. Grigorieff proved that the Silver forcing adds a minimal real degree and it
follows that it canonizes all smooth equivalences (see [14, Cor. 5.5] and [18] for
the latter). However, one can see that Ejy is in the spectrum of the Silver ideal,
so when canonizing an equivalence relation E which is above E; in the Borel
reducibility order, the best we can hope is that it can be reduced to the identity,
a full equivalence relation or an equivalence relation bireducible with Ej, on some

positive subset.

Here we focus on and canonize to the full eqgivalence relation or a subset of Ej
E7 relations where 7 is an analytic P-ideal on w. Recall that this class includes
the E,, relations for p € [1,00), E; ~p {1 or E,,, where only the last one is Fys,
the preceding ones are F,.

We will work with sets of type By, where f : w — 2 is a partial function
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with a coinfinite domain, defined as By = {x € 2 : x O f}. These sets form a
dense subset of Borel(2¥)/I isomorphic with the original Silver forcing, so they
are called conditions throughout this chapter. By Hy we will denote the set of
“holes” of the condition By, thus H; is the complement of the domain of f. 2<Hs
in analogy with 2<“ denotes the set of finite functions to {0, 1} with domain con-
tained in Hy. For z € 2¥ and A C w, v ©® A denotes the element y € 2¢ such that
y(n) =z(n) forn € w\ A and y(n) =1 —z(n) for n € A (we write x ® n instead
of t ®{n}). When s,t,u (s,t finite, u may be infinite) are sequences, stu is their
concatenation. We will occasionally use the term “Silver tree” for the condition
By when we are interested in properties of initial subsequences of elements of By,

ie. z [ n’s, for x € Byn € w.

We state a proposition from [18] that we will use later in the proof of the main
theorem. It is an other information information about the spectrum of the Silver

ideal beyond that of Grigorieff mentioned above.

Proposition 2.0.10 ([18]; Theorem 8.2.3.). Let B be a condition in the Silver
forcing and let ¥ be an equivalence relation on B that is classifiable by countable
structures. Then there exists a Silver subcondition C C B such that E | C is C?

or a subset of Ej.

The last assertion follows from Fact 1.1.38. Note that we cannot use Theorem

1.2.11 as the Silver ideal does not add a minimal forcing extension.

2.1 Canonization results

Theorem 2.1.1. Let B be a condition in the Silver forcing, Z an analytic P-ideal
and E C B? an equivalence relation Borel reducible to Ez. Then there exists a

Silver subcondition C C B such that E | C is C? or a subset of Ey.
Proof of the theorem. We start with a basic observation.

Claim 2.1.2. There is a subcondition B, C B such that f | B, is determined
by a function p : 2<Hs — 2<% from finite subsets of H, to finite subsets of w,

which is monotonous, i.e. p(t) 2 p(s) fort 2 s, |p(t)] = |t| for all t € 2<Hs and
fh)y=U,p(h ] n).
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We will also denote f(x) = J,, p(x [ n) for x € By as p(x), it should not make

any confusion.

Proof. Silver forcing has the continuous reading of names (see [33, Theorem 3.3.2
and the fact the Silver forcing is bounding]) thus we can find a subcondition B, of
B on which f is continuous. Pick a hole hy € H,,. It follows from the continuity
of f that we can find a subcondition B,, with hy € H,, such that the value of
f(2)(0) depends only on the value x(hg) for z € B,,. We pick next hole h; and
find again a subcondition such that the value on hy decides the value of f(x)(1)
for both possible values on hy. Generally, when we have the holes hg, ..., h, 1
deciding the corresponding finite part of f(z) we pick the next least hole h,,, 2"
times apply the continuous reading of names and find a subcondition so that for
every configuration on holes hg,...,h, 1 the value on h, decides the value of
f(z)(n). We end up with a condition B,, which is an intersection of conditions
obtained along the construction, with H, = {hg, hy,...} from the statement of

the claim. ]

We will WLOG assume that H, = w.

By Theorem 1.1.32 we have a lower semicontinuous submeasure u : P(w) —
[0, 00] such that Z = Exh(u).

From now on, we also reserve the letters x,y, z to denote infinite binary se-
quences and other letters, if it is not said otherwise, to denote finite binary
sequences.

We define A (z,y), for z,y € 25¢, as p((p(z) \ n) & (p(y) \ n)) (= p((p(z) &
p(y))\n)), where we identify p(x) with the corresponding (finite or infinite) subset
of w. A¢(z,y) may be denoted as A(z,y).

Note that A(z,y) (resp. Ag(z,y)) is a pseudometric (which may attain an
infinite value though). Symmetricity is obvious; triangle inequality A(z,z) <
A(z,y)+ A(y, z) follows from the inclusion p(z) A p(z) C (p(x) Ap(y)) U (p(y) A
p(z)) and monotonicity from subadditivity of p (similarly for Ag(z,y)). We will
frequently use this triangle inequality.

We extend the predicate E to finite sequences as follows: sEt iff |s| = |t]| and
Va(szEtr).
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Moreover, for 6 € RT we define xEsy (resp. sEst) when A(z,y) < 0 (resp.
Vr(A(sz,tr) < §)) and for finite sequences s,t (of the same length) we will write
sE’t when Va (A (sz,tz) < 6). For the rest of the proof the relation £ with a
subscript will always denote one of those just defined and it should not be con-

fused with Ey, E», etc.

The proof splits into three cases.

Case 1 There exists € > 0 such that the set

S ={s e 2% :(A(s0t,s1t) > e A s0tEslt)}

is somewhere dense (in 2<“ ordered by reverse inclusion).

Assume that S is dense above some d € 2<% and start with some sy O d
in S. There is some ¢, such that A(so0tg, soltg) > ¢ and for every x € 2
A(so0tox, spltgr) is finite, so we may in fact assume that ¢, is extended enough

so that so0toF5 soltp. Otherwise, there would be %1, s, ... such that
VTL(SQOtotl R tn/E%Soltotl c. tn)

which would (from the exhaustivity of p) imply that sg0x.Esole;, where z; =
tot1 ..., a contradiction.
Then find s; € 2<% such that s¢0tys; € S. There is t; such that
A(s0tgs10ty, so0tpsy1t1) > €. That automatically implies that also
A(soltgs10ty, soltgsi1ty) > 3{. It follows from the fact that
Ajsooto| (80tgsiity, soltgsyity) < g, for i € {0,1}, and the triangle inequality.
Again, we may assume that t; is extended enough that
soitos10ty ET6 sgitgs, 1ty, for i € {0,1}.
Then we find s, such that s¢g0tys10t155 € S, obtain t5 so that
So...089taE32 8y . .. 189ty and continue in the same manner.

The way we have chosen t,’s guarantees that
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| ™

A|50...sn|<50i0 .- -infltnflsn(]tn; SOjO R jnfltnflsnltn) 2

where 4., jm € {0, 1} for m < n. To see this, notice that

& 3

A|so...sn\<30i0 ce in_ltn_lsnOtn, 800 ce Otn_lsnOtn) < g +...+ 92+n < Z
. . 5 9
A\so...sn|(50]0 .. -]n—ltn—lsnltna 500 Ce Otn_lsnltn) < g + ...+ 22+n < Z_l

and finally
Asgs0] (500 ... 015,05, 500 . .. 0t 15, 1t,) > €

and use the triangle inequality.
Now let
r = SoiotoSliltl . Zntn .

Yy = SoJotosijiti .- Jntn - .

where i,,, jm € {0,1} for m € w. If i,,, # j,, for infinitely many m’s then it follows
from the construction that there are infinitely many disjoint intervals [k,,, [,] such
that Az’fn(aj,y) > 5, thus p(z) A p(y) ¢ Exh(p).

On the contrary, if the set {m : i,, # j,,} is finite, then by transitivity of F,
xFEy. Tt follows that we just found a condition B;, = C' on which E is equal to

Ey, where

Bh = {SL’ S 2 x = SgiotoSliltl .. ’Lntn Ce ,im c {O, 1}}

If Case 1 does not hold then for every £ > 0
S. ={s €2 : H(A(s0t, s1t) > e A s0tEslt)}

is nowhere dense. For a particular € and s ¢ S. that implies that either for every

v there is an infinite extension z O v such that sOxKslz or there is ¢ such that
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s0tE.s1t. Let S! denote the set of all s’s from the latter case, i.e.
S = {s:3t(s0tE.s1t)}
and S? the set of all s’s from the “either” case, i.e.
S? = {s:VYodz D v(s0zKs1x)}

Here we split into the remaining two cases.

Case 2 Assume that S is dense for infinitely many n € w. Then let us
start with some sy € Si,nwhere mgy > 2, and we obtain appropriate g, i.e.
300150EW+0 solty, which m;; be again sufficiently extended so that SOOtOEisolto.
Then we find s; such that so0tps; € S, for some m; > 4. We again ob-
tain appropriate ¢; and extend it if neg(;lssary so that SOOtoletlE%soitosljtl
for i, € {0,1}. Generally, we look for s, such that so0...0t, 1s, € S,
for some m, > 2"*! and t, is again sufficiently extended, so we always hajfz
Soioto . - - intn B T 500 - ntn, TOT G0, -+ iy Jos- -+ jn € 10,1}

Now let

T = Soiot081i1t1 Ce Zntn Ce

Y = SoJotoS1Jiti - - - Jnln - -

where 7., jm € {0,1} for m € w. Then by the construction

Az,y) < Z{n:x(n#y(n)}(# + 5= ). Hence we found a condition B, = C, where
B, = {3? € 2¥ 1 x = splotoSiitty .. . Inty . .. yim € {O, 1}}

on which F is the full relation, i.e. £ | C =C x C.

Case 3 The remaining case is when there is sq € 2<“ such that Vs D soVodz D
v(s0zKslz). We assume that E does not have I-positive classes and we find a

condition on which F is a subset of Ej.
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For s O sq and € > 0, let us denote
T: = {t : Je(Ajsoy-1(80te, slte) > )}

Note that T7 is closed under initial segments.

Claim 2.1.3. For every s 2 sg there exists € > 0 such that the set T is some-

where dense above s.

Proof. Otherwise, let us assume that the set
N = {s D sp: Ve(T% is nowhere dense above s)}

is dense (above sg). If it were not dense, we could extend sq so that there would
be no element of N above sg.
Pick some ng € N. Since T, rlm is nowhere dense above sy we can find vy so that

there is no element of Tﬁo above vy, thus Vt D vVe
Apgot|—1(no0te, nolte) < 1

Then find n; such that ngOvogn; € N. We prove that from triangle inequality we
also have nglvgn, € N.

To see this, denote for simplicity ny0vgn; as mgy and nglvgn, as my. Suppose
that there is € such that T} is dense above some k 2 m;. Since T, %4 is nowhere

dense above ng, there exists k DO k such that VI D kVe
Ajgor—1(mo0le, my0le) < /4

and

Apory—1(molle,mylle) < e/4

Then for every ¢t € T, s t2 k. there is e such that

Ajmyo—1(m10te, my1te) > €
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so we have from the triangle inequality
Ajmoot|—1(mo0te, molte) > Apyy,op—1(m10te, mq 1te)

—Ajmgot|—1(moOte, mi0te) — Ajpgre—1(molte, mylte) > g/2

Thus 7, 1%/02 is somewhere dense above m which contradicts that mgy € N.
We can find some v; so that both vgn;iv; are outside of T,?O_Q (no element of

TQ(;Q is above vonqivy), for i € {0, 1}, which guarantess that V¢t 2 v, Ve

n

A|m00t‘_1(m00te, mlote) < 272

and

A|m01t‘_1(m01t6, mllte) < 2_2

and if necessary we can extend v; so that it is outside of both T] E&ionw for i €

{0,1}, which guarantess that V¢ O v, Ve
A‘nogvonloﬂ_l(n()o Ce. Ot@, no0 . .. 1t6) < 2_2

and

Apngivgniof—1(nol ... 0te,ngl ... 1te) < 272

Finally, from triangle inequality V¢ O v;Ve
Ajnoovemor—1(no0 . .. Ote,ngl ... 1te) < 27

and

A\n00v0n11t|71<n00 N 1t6, nol c 0t€> < 2_1

In summary, we have the following inequalities: V¢ O v;Ve
Alnojo...int| (Motovoniiite, ngjovoni jite) < 271

In general, once we have n,,_1,v,,_1 we choose n,, so that

190 ... Npm_10v,_1n,, € N and it again follows from triangle inequality that also
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1080 « - - Mn—1tm—1Vm—1Mm € N for i, € {0,1}. As above, we can find some v,, so

that for every t O v, and every e
Angjo..imt| (MoToVN1 1101 - . - Ipte, Nodo - . . Jmte) < 27
for iy, j; € {0,1}. We obtain a Silver subcondition
B={x€2:2=ngly...0ninUn... where i, € 2¥m € w}

where the relation reduces to the full relation. To see this, let x,y € B and
n,l € w. Let m = |n0...0v,11| and I = {ko,ky,...,kq} be the finite set of
indices of holes where the finite segments « [ [ and y [ [ differ and that come

after ng0...0v,,1. We want to prove the following inequality
VYm > m(Ap(z [ Ly 1) <27

Since n and [ were arbitrary, it would give us precisely the condition for p(x) Ezp(y),
thus zEy.
Note that from inequalities that we have it holds that

¥m > m(An (@ Ly 1) < Ap(e Ly 1) < Ap(e 1L (yo 1) [ )+

A‘uﬂkoiko‘(l‘ r l? (y © (I \ {Zko})) r l)) + Al-uvklik1|(x [ lv (y © (I \ {ikov Z/ﬁ}) r l))
+...< gl gmn=2 o3 4 4 gmnmd-l < 2_n)

That is a contradiction with the assumption that E has no I-positive class. []

So far we have proved that for any s O sy there is € such that 77 is some-
where dense above s; i.e. there is some v O s such that the set {t D v :
Je(Ajsor-1(s0te, slte) > €)} is dense above v. However, the ¢ from the state-
ment need not to be optimal. So for example we could have both sets {t D v :
Je(Ajsor—1(s0te, slte) > €)} and {t D v : Je(Ajsoy-1(s0te, slte) > 2¢)} being
dense above v.

Let U (unbounded) denote the set of those s O s for which T¢ is dense above
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s for an arbitrarily large ¢; i.e.
U={s2Dsp:Ve e R"(T¢ is dense above s)}

The complement is the set of those s D sy such that there is some v and some ¢

such that
1. for every e we have A, (sOve, slve) < ¢
2. for an arbitrarily small § > 0 the set 7577 is dense above v

Let B (bounded) denote this complement; i.e.
B = {s D s : 3v3e such that V6§ > 0T~ is dense above v and

Ve(Aq (sOve, slve) <€)}

If the set B is dense above sy then by the same argument using triangle
inequality that we used in the proof of Claim 2.1.3 one can show that B is even
symmetric. This means that for any b € B and b0u € B we also have blu € B,
and moreover if v (used in the definition of B) witnesses that b0u € B then the
same v witnesses that blu € B. To see this, just note that we are again using the
fact that when {A(b0e,ble) : e} is bounded, {A(b0v0t, b0v1t) : t} is bounded,
then by the triangle inequality {A(blvOw,blvlw) : w} cannot be unbounded.

Thus if B is dense then we can form a Silver subtree such that every splitting
node lies in B. If B is not dense, then we can extend the initial segment s,
sufficiently enough so that we will work only with nodes from U.

So we have two cases. One that we have a Silver subtree with splitting nodes
from U, the second that we have a Silver subtree with splitting nodes from B.
For the further use, let us denote sp(.S) the set of splitting nodes of a Silver tree
S. We shall build a tree T

e We have a Silver subtree with splitting nodes from U: Start with the first
splitting node from U, for simplicity again denoted sy. Choose arbitrarily
some €5, > 1. Since Tfjo is dense above sy we cand find some e; and

such that Ay _1(so0eg, soleg) < ey ). Denote sY, resp. si, the nodes
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s00eg, resp. spleg. Again choose some £ > 1 and Esl > 1 such that

530 Esl .
Tyo', resp. T, is dense above s, resp. sl. We can find some #; such

s 1
690 6s]' s . . .
that ¢, € T,' NT," and moreover Oeoty, legt; € Tsgo (this is possible
1 1
since these T:-sets are closed under initial segments). We extend ¢; into
some e; so that Apq_q(s10er,siler) < ), for i € {0,1}, and moreover

Ajoj—1(s90e1, s10e1) > g4, and Ajo_q(s91er, sjler) > g

Denote obtained nodes s9, ..., s3 (si = s%ie; for i € {0,1} and s} = s1(3 —

i)e; for 1 € {2,3}).

Similarly, for every n € w, we get s’ and £, 0 < i < 2", where each
n
st s Sgig€o ...l ... in_16n_1 for some values ig, ..., %, 1, and we have the

n

following inequalities
A|Soioeo...in71tn71‘—1(SOiO o (Zk) cee inflenflu

SOiO <. (1 - Zk) <. inflenfl) Z gsoio...ek,l
where ¢; € {0,1} for j < n and k < n. This finishes the construction of 7'

We have a Silver tree with splitting nodes from B: Recall that for every
s € B we have some v and ¢, such that Ve(A(sOve, slve) < ¢), however
for an arbitrarily small § we have that TS~ is dense above v. From now
on for every s € B and corresponding e, we shall always consider §; = £,/4,

=% Such §’s are small enough with

abuse the notation and write 7%* for T:*
respect to the proof that we will write V¢ € T:*3e(A|s0y—1(s0te, slte) = &

which is means Vt € T¢s3e(Agoy—1(s0te, slte) € [e5 — 05, €4

We again start with some element from B, for simplicity again denoted s,
determine the corresponding €,, and vy and find some ey so that

Ajsop—1(s0ve, slve) = g4, Denote s), s} the nodes so0vpeq, solvgeg. WLOG
we may assume they are splitting nodes, i.e. s{,sl € B. Determine €0 and
g, and recall that there is a common v; (from the definition of B) for both

s and si. Similarly as in the previous item we can, if necessary, extend v;
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and find e; so that the following equalities hold
A|S§0v1‘,1(SiOU161, silvie;) = Esi
for i € {0,1} and
Alsoovpeqivy|—1(500 . . . ivier, sol .. ivier) = e

for i € {0,1}. Denote obtained nodes s9,...,s3 (s, = s%ive; for i € {0,1}
and s = s1(3 — i)vie; for i € {2,3}).

Similarly, for every n € w, we get s!, and €., 0 < i < 2", where each s,
is Solovg .. .0k ... Ip_1Up_1€,—1 fOr some values 1, ...,%,_1, and we have the

following inequalities
A‘SQ’ioto...in_1vn_1|71(SOiO L (Zk) ce in—lvn—len—la

Soio e (1 — Zk) e in_lvn_16n_1) = 550i0-~-tk—16k—1
where 7; € {0,1} for j < n and k£ < n. This finishes the construction of 7'

Let us now consider two possible cases that may happen. Each of them di-
rectly leads to some form of canonization. We will then prove that we can obtain

a Silver subtree satisfying one of them.

Subcase 3a Assume there is a Silver subtree S of T" such that the set {es :
s € sp(S)} € R is bounded from below. Then we prove that the equivalence
relation restricted to [S] (a Silver subcondition given by branches of the Silver
tree S) is countable (and we are done by Fact 1.1.38 Proposition 2.0.10). For
this, let € be the lower bound for this set and suppose for some z € [S] the
set V= {y € [S] : zEy} is uncountable. Then there is an uncountable subset
V' C V osuch that for every y € V™ n is the least number where x and y differ
and A, (z,y) < 5. Let y, 2z € V" be any two branches that split above the m-th
level. Then it follows from the construction that A,,(y,z) > ¢ and thus from

the triangle inequality either A,,(x,y) > ¢/2 or A,,(z, z) > /2, a contradiction.
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Thus V" must be finite, so V' was not uncountable.

Remark 2.1.4. Notice that if we built 7" from a Silver subtree with splitting nodes
from U we always end up in Subcase 3a and the theorem is proved. Just observe
that in the construction we have guaranteed that for every s € sp(T') we have

g€s > 1. Thus 1 is the lower bound.

Subcase 3b Assume there is a Silver subtree S such that the set {es : s €
sp(S)} C R is a sequence converging to zero. We may refine the tree so that for
every s € sp(S) e5 > 4e,, 4es, where sg, $1 are immediate splitting successors of s
in S. Then we claim that the equivalence relation restricted to [S] is the identity.
Let z,y be two branches of S and let s € S be their last common node. Then
since g;’s, for t € S, are decreasing quickly, it follows from the triangle inequality
that there are infinitely many n’s such that A, (z,y) > %55. To see this, let

ng = |s|, then

) 5
Ap(,y) =5 > 13
Let n; > ng be the length of some next splitting node s/ and let i, ..., % be the

holes between s and s/ where x and y differ, then

Ao (2,9) = Do (2,9 © i ik }) = Do (4 ® {is - ik y @ i, - ia})—
. oo D
— Ay (YO i, y) > (65— ds) —es/d— ... — /4" > 155
And so on. So we found a Silver subcondition (given by a subtree) [S] such that
E here is ev, i.e. E[[S]=[S] x [9].
Thus to finish the proof of Theorem 2.1.1 it remains to prove the following
lemma. By Remark 2.1.4 we assume that 7" was built from a Silver subtree with

splitting nodes from B.

Lemma 2.1.5. There exists a Silver subtree of T satisfying either the condition

from 3a, or the condition from 3b.

Proof. We will try to build a Silver subtree satisfying the condition from
Subacase 3b. If we find an obstacle preventing us from doing that, then we will

be able to build a tree satisfying the condition from Subcase 3a.
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We start with picking vy such that ¢,, < 1. Next we want to find v; such
that €500, ; Ev1vy < 2-1. If such v; does not exist, then whenever Evpn < 2~ for
some v, then €,,1, > 27'. But we show that we can build a Silver subtree P with
stem vp0 such that Vs € P(es < 27!). But then the symmetric tree above vyl
(i.e. for every s vgls is in this tree iff vo0s € T') will satisfy the condition from

Subcase 3a with the bound 27!. The following simple claim will be the main tool.

Claim 2.1.6. €, < 265+ £51-4)0 for any s € T, 1 € {0,1}, siv € T.

Proof. We use the triangle inequality:

Vt € ToiVeA sivor—1(siv0te, sivlte) < Ajgyo—1(siv0te, s(1 — i)0te)+

SV

+A | sivor|—1 (stv1te, s(1 — i) 1te) + Ajgpor—1(s(1 — i)v0te, s(1 — i)vlte) <
< 2es+ €s(1—i)v

which is what we wanted to prove.

Building the tree We will be looking for nodes and building the left-most
branch, other nodes of the Silver tree (denoted P) will be determined automati-
cally. We will ensure that e, < 27! for any ¢ in the tree.

Pick any node t, above 10 such that &, is very small compared to 27!, less
than 271 suffices. Than find any #; such that e,,0;, < 275, then ¢, such that
Eto0t1 0ty < 2716 and so on.

Observe that

5t00t11t2 < 2 : 278 + 2716 < 271
Etottion < 2-27 142710 <271

and

Etoltylty < 2 - 2744 92.978 49716 91

Generally, let s € P be arbitrary and let ¢, be the node of the same length
lying on the leftmost branch. Let n be the number of bits where s and ¢4 differ
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and m(> n) the number of splitting nodes in P up to the length of ¢;. Then

£,<2.27%42.08 4 4 9.272 L 92" 91

Hence we really are able to find vy so that €,,0u,, Eug1e, < 271, Next we want
to find vy such that e,y ju, < 272 for i,j € {0,1}.

As in the previous paragraph we can build a Silver subtree Fy above the node
100v,0 such that for any node ¢t € Py we have ¢, < 272. Now put the same tree
above vg0vi1. Either the set of its €’s is bounded, we are then in Subcase 3a,
or we can refine it and obtain a Silver subtree P, such that for any node t € P,
we have &, < 272, Do the same for remaining two nodes and obtain P; which is
a Silver subtree of P;, i < 3. We can then pick any node from vy,0v,0P3; above
100v10 as vs.

Then build the next level with e-value 273, It is now clear that we either end
up with a Silver tree satisfying the condition from Subcase 3b, or we fail on some
level and then build a Silver subtree satisfying the condition from Subcase 3a.

This finishes the proof of Lemma 2.1.5 and of Theorem 2.1.1. [

Although it may seem that the previous proof can be possibly generalized
to all F, ideals using the Mazur’s theorem (1.1.34), it is not the case as we
essentially used the exhaustivity of i associated to analytic P-ideals. In fact, there
is a counter-example among F, non-P-ideals. Zapletal found a K, equivalence
relation on the Cantor space which is in the spectrum of the Silver ideal [18]. The

relation (denoted here as Fy,) is defined as
rEry=3Invm(|t{k <m:xz(k) =1} —t{k <m:yk) =1} <n)

We remark that for a finite set A, A denote the number of elements of A.
This relation is Borel bireducible to Ez,, where
Zw = {A C w : A does not contain arbitrarily large arithmetic progressions} is

the van der Waerden ideal which is F, non-P. This relation is moreover Borel
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bireducible to E,_, i.e. a universal K, equivalence relation (see 1.1.22). We

present both proofs.
Fact 2.1.7. The relation Ex, is Borel bireducible with Ey_ .

For the simplicity we shall consider E,_ [ (R")“ which is clearly bireducible
with E,_: one direction is simple, for the other consider f : R¥ — (R")¥ such
that if z(n) > 0 then f(z)(2n) = z(n) and f(x)(2n+1) = 0 and if z(n) < 0 then
f(z)(2n) =0 and f(z)(2n+ 1) = |z(n)|.

Proof. To define a Borel function f : (RT)¥ — 2¥ witnessing F, <p Ex, we
split w into intervals (I;)g>1 such that |I;| = 2k,
I = {i%4}, ..., i2"1} for every k € w.

Let m:w — (w\ {#}) be some surjection such that the preimage 7(~9 (k) is
infinite for every k € w \ {0}.

Let x € R™ and n € w be given. For k < n, f(x)(i*¥) = 1 iff z(r(n)) > k.
And for n < k < 2n f(x)(i*¥) = 1 iff 2(r(n)) < k. So for every z € (R*)~,
t{i € I : f(x)(i) = 1} is always equal to k for every k.

It is clear that f is Borel and it is easy to check that xE,_y = f(z)Ek, f(z).

For the other direction, one can use the general Rosendal’s result (1.1.22) that
E,_ is the universal K, equivalence relation. It can be directly shown as follows:
for x € 2¢ let f(z)(n) = #{k < n:x(k) = 1}. This f is Borel and witnesses the

reduction Fg, <p Ey_. O
Fact 2.1.8. The relation Ek, is Borel bireducible with Ez,, .

Proof. Since we have Er,, < E,_ again by 1.1.22 and from the previous fact we
have E, <p Ef,, it suffices to show that Ex, <p E7,. We define the Borel
reduction f : 2¥ — 2¥ as follows: for any z € 2¥ f(z)(n) =1 = Jk € w(n €
[2FFL — 2 2K+ — 2 Kl An — 21 41 < #{m < k : 2(m) = 1}). We leave
the verification to the reader. We just note that In > 3Vm(|8{k < m : z(k) =
1} —t{k <m:y(k) =1} <n)iff f(x) A f(y) does not contain an arithmetic

progression of length max{n — 1,1}. ]

Zapletal conjectured that all analytic equivalence relations reducible to equiv-

alence relations induced by an action of a Polish group should be canonized for the
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Silver forcing (to the full relation or to a subset of Ep). It fits with the fact that
equivalences given by analytic P-ideals are of this kind: by Solecki’s results, every
analytic P-ideal Z is Polishable, i.e. there is a topology on Z (which produces
the same Borel sets as the Cantor topology restricted on Z) such that (Z,A)
is a Polish group; and with the fact that Fx_ is not an orbit equivalence (see
[21] that E; is not Borel reducible to any orbit equivalence relation, however by
Theorem 1.1.22 and Fact 2.1.7 we have that F; <p F,_) and is in the spectrum.
On the other hand, Zapletal showed that the non-orbit equivalence relation F;
is not in the spectrum (note that E; is defined by Fin ® () which is an F, non
P-ideal). That follows either from results from [18] on hyper-smooth equivalences
or there is an argument that uses a technique from the previous proof. Indeed,
for z,y € (2)% set A, (z,y) = 1iff Im > n(x(m) # y(m)), apply the previous
proof with this A and check that it works.

2.2 Subequivalences of E; on Silver forcing

Consider this basic subequivalence E§'"of E, where x and y are equivalent if
{n:x(n) # y(n)} is of even finite cardinality. Obviously it is not equal to Ey on
any Silver subcondition. More generally, for any n € w let us denote £ C Ej

the equivalence relation, where
cEfy =3Im(Vi > m(z(j) =y(5) ATk € Z(|{i <m:x(i) = 1}

—{i<m:y() =1} =k-n))

Clearly, Ey, resp. E{¥ is equal to E}, resp. EZ in this notation and any E
remains the same on any Silver subcondition (in the sense that it is defined there
by the same formula, just quantifying over the set of holes instead of the whole
w).

These subequivalences have the property that they are homogeneous, where

by homogeneity we mean the following.

Definition 2.2.1. The subequivalence E C FEj is homogeneous if whenever

zEx ® {ng,...,n,} then also yFy ® {ng,...,n,} provided that y(n) = z(n)
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for n € {ng,...,nm}.

It turns out that every homogeneous subequivalence of Ej is in fact one of

them.

Theorem 2.2.2. Let B, be a condition in Silver forcing and E a Borel equivalence
relation on B, that is either a homogeneous subequivalence of Ey | By or E | By 2
E§ | B,. Then there is a subcondition By, such that E | By, is equal to either
id | By, or E | By, for some n.

Proof. By 0 we denote the element x € 2% such that for every n € w z(n) = 0.

We begin the proof just assuming that E' is homogeneous. The case when

E | B, D E{ | B, is treated in Step 3.

Step 1
We start by proving the following claim by which we decide whether E' is on

some subcondition equal to Ejy or to some proper subequivalence.

Claim 2.2.3. There is a subcondition By C B, such that either E | By = Fy | By
orVr € By¥n € Hy(xEx ®n).

Proof.

Case 1: There is an infinite subset I C H, such that for every n € I 0E0 ® n.
Then we fill the holes from H, \ I arbitrarily and obtain a subcondition By C B,
such that I = H; and since E is homogeneous we have Vo € B;Vn € Hy(xEx®n).
It follows from transitivity of E that Vz,y € B(zEyy = xEy).

Case 2: The set I from Case 1 is finite. We fill these finitely many holes
arbitrarily and obtain a subcondition By C B, such that Vo € B;Vn € Hy(zEz®
n). Suppose it is not true. Then for some z € By and n € Hy we have xEzx © n.
However, since E is homogeneous we would have that also 0E0 ® n which is a

contradiction. O

Step 2
We now work only with the case that we have a condition By such that

Va € ByVn € Hy(zEx ®n).

43



Claim 2.2.4. Either there is a subcondition of By on which E is a superset of

EY or there is a subconidition on which E is the identity.

Proof. For any n € w\ {0} let f', ¢ < 3" — 1, be an enumeration of all func-
tion from n to 3 such that for at least one m < n f"(m) # 2. Moreover, for
any n € w\ {0} and for any d € [H;]" we shall write d = {dy, ...,d,_1} where
the elements of d are enumerated according to enumeration of w. For any such
d € [Hf]" let us denote Fy(d), i < 3" — 1, the set {j € H;\d: 00 {d,, : f(m) =
1E0© {j} U {dy : f7'(m) = 0}}.

Case 1: Suppose that there exist n € w\ {0}, i < 3" — 1 and d € [Hf|" such
that F;(d)N H; is infinite. Then WLOG we may assume that Hy C Fy(d). Let us
fill the hole d; from d by 0 if f7(j) = 0 or f1*(j) = 2 and by 1 if f*(j) = 1, and
denote By, the obtained condition; i.e. Hj, = H;\ d and Vo € B,Vj < n((f*(j) <
L= a(dy) = fi(4)) A fi*(5) = 2 = x(d;) = 0).

We claim that £ | B, 2 EJ | By. Because of transitivity of E it suf-

fices to check that for any x € B, and any n;,ny € Hj, such that z(n;) = 0
and x(ny) = 1 we have 2Ex ® {ni,ny}. However, since nj,ny € Fj(d) and
E is homogeneous we have © ©® Ex ® {n;} U {j : f"(j) < 1} and similarly

rO{n,na}Ex®{n.}U{j : f(5) < 1}. The claim then follows from transitivity.

Case 2: Suppose that for every n € w\ {0}, i < 3" —1 and d € [H|" F;(d) N H;
is finite.

By induction we construct a condition By, on which E is the identity. Let us
describe the step 1. Pick some dy € Hy. Since neither Fy(do) N H s nor Fy(do) NHy
is infinite, we can find a subcondition Bj, C By such that Hjy, N Fy(dy) = 0
and Hy, N Fi(dg) = 0. Tt follows from homogeneity of E that Vo € By, Vn €
Hy, (zEx ® {dy,n}). Since we are going to do a fusion the hole dy € Hy,, will be
fixed, i.e. it will remain as a hole in all subsequent conditions.

We describe one more step. Pick next hole, different than dy, di € Hp,.
Since for every i < 32 — 1 F({do, d1}) N Hy, is finite we can find a subcondition
By, C By, such that Hy, N F;({dy,d;}) = 0 for every i < 3> — 1 (and {dy,d,} C

Hy,, of course). It again follows from homogeneity of E that for every subset
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D C {dy,d,}, every n € Hy, and every x € By, we have £z ® DU {n}.

Let us describe the general n-th step of the induction. We have condition
By, .. The first n holes dy, ..., d,— were already fixed. Pick next different hole
dn—1 € Hp, ,. Since for every ¢ < 3" — 1 F;({do,...,dn-1}) N Hy, _,
can find a subcondition By, C By, _, such that H,, N F;({do,...,d,_1}) =0 for

is finite we

every i < 3" — 1 (and again {dy,...,d,—1} C Hp,, of course). It again follows
from homogeneity of F that for every subset D C {dy,...,d, 1}, every m € Hy,
and every x € By, we have zEx © DU {m}.

Once the fusion is finished we have a condition B, with Hj, = {dy, ds, ...} and
we claim that E | By, =id(By). Let z,y € By, be such that xFEyy. Let d,_1 € Hy,
be the last hole where they differ. However, x and y then belong to B, and in
the n-th step of the induction we have guaranteed that z£Yy. O

Step 3

In the last step we treat the case when we have a condition Bj such that
E | By, 2 EJ | By. This is one possible output of Step 2 or one possibility from
the statement of Theorem 2.2.2.

For any pair 4,5 € H,, let Z; ; be the set {z € B, : z(i) = 2(j) = 0,2E(z ©
{i,7})}. If for some pair this set is positive with respect to the Silver ideal, then
we find a condition B, on which E is equal to E2 (Vx € B.(xEx ® x{i,j}) and
since £ | B, 2 E{ | B, it follows that for any pair). Otherwise, we subtract all
Z;; from B, and find a condition which for notational simplicity again denote
B,. Next, for any triple 4, j,k € Hp, let Z; ;1 be the set {z € B, : z(i) = x(j) =
z(k) = 0,zE(x ® {i,j,k})}. Again, if one of these sets is positive, we find a
condition B, on which E is equal to EJ; otherwise, we subtract all these sets
from the ideal. We continue similarly and find a subcondition such that E is
equal to £ on it for some n € w,n > 0 or subtract all these countable sets from
ideal and get a condition on which FE is equal to Ej. Note that we used the
fact that if n is the least number such that £ O Eg, then if we found m > n
such that £ D EJ* then E would contain Ef, where k is the greatest common
divisor of m and n. That would be a contradiction. This finishes the proof of the

proposition. ]
Definition 2.2.5. Let EJ™ C EJ, n € N and n > 1, be the equivalence relation
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where By if xEJy and [{k < m : z(k) = 1} = {k < m : y(k) = 1}] is
divisible by n, where m is the least number such that VI > m(x(l) = y(()).

To check that it is an equivalence relation, let zEy™y and yEJ™z. Let m be
the least number such that VI > m(z(l) = y(1)) and k the least number such that
VI > Ek(y(l) = z(1)). Assume that m < k. Then this k& works for the pair z, z and
Hi<k:x(@)=1}=|{i<k:y@i)=1} = [{i < k:z(i) = 1} is divisible by n.
We checked the transitivity, the symmetricity and reflexivity are obvious.

The definition is obviously made so that the equivalence is non-homogeneous
as this basic example witnesses: let z # y and assume that for some n > 1 z EJ"y,
then (z®0)EY"(y©0) as |[{k <m : (z®0)(k) =1} = [{k <m : (y®0)(k) = 1}|,
where m is the least number such that VI > m((z®0)(l) = (y®0)(l)), now cannot

be divisible by n.

subequivalence of EJ. To check transitivity, just observe that if ng”“y and
yEg:njz, i,j < m, myg is the least number such that ¥l > mg(x(l) = y(I)) and
similarly m; for the pair y, z, then if m; > my we have that :EEgmjz since my is
the least number such that VI > my(z(l) = 2(I)) and [{k < my : z(k) = 1}| =
{k < my : z(k) = 1}| is divisible by n;.

The definition can be generalized so that there are non-homogeneous relations
EY? where p is divisible by ¢, and 2 E{‘y if Eyy and [{k < m : z(m) = 1}] is
divisible by ¢, where m is the least number such that VI > m(x(l) = y(l)).

It turns out that the class of non-homegeneous subequivalences of Ejy seems
not to be easily classifiable. We call two E and F', essentially different if they
remain different as subsets on every Silver condition, i.e. E | By # F | By for

every Silver condition By. We can show the following.

Theorem 2.2.6. There are perfectly many essentially different non-homogeneous

subequivalences of Ej.

Proof. We will use the non-homogeneous equivalence relations defined above as a
base for our construction. Moreover we define the relation E,°" where v E,*"y
if zEJy and [{k < m: z(k) =0} = [{k < m: y(k) = 0}| is divisible by n, where
m is the least number such that VI > m(z(l) = y(1)).
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Let {p1,p2,...} be the set of all primes and let z € 2N be given. In the

following, we assume that 0 ¢ N. We define an equivalence relation F, as follows:
xF,y=x=vyor

In e N(z(n) = 1 AzEY”y AVm € [1,n)(z(m) = 0 = zE; "7 1y)

To check that it is an equivalence relation, first one can easily observe that it is
reflexive and symmetric. For transitivity let x1F,xo and xoF,x3, m; is the least
number such that VI > my(z1(l) = 22(I)) and my the least number such that
Vi > mao(z2(l) = x3(1)). Moreover, let v € N be the number such that z(v) = 1,
2 EJPry AYm € [1,0)(2(m) = 0 = 2 B, """ '2,)). Similarly w € N the
number such that z(w) = 1, 2, ESP** 25AVm € [1,w)(z(m) = 0 = x5, "7 ).
We describe the case my; < mgy, the other case is symmetric. Obviously, ms is
the least number such that VI > my(z1(l) = x3()). Since x1Ejxs, [{k < my :
z1(k) = 0} = {k < mg : x3(k) = 0}| and [{k < mg : 21(k) = 1}| = |[{k < ma :
z3(k) = 1}|. Thus 21 ESP*" 25 and Vm € [1,w)(z2(m) = 0 = 2B, P> 123)), so
r1F,x3.

Now let z, 2" € 2V be different and B, be a Silver condition. Let n be the least
number such that z(n) # 2/(n), let us say z(n) = 1,2/(n) = 0. It suffices to find
x € B, and hg, hy € H, such that zF,x ® {hg, h1} but xF .z ® {ho, hy}.

It follows from the definition of the relations F, and F,,, that this will be
done if we find z € B, and ho,hy € H, with x(hg) = 0, x(h;) = 1 such that
[{m < max{hg,h1} : z(m) = 1}| is divisible by ps, but not divisible by po
Vk € [1,n) for which z(k) = 1, and [{m < max{hg, hi} : 2(m) = 0} is divisible
by pan—1 but not divisible by pox_1 Yk € [1,n) for which z(k) = 0. To see
this, notice that in that case it is fulfilled that zEJ" "z ® {ho,h1} and Vk €
[1,n)(z(k) = 0 = 2K, "7 2.® {ho, b }), thus 2F,x ® {ho, hi}. On the contrary,
suppose that also xF,x ® {hg, h1}. Then there is m such that z/(m) = 1 and
cEJ?" 2 © {ho, h1}. Tt follows that m > n. However, if we put k = n, then we
get k < m such that 2/(k) = 0 and 2B, """z ® {ho, hi}, thus 2%z © {ho, h1}.

Finding such x and holes hg, hq is just elementary number theory. Let p =

(Hfﬁl pi) +2 and dy,...,d, first p holes in B,, i.e. elements of H,. We denote
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ho = dy and hy = d, and let 2’ € B, be an element such that 2'(h;) = 1 and
2'(hy) = x(dy) = ... = 2'(dp—1) = 0. Let a = |{k < hy : 2/(k) = 1}|. Chinese
remainder theorem says that the following system of congruences has a solution
b <np.

a+b=0 (mod py,)

hi—a—b=0 (mod py,_1)

for k € [1,n) such that z(k) =1

a+b=1 (mod pa)

and for k € [1,n) such that z(k) =0

hi—a—0b=1 (mod po_1)

We set x = 2/ ® {dy,ds, ...,dy;1} and it follows that this x satisfies the required

conditions. O
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Chapter 3

Laver forcing

Introduction

Let us recall that a Laver tree T' C w<% is a tree with stem s, the maximal node
such that every other node is compatible with it, such that every node above s
(and including s) splits into infinitely many immediate successors. The set of all
branches of T is denoted as [T].

We can now state the main result of this chapter.

Theorem 3.0.7. Let T be a Laver tree, T an F, P-ideal on w and E C [T x [T
be an equivalence relation Borel reducible to Ez. Then there is a Laver subtree

S < T such that E | [S] is either id([S]) or [S] x [S].

We note that the subtree S in general cannot be found as a direct extension
of T.

Recall (Fact 1.1.29) that the list of equivalence relations Borel bireducible
with Bz for 7 an F, P-ideal includes for instance E, equivalences for p € [1, 00)

on R¥; or Ey(= Ezy).

Before proving the main theorem we state existing knowledge about the spec-
trum of Laver ideal and some results about Laver ideal that we will need in the
proof of the theorem.

We add some notation concerning Laver trees and Laver ideal. We say that

a Laver tree S is a direct extension of a Laver tree T', S <y T in symbols, if
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the stem of S is the same as the stem of 7. If s € T" is a node above the stem
then by T we denote the induced subtree with s as the stem, i.e. Ty = {t € T :
t is compatible with s}.

We use the definition of Laver ideal I from [33, p.200]; I C P(w“) is the
o-ideal generated by sets A, = {f € w* : I®n(f(n) € g(f [ n))}, where g is a
function from w<* to w.

The following proposition, resp. its corollary, will be used extensively.

Proposition 3.0.8 ([33]; Proposition 4.5.14). Let A C w* be analytic. Then

either A contains all branches of some Laver tree or A € I.

We will provide a proof of the following corollary. Recall that a barrier B in

a Laver tree T is a subset of nodes such that Vo € [T|3n(z [ n € B).

Corollary 3.0.9. Let T be a Laver tree and let A C [T] be analytic. Then there
ezists a direct extension S <o T such that either [S] C A or [S|NA=10.

Proof. Tt follows from the proposition above that there is always S < T" with that
property which is in general not a direct extension though. The use of “direct
extension property” will give us the desired tree. Let t be the stem of T". If there
exist infinitely many immediate successors s of ¢ such that there exists a direct
extension S <y T, with the property above, then for infinitely many of them it
holds that [S] C A, or for infinitely many of them it holds that [S]N A = 0,
and we use them. So suppose that not, we erase these finitely many exceptions
and proceed to the next level and do the same. At the end we obtain a Laver
tree T" <o T. We apply the proposition above and get a node t € T and a
direct extension S <y 7T} such that either [S] C A or [S]N A = (). That is a

contradicition since such a node was erased during the construction of 7”. O]

Recall Theorem 1.2.11 from the first chapter. As Laver ideal fulfils these

conditions we immediately get the following corollaries.

Corollary 3.0.10 ([18]). Let T be a Laver tree, E an equivalence classifiable
by countable structures. Then there is a Laver subtree on which E 1s either the

identity relation or the full relation.
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Since every countable equivalence relation is classifiable by countable struc-

tures (see Fact 1.1.38) we have the corollary that we shall use in this chapter.

Corollary 3.0.11 ([18]). Let T be a Laver tree, E a countable equivalence relation
(i.e. with countable classes). Then there is a Laver subtree on which E is either

the identity relation or the full relation.

J. Zapletal found the following F, equivalence relation (with K, classes) that

is in the spectrum of Laver.

Definition 3.0.12. For z,y € w*, we set x Ky if 3b¥n3Im,, m, < b(y(n +m,) >
z(n) Ax(n +mg) > y(n)).

The following lemma gives us basic properties of K. The proof may be found
in [18], we provide here the proof of the last item as it is stated slightly differently
in [18]. Notice the difference between £, for p € [1,00) and E,_ as the former

can be canonized according to the main theorem.
Lemma 3.0.13.

(a) For any two Laver trees T, S there are branches x1, x5 € [T] and yy,ys € [S]
such that 11Ky, and xoKys.

(b) K is in the spectrum of Laver.

(¢) K is Borel bireducible with E, . CRY x R, where xE,_ y=x —y € (.
Proof.

(a)

(b) We refer to [18] for the proof of the first two items.

(c) o B, <p K: We will prove B, <p E, | (R")¥ <p K. To prove
the first inequality, consider f : R¥ — (R™)* such that if 2:(n) > 0 then
f(2)(2n) = z(n) and f(x)(2n+1) = 0 and if z(n) < 0 then f(x)(2n) =0
and f(z)(2n+ 1) = |z(n)|.

For the second, let 7 : w? — w be a bijection and (Ir(i))i,; & partition of

w into intervals such that | Iy ;| = j+1 and L = {p¢, 017, . .. ,pé’j}.
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We define g : (RT)Y — w® as follows: Let 2 € (R%)“ be given,
g(2)(py’) = min{j, [2(i)| + k} for k < j and g(x)(p}’) = J.

If 2.y and Yn(|z(n) —y(n)| < m), then Vk, ij3my, my < m(g(x)(p}') <
IO ) A 9@ ) < 9(@)(Bi0,)), thus g(2)Kg(y). Just observe
that g(x)(pzj) < j and either j — k < m and we have g(y)(pj.’j) =7,
or since z(i) — y(i) = m; < m we have g(y)(pi’iml) =yli)+k+m =
(i) + k= g(=)(p).

Suppose £y, let m be arbitrary and let n be such that |z(n)—y(n)| >
m, let us assume that y(n) — 2(n) > m. Then Vb < m(g(x)(py},) <

g(y)(py™)). Since m was arbitrary we have g(x)Kg(y).

K <p E,_: Let (s,), be an enumeration of w<“. We define f : w* — R¥
as follows: f(x)(n) =

min{b : Iy O s, (zKyAb is the bound from the definition that works)}.
One can easily check that f is Borel. Let xKy such that a bound b
works for this pair and let n be arbitrary. Let z O s, be arbitrary such
that Kz and b; works for the pair and y Kz and by works for the pair.
Then one can check that |by — by| < bso f(x)E, f(y).

Suppose that xKy and let m be arbitrary. Then there exists n such that
z(n) > y(n + k) for k < m (or vice versa). Let s; = x [ (n+ 1), then

f(x)(n) = 0, however f(y)(n) > m, thus f(x)E,_f(y).

3.1 Proof of the theorem

We can now start proving the main theorem, we provide its statement here again

for the convenience.

Theorem 3.1.1. Let T be a Laver tree, T an F, P-ideal on w and E C [T x [T

be an equivalence relation Borel reducible to Ez. Then there is a Laver subtree

S < T such that E | [S] is either id([S]) or [S] x [S].

Proof. Let f : [T] — 2“ be the Borel reduction and let p be the lower semi-

continuous submeasure for Z guaranteed by Theorem 1.1.33. The submeasure
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i induces a pseudometrics (which may attain infinite value though) which we
denote d, i.e. d(x,y) = u(x Ay) for z,y € 2*. Moreover, we define d*(x,y) as
p(z | (n,k) Ay | (n,k)). When n or k is omitted it means that n = 0, resp.
k = oo.

We need to refine T' to obtain a Laver tree with some special properties. This
will be done in a series of claims. To simplify the notation, after applying each

one of these claims we will still denote the tree as 7.

Claim 3.1.2. There exist a direct extension T’ <o T and a functionp : T' — 2<%
which is monotone and preserves length of sequences, i.e. if s C t, then p(s) C
plt), and |s| = |p(s)], such that Yz € [T')(f(x) = U, p(x | n)).

In other words, f on [T"] is Lipschitz.

Proof of the Claim. We will find a direct extension of T and p defined on it
from the statement of the claim. For simplicity we assume the stem of T is the
empty sequence.

Consider the following sets

Ai ={z € [T]: f(2)(0) = i}

for i € {0,1}. They are Borel and according to Corollary 3.0.9 one of them
contains a direct extension S of T. We replace T by S, set p(0) = i and fix the
first level above the stem. Then for any immediate successor s of the stem we
again consider sets A} = {z € [S,] : f(z)(1) = ¢}. One of them contains direct

extension and we continue similarly. The final tree is obtained by fusion. [

Observation 3.1.3. Let s € T be a node above (or equal to) the stem of T
Then for every n there is a direct extension 77" <, Ty such that Vz,y € [T7]Vm <
n(p(z | m)=p(y [ m)). We will call such a tree homogeneous up to level n.

We may also suppose that we have T7' C 17" for n > m. Define then z; € 2%
such that z4(n) = p(x [ n+1)(n) for x € [T7"], where m > n+ 1. This definition

does not depend on m > n+ 1 and x € [T7"].

The following can be done by a basic fusion argument.
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Fact 3.1.4. There exists a direct extension T" <o T such that Vs € T' above the
stem if S <o T\ is homogeneous up to some level n then Yx € [S]|(p(z [ n) = x; |
Moreover, if s € S and {sg, s1,...} is a set of its immediate successors then

VnImeVm > mo(xs [ n=xs, [ n). In other words, lim,, . xs — Ts.

Let s € T' be any node above (or equal to) the stem of T'. Let {sq, s1,...} be
the set of its immediate successors. We reduce this set so that precisely one of

the following two possibilities happens: Vn(x,, Erz,) or Vn(zs, Err,).

Definition 3.1.5. If the former case holds then we mark s as “convergent”, if
the latter then we mark it as “divergent”.

Moreover, for every s € S strictly above the stem we define ¢, as follows: if the
immediate predecessor ¢ of s is marked as convergent, then we set e, = d(xy, xs);

otherwise, we set €, = 0.

Splitting into cases
We split into two complementary cases (i.e. one holds if and only if the other

does not).

e Case 1 There exists S < T such that every s € S above the stem is marked

as convergent.

e Case 2 For every s € T above the stem there is a barrier B C T of ele-

ments above s that were marked as divergent.

Proof of canonization assuming Case 1. We will do a fusion. Let us denote
the stem of S as s. We will inductively build U,, S,,, m,, for every n such that
Sn <0 Sn—1, Uy C Sy, for every n < m, is an n + 1-element subtree {uy,...,u,}
of S and m,, € w. At the end we will get a direct extension U = J, U,, =(),,
together with pairwise disjoint sets C,,, Cy,, ..., where Cy, C (m;_1,m;), such
that Vo € [U] (f(x) A zs) N (my—1,m;) = C, if u; € = and ;L(U{DOM@} f(x)n
(my,,m;)) < 1. The following conditions will be satisfied during the n-th step of

the fusion.
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e Forevery 0 < i < nandany branch x € [S,] going through u; |dy: (f(z), zs)—

€u,| < 1/2% more precisely there will be some finite set C,, C (m;_1,m;)
always defined as (z,, A z5) N (m;—1,m;) such that for any branch z €
[Sn] going through w; we will have (f(z) A x5) N (mi—1,m;) = C,, and
|u(Cy,) — eu,| < 1/2°. And for every branch y € [U,] not going through wu;
but going through some other u;, di (f(y),zs) < 1/2% thus it will follow
from the triangle inequality that [d7 (f(z), f(y)) — eu,| < 1/2°7%; resp.

mi—1

p((f(2) & fy) A Cu) O (miy,my)) < 1/2°.
e For every i < n d,,, (,,,rs) < 1/2"2

Suppose at first that such U has been already constructed. Let us consider

the set .
A={ze[U]: U Cyi) < 00}

i=|s|+1

It is Borel and by Corollary 3.0.9 either there is a Laver subtree V' <, U such that
[V] C A or there is a Laver subtree V' <q U such that [V]N A = (). In the former
case, V is a Laver subtree such that Vz,y € [V](xEy); while in the latter case, V'
is a Laver subtree such that Va,y € [V](z£Yy). This follows immediately from the
condition above. Let x,y € [V] be two different branches splitting on the n-th
level. Then max{u(U%, Caro)s (U2, o)} = S50 or 120 < d(f (@), f(y)) <
U, Cori) + p(UZ, Cyri) + 250 g /2

Let s be the stem of S. Set Sy = S, Uy = {s}, my = |s|. Before treating the
general step let us describe the case n = 1. We pick some immediate successor of
the stem s, denote it as uy and we set U; = {s = ug,u1 }. Since d(xy,,xs) = €y,
there is some m > my such that d"(z,,zs) > €,, — 1/2. There is some m; > m
such that d,,, (z,,,zs) < 1/2%. Then there exist direct extensions E; <g S,
and Ey <g Sp such that for all branches = € [E;] we have f(z)(m) = x,,(m) for
m < myq, and for all branches y € [Ey] we have f(y)(m) = xs(m) for m < my.
We set S; = EyU E, i.e. we replace Sy, in Sy by its direct extension E; and we
replace Sy \ Sou, by its direct extension Fy. The required conditions are satisfied

and we proceed to a general step.

Now let us suppose that we have already found S,,_1,U,,_1 = {s = ug, uq,...,up_1}
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and mgo = |s|,my,...,m,_1. Choose some next node u, € S,_; for the fusion
such that it is an immediate successor of some w; ¢« < n and x,, [ My_; =
Ty, | mu—1 (recall Observation 3.1.3). Set U, = U,_; U{u,}. There is some
m such that d  (2y,,%u,) > €, — 1/2""!. Since we have from the inductive
assumption that d  (z,,z,) < 1/2""' we get from the triangle inequality
dy (T4, Ts) > &y, —1/2". Let m, be the max{m, max{k; : i < n}}, where k;
is any number such that dy, (z,,,zs) < 1/2""2. Note that such k; exist because
2y, Ezas. We then find direct extensions E; <g S,,_1,, such that for every branch
x € [E;] we have f(x)(m) = z,,(m) for m < m,. We refine them so that they
are mutually disjoint, i.e. E;N E; = for i # j and we set S, = J,,, Fi. The

induction step is done, all required conditions are satisfied. That finishes the

proof of this case.

Proof of canonization assuming Case 2. We will assume that we have a Laver
tree S < T such that for every s € S above the stem if s is marked as convergent
then there is a barrier B C Sy of elements above s that are marked as divergent
(if we assume that Case 1 does not hold then we may take S =T)).

The following lemma will be the main tool.

Lemma 3.1.6. For any Laver subtree P < S there is its direct extension (Q <g P

such that for any two branches x,y € [Q] splitting from the stem of Q) we have
d(f(x), f(y)) > 1.

Once the lemma is proved the rest will be rather easy. We will do a fusion in
which we will be fixing levels. We will construct direct extensions of S S =V, >
Vi >0 Vo >¢ ... such that for ¢ < j the i-th level of V; is equal to the i-th level of
V; in such a way that the resulting tree S >¢ V' = (), V; will have the property
that for any two different branches z,y € [V] we will have d(f(x), f(y)) > 1.

This is not hard to do. We start with stem s of S = V. We find a direct ex-
tension 1V <, Vj guaranteed by the lemma. We fix the first level {sg, s1,...} (the
set of all immediate successors of s) above the stem. Then for every immediate
successor s; € V; of s we apply the lemma with Vi, as P and obtain a direct
extension ;. We set V5 = UZ Q; <o Vi, fix the second level above the stem and

continue similarly.

26



Then we are done by the following claim and Corollary 3.0.11.

Claim 3.1.7. E on [V] is countable.

Proof. Suppose for contradiction that there is some x € [V] that has uncount-
ably many equivalent branches (¥a)a<w, € [V]. For every « there is n such
that d,(f(z), f(ya)) < 1/2. Since the set of all y,’s is uncountable we may
assume that one single n works for them all. But let y,,, ¥, be two of such
branches that split above the n-th coordinate. It follows that from our construc-
tion that d,(f(Yay), [(Yay)) > 1, so for one of them, let us say y,,, must hold
that d(f(x), f(Ya,)) > 1/2, a contradiction. O

So what remains is to prove the lemma.

Proof of the lemma. Let P < S be given. Denote s its stem. There are two

cases.

e sis marked as divergent: Pick its immediate successor sy. Since s is marked
as divergent, there is ng such that d"(xs,zs) > 1 and there are direct
extensions Qg <o Ps,, Po <o P\ Py, such that Vz € [Qo]Vy € [Py]Vm <
no(f(x)(m) = x5 (m) A f(y)(m) = z5(m)).

We then pick next immediate successor s; € Py of s. There is again some
ny such that d"(xs,,zs) > 1 and we find direct extensions Q1 <o Pps,,
Py <o Py \ Pos, such that Vo € [Q1]Vy € [P1|Vm < ni(f(z)(m) = zg(m) A
fy)(m) = z5(m)).

We continue similarly until we pick infinitely many immediate successors of
s and find corresponding direct extensions @;. Then we set Q = J, Q;. It

is easy to check it has the required properties.

e s is marked as convergent: There is a barrier B C P of elements that
were marked as divergent. We may assume that for every b € B and every
s <t < b, tis marked as convergent. We will do a similar fusion to that
in the proof of canonization assuming Case 1. We will inductively build
Qn, Pnymy, such that P, <o P,—1, Qn = {@ = s,...,q.} UR) C B, for
n<m,m, €w. Let{q:i€C} C{q,...,q.} be the (possibly empty) set

57



of those elements that are immediate successors of some element from B.
Then R = | J;c( Piq,- The final tree is again obtained as Q = |J, Q; = ), B
Conditions that must be satisfied during the n-th step of the fusion are the

following.

— For every i < nifi ¢ C, ie. ¢ is not an immediate successor of an
element from B, then for any branch z € [P,] going through ¢; we
have dy» (f(z),z,) < 1/2". And if n € C, ie. ¢, is an immediate
successor of an element from B, then for any branch y € [P,] going
through g, we have d;» (f(y),xs) > 2; thus it will follow from the
triangle inequality that dji (f(z), f(y)) > 1.

— For every i < nifi ¢ C, ie. ¢ is not an immediate successor of an

element from B, then d,,, (x,,, zs) < 1/2"2.

Suppose at first that such @) has been constructed. We need to prove that
for any two branches z,y € [Q] with s as the last common node we have
d(f(x), f(y)) > 1. It follows from the assumption that = goes through some
u; which is an immediate successor of some element from B, similarly y goes
through some different u; with the same property. Assume ¢ < j. Then we
get from the inductive assumption that d;'  (f(x), f(y)) > 1 and we are

done.

In the first step of the induction we set Qy = {s}, Py, = P and my = |s|;

the set R is empty.

Suppose we have already found @Q,,_1, P,_1, m,_1. We choose some g, that

is an immediate successor of some ¢;. We have two cases.

— q; ¢ B, ie. ¢, is not an immediate successor of an element from B.
Then we set m,, = max{k; : i < n,i ¢ C}, where k;, for i ¢ C, is any
number such that dy, (z,,, ) < 1/2"72. Note that such k; exist because
2y, Ezxs. We then find direct extensions E; <o P,_1,, fori <mn,i ¢ C
such that for every branch x € [E;] we have f(z)(m) = x,(m) for
m < m,. We refine them so that they are mutually disjoint, i.e.

EiNEj =10 fori+#jand we set P, = (U i) U R
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— @q; € B,i.e. g, is an immediate successor of an element from B. We add
n to C. There is some m such that d ~ (x4,,%q,) > 2+ 1/2"! since
¢; € B is marked as divergent. Since from the inductive assumption
we have d'  (x4,,z5) < 1/2""" we get from the triangle inequality
that d ~ (xg,,2s) > 2. We then set m, = max{m, max{k; : i <
n,i ¢ C}}, where k;’s are defined exactly the same as in the first case.
We then again find direct extensions F; <o P,_1,4 for i = n and i <
n,t ¢ C such that for every branch = € [E;] we have f(x)(m) = x,,(m)

for m < m,,. We refine them so that they are mutually disjoint, i.e.

E;NE; = for i # j. We add E,, to R and we set P, = <Uz’¢0 E;)UR.

In both cases it is easy to check that all required conditions are satisifed.

]

3.2 Corollaries

Theorem 3.2.1. Let E C w¥ x w* be an equivalence relation containing K, i.e.
E D K, which is Borel reducible to Ez for some F, P-ideal. Then there exists a

Laver large set contained in one equivalence class.

Recall that K was defined in Definition 3.0.12.

Proof. Consider the set
X = {x € w” : [x]p contains all branches of some Laver tree}

We use Theorem 3.1.1 to prove that X is non-empty. Suppose it is empty, then by
Theorem 3.1.1 there exists a Laver tree T" such that E [ [T] = id([T]). However,
there must be two branches z,y € [T] such that zKy and since K C E, also 2 EYy,
a contradiction.

Thus X is non-empty. We show that it is also E-equivalent, i.e. there is
no pair z,y € X such that zEy. Suppose the contrary. Then [z]z contains all
branches of some Laver tree T, and [y|r contains all branches of Laver tree T},
and there are branches b, € T, and b, € T, such that b, Kb, and since K C F,

also b, E'b,, a contradiction.
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So X is a single equivalence class, containing all branches of some Laver tree
T, and thus it is Borel. If it were not Laver large, then the complement would be
a Borel Laver positive set, so by Proposition 3.0.8 it would contain all branches of
some Laver tree S. But we would again have that there are a branch x € [T] C X

and a branch y € [S] such that x Ky, thus xFy, a contradiction. ]

Theorem 3.2.2 (Silver dichotomy - under “Vx € R(wfm < wy)"). Let E C
w¥ X w¥ be an equivalence relation Borel reducible to Er for F, P-ideal Z. Then
either w* = (U,e, En) U J, where E, for every n is an equivalence class of

E and J is a set in the Laver ideal, or there exists a Laver tree T such that

E [ 1] = id((T).

This is just a combination of Theorem 3.1.1 and the results from the section
on Silver dichotomy from [18]. It is not known if the assumption “Va € R(w} <

wp)” is necessary.

Corollary 3.2.3 (under the same assumption). Let F C w¥ X w* be an equiva-
lence relation Borel reducible to Ez for F, P-ideal Z and let X C w* be an arbi-
trary Laver-positive subset (not necessarily definable) such that Vz,y € X (zEy).
Then there ezists a Laver tree T such that E | [T] =id([T]).

Proof. Just use the Silver dichotomy from the previous theorem and notice that
the first possibility cannot happen. If w* = (|, .., £n) U J as in the statement of
the previous theorem, then X'\ J is still not in the Laver ideal and is uncountable.

O
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Chapter 4

Carlson-Simpson forcing

Introduction

In [1], Timothy J. Carlson and Stephen G. Simpson prove a strong combinatorial
theorem concerning finite partitions of natural numbers that is in some sense dual
to the classical Ramsey theorem. It is usually called the Dual Ramsey theorem
or the Carlson-Simpson theorem. In this chapter we define a forcing notion,
resp. a o-ideal on a certain Polish space, that corresponds to the object studied
in the Dual Ramsey theorem and prove a canonization result for this o-ideal.
More specifically, we identify a finite set of equivalence relations that are in the
spectrum of this ideal and any other analytic equivalence relation canonizes to
one of them.

Let us state one immediate interesting consequence of the result from this

chapter.

Theorem 4.0.4. Let E be any analytic equivalence relation on P(w) (we identify
elements of P(w) with elements of 2). Then there exists an infinite sequence
(An)new of pairwise disjoint non-empty subsets of w (finite or infinite) such that
either for any two different arbitrary unions of such sets (both containing Ao
though) they are E-equivalent, or for any two different arbitrary unions both

containing Ag they are E-inequivalent.

Now we introduce the original notation of Carlson and Simpson from [1] and

state their theorem. Then we define the forcing notion and our theorem in their
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language in order to motivate it. However, we will slightly change the notation

in the proof.

Definition 4.0.5. Let A be a finite (at least two-element) alphabet. As in [1],
by (w)%, where o € (w\ |A|) U{w}, we denote the set of all partitions of AU w
into « pieces such that two different elements a # b € A lie in two different pieces
of such partitions. For any X € (w)9, a piece containing some a € A is called an
a-block, a piece not containing any element of A is called a free block.

For Y € (w) and X € (w)g, where § < o, we say Y is coarser than X,
Y < X, if every block of X is contained in some block of Y. For any X € (w)%
by (X)5, where 5 < a, we denote the set {Y € () : Y < X}.

Definition 4.0.6 (Space (w)Y). Consider the set (w)%. We look at it as a set of
all partitions of w into |A| pieces indexed by A. There is a natural correspondence
between (w)Y and A“. The latter carries a product topology if we consider A as a
discrete space which is homeomorphic to the topology of the Cantor space. From
now on we will not distinguish between these two sets and thus be able to speak

about topological properties of (w)Y.

Definition 4.0.7 (Carlson-Simpson forcing/ideal). We shall consider ((w)4, <)

as a forcing notion. For X € (w)4 we shall write [X] to denote the set (X)9.

Note that for any such X, [X] is a closed subset of (w)% (or A%).
Let Ic, € P(A¥), where n denotes the cardinality of A, be the set of all Borel

subsets of A“ that do not contain [X| for some X € (w)4.
The following proposition gives some properties of I .
Proposition 4.0.8.
1. I¢, is a o-ideal.
2. Pp, s forcing equivalent to ((w)4, =).
3. P 1s proper.

We postpone the proof until we have proved the main theorem 4.1.1. The
reason for that is that the first item of Proposition 4.0.8 will follow easily. We do

not need any part of the proposition in the proof of the main theorem. However,
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let us mention that all items of Proposition 4.0.8 could be proved by a direct
argument without applying the main theorem.
Let us state a restricted version of the Carlson-Simpson (Dual Ramsey) the-

orem for partitions without free blocks.

Theorem 4.0.9 (Carlson-Simpson [1]). For any X € (w)%4 and any finite parti-
tion [X] = CyU. . .UC,, into pieces having the Baire property there exists Y € (X)4
and i < n such that [Y] C C;.

4.1 Canonization

Let A be a finite alphabet such that |A] = n > 3. Let B C A be a proper
subset of A such that |B| > 2. Then we can consider the following equivalence
relation Fp on AY: for x,y € AY we set xEpy iff Vn € w((z(n) € B < y(n) €
B) A (2(n) ¢ B = y(n) = 2(n))).

It is easy to check that Ep is a closed equivalence relation that is in the
spectrum of I, . For a finite alphabet A let By = {B; : i < 2" —n — 2} denote

the set of all proper subsets of A of cardinality at least 2.

Theorem 4.1.1. Fiz some finite alphabet A with at least two elements. Let
X € (w)4 be a condition in the Carlson-Simpson forcing and E an analytic
equivalence relation on [X] (i.e. an analytic subset of [X|*). Then there exists a
subcondition Y € (X)4 such that E | [Y] is equal to [Y] x [Y] or to id([Y]) or
there exists B € By such that E | [Y] = Eg | [Y].

In particular, we have a total canonization for I, .

Remark 4.1.2. This is an “almost generalization” of Theorem 4.0.9 as this theorem
can be viewed as a canonization result for equivalence relations having finitely
many classes. We used the term “almost generalization” as the Theorem 4.0.9
holds for partitions into pieces having the Baire property whereas Theorem 4.1.1

generalizes only the case with analytic partitions.

As mentioned in Introduction, we prove the theorem for a two element al-
phabet in full detail. Then we sketch how to obtain it for general A. The more

detailed proof of the general case is in the article [5] which is in preparation.
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As announced, we will slightly change the notation unfortunately. From now
on we consider a two element alphabet A. We consider a forcing notion which is
equivalent to ((w)4, <) for two element A but will be notationally easier to deal

with in our proof. Few definitions follow.

Definition 4.1.3 (Forcing notion CS). A condition p in the Carlson-Simpson
forcing CS is a pair (a,, b,) where a, C w is a coinfinite subset of w and b, : w —
P(w) is an infinite partition of an infinite set B, which is disjoint with a,; i.e.
Ui bp(i) = B, and a, N B, = 0. We will moreover assume that if i < j then
min{b,(i)} < min{b,(j)}.

We define p < q if a, 2 a, Nay, \ aqg = ;¢ be(7), where C C w is an arbitrary
coinfinite set, Vi3D € [w]=(b,(i) = U,cp bg(4))-

By [p] we will denote the set of all subsets of w that can be obtained from the
condition p; ie. [p] ={r Cw:2x2a, NIC Cw(z\ ap = U,cc bp(?))}-

Remark 4.1.4. Let us describe the correspondence between CS and ((w)4, =X).
Any p € CS can be viewed as an infinite partition where the free blocks are b, (%),
for i € w, and the two non-free blocks are a, and w \ (a, U U, bp(7)). On the
other hand, any X € (w)4 (let us say that A = {a, b}) can be viewed as px € CS
such that a,, is the non-free block containing b and b,, (), for i € w, are free

blocks of X ordered by their minimal elements.

Definition 4.1.5. Let ¢ € CS be a condition and s € 2<% a finite binary sequence.
By ¢° we denote the condition for which a, = a, U {b,(7) : s(i) = 1} and
By = B, \ Ui<|s| bq(i) A W(bqs (Z) - bq(i + |5|))

Note that whenever for some g and s there is r < ¢°, then there is in fact a
condition ¢ such that ¢ < ¢ and t* =r;ie. a = ar \ U5 bg(4), bi(i) = by(i) for
i < |s| and by(i) = b, (i — |s|) for ¢ > |s|. From that reason for a condition ¢ and a
finite binary sequence s when we write ¢t* < ¢° then by ¢ we mean the condition

(< q) described above.

We would like to use fusion of conditions, so in the next definition we define

what fusion sequence is.

Definition 4.1.6 (Fusion sequence). We define the suborder <,C< for every
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n. For pge CSand n € wp <, ¢ if p < ¢ and Vm < n(b,(m) 2 by(m)). In
particular, <,=<.

A sequence (pp)new C CS is a fusion sequence if Vn > 0(p, <,, pp—1). Then
we define the fusion of such a sequence to be the condition p where a, =, a,,
and for every i b,(i) = U, bp, (7)-

It is easy to check that p <,.1 p, for every n.

Definition 4.1.7 (Reduced products). We define two reduced products of two
copies of the Carlson-Simpson forcing.

We set CS x gy CS = ({(p,q) € CS x CS : b, = b, Amin{a, \ a,} < min{a, \
ay}}, <ro). The order relation <gy is induced from the usual product. We denote
it differently to emphasize that we are working with the reduced product.

Moreover, we define a second reduced product CS x gy CS as follows CS X p;
CS = ({(p,q) € CSxCS :b, =b; Na, C a,},<g1). The order relation <g; is
a subrelation of <gy defined as follows: (p,q) <gi (r,t) if (p,q) <go (r,t) and

a, \ ar C a, \ a.
We now restate Theorem 4.1.1 in this new language for two element alphabet.

Theorem 4.1.8. Let p € CS be a condition in the Carlson-Simpson forcing and
E an analytic equivalence relation on [p]. Then there exists a subcondition ¢ < p

such that E | [p] is equal to [q] X [q] or to id([q]).

Proof. Consider CS X gy CS and CS x gy CS as forcing notions. They both add a
pair (xr,xg) of infinite subsets of w. More specifically, one can easily check that
CS xpo CS I |z \ zg| = |zr \ 21| = w while CS xg; CS IF 2, C 2. We will use
the symbol IF; to specify that we are forcing with CS x gy CS. Similarly, we will
use g to specify that we are forcing with CS x po CS.

The following lemma is the main tool that immediately implies Theorem 4.1.8.
It is more general than Theorem 4.1.8, however we do not have any other appli-
cation of it besides that theorem.

The statement is divided into three items. It could be stated at once but it is

probably more convenient and transparent to have these items separately.

Lemma 4.1.9.

65



(i) Let p € CS be any condition and let M be a countable elementary submodel
of some H), where H)y is sufficiently large, which contains p and E. Then
there exists ¢ < p such that Vx,y € [q] if x C y then the pair (x,y) is
M-generic for CS xg1 CS, and Vz,y € [q] if [t \y| = |y \ 2| = w and
min{z \ y} < min{y \ x} then the pair (z,y) is M-generic for CS X gy CS.

(ii) Let (s,t) <gr1 (p,p) be any condition and let M be again a countable ele-
mentary submodel of a large enough structure containing (s,t) and E. Then
there exists (q,r) <g1 (s,t) such that Vx € [gly € [r] if + C y then the pair
(x,y) is M -generic for CS x gy CS.

(11i) Let (s,t) <gro (p,p) be any condition and let M be again a countable ele-
mentary submodel of a large enough structure containing (s,t) and E. Then
there exists (q,7) <go (s,t) such that Vx € [qly € [r] the pair (z,y) is M-
generic for CS xz CS.

We postpone the proof for later. First, we show how the theorem follows.

Let us consider the two following cases.

e Case 1 (p,p) o 2 Fxg and (p,p) by 2 ETR.

e Case 2 Either 3(s,t) <g1 (p,p)((s,t) IFy x ExR)
or 3(s,t) <gro (p,p)((s,t)<r1(p,p) A (s,1) ko L ExR).

If Case 1 holds then we fix a countable elementary submodel M of some H,
where H) is sufficiently large, which contains p and F and we apply Lemma 4.1.9
(i) to obtain corresponding ¢ < p. It follows that for any z,y € [q] M[z,y] F 2.EY
and since F is analytic it follows from the analytic absoluteness (see Theorem
1.2.1) that xEYy.

If Case 2 holds then either there exists (s,t) <go (¢,q) such that (s,t) Ikq
xpExg, or there exists (s,t) <gi (q,q) such that (s,t) IF; zpExg.

In the former case, we again fix a suitable countable elementary submodel M
and apply Lemma 4.1.9 (iii) to obtain the corresponding (¢q,r). We have that
for any = € [¢],y € [r] M[z,y] E xFEy and it again follows from the analytic
absoluteness that xFEy. It immediately follows from the transitivity of E that
B 1 la) = [q) x lq] (or similarly E | [1] = [r] x [r]).
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In the latter case, we again use some suitable countable elementary submodel
M and Lemma 4.1.9 (ii) to obtain the corresponding (g, 7). We now have that for
any z € [q],y € [r] if x C y then M[z,y| E xEy and by the analytic absoluteness
xFEy. We use transitivity of £ to show that for any = € [¢],y € [r] vFy. Let a
pair z € [q],y € [r] such that x \ y # 0 be given. Denote d = x \ y. It is easy
to check that y U d € [r]; similarly = \ d € [g] (just note that (¢,7) <gr1 (¢, q),
ie. a; C a, and b, = b,). Thus we have zE(y Ud)E(z \ d)Ey and from the
transitivity zEy. It again follows using transivity that E [ [q] = [q] x [¢] (or
similarly E | [r] = [r] x [r]).

Proof of the lemma. We prove only (i), proofs of the other items are just a routine
modification.
Let us enumerate all open dense subsets of CS X go CS lying in M as (D,)new,

and all open dense subsets of CS x gy CS lying in M as (E,)new-

Step 1 We find a subcondition p, of p such that for all different z,y € [poo] such
that = C y the pair (x,y) is M-generic for CS x g; CS.

Claim 4.1.10. For any r < p and any finite binary sequence u there is s <jy41 7
such that Vz € [s*y € [s"!] such that x C y we have that the pair (z,y) is
M -generic for CS x g, CS.

Suppose the claim is proved. The fusion producing the condition p., goes as
follows. According to the claim there exists py <; p such that Vz € [pJly € [p}] if
x C y then the pair (x,y) is M-generic for CS x g; CS. Then using the claim two
times there exists p; <y pg such that Vo € [p{°)y € [p?'] if x C y then the pair
(z,y) is M-generic for CS x g CS, and similarly Vz € [pi°]y € [pi'] if  C y then
the pair (z,y) is M-generic for CS x g, CS.

In general, when we have already found p,,_; then using the claim 2"-times
we find a condition p, <,.1 pn_1 such that for any binary sequence u of length n
and Vz € [py € [p"!] if z C y then the pair (z,y) is M-generic for CS X g, CS.

Let ps be the fusion of that sequence. Then for any = € [ps]y € [poo) such
that  C y there exists some ¢ such that the block b, () lies in y but not in z.

Let i be the minimal such index. Then it follows that = € [p?°]y € [p*!], for some
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binary sequence u of length 7 and so we have guaranteed during the fusion that

(x,y) is an M-generic pair for CS x g; CS.

To prove the claim, again a fusion is needed. Let » < p and a finite binary
sequence u be given. Since Ej is dense there exists s <; r* such that (s, s}) €
FEy. Note that we are looking for a pair (s,t) <g; (r“°,r*!) lying in Ejy and this
pair (s,t) is of the form (s, s}) for some sy <; r*. Also note that sy = s’y for

some s, <q [y T

u

Suppose we have already found s,_; (again we may write s,_; = ', for

some s’

et Zn+lul s ). Using that E, is open dense we extend s, 1 to obtain

Sn <pi1 Sn_1 such that for every pair (v, w) € (2")? of binary sequences of length
n such that {i : v(i) = 1} C {i : w(i) = 1} we have (s%, sl*) € E,. To do

this, enumerate all such pairs of binary sequences of length n as {(v;, w;) : i <
Sr 024"} (denote k = > 2¢(")) and set ty = s,_1. When we already have
ti_y for i < k —1 we find t; <,4; t;_; such that (t?”"’l,t;wi’l) <m (t?ﬁ’fl,t;ﬁ”)
and such that (t?vi’l, t1"') € B,. Finally, set s, = t;_1 and the induction step
is done.

Once the fusion sequence is constructed, let s’ be the fusion limit. It is easy
to check that s is in fact s where s is the fusion limit of the sequence s; <oyl
1 <stjul S Zatlul - -- and this s is the desired condition.

This finishes the proof of the claim and also the proof of Step 1.

Step 2 Now we find a subcondition ¢ < p, such that Vz,y € [q] such that
|z \y| = |y \ z| =w and min{z \ y} < min{y \ 2} the pair (z,y) is M-generic for
CS X go CS which will finish the proof.

Claim 4.1.11. For any r < ps and any two finite binary sequences u,v there
exists s <jytjoj+2 T such that Vo € [y € [s"] the pair (z,y) is M-generic

for CS x gg CS.

Suppose the claim is proved. Then the final fusion producing the condition ¢
goes as follows.
According to the claim there exists gy <2 poo such that Vo € [¢i%y € [¢)}] the

pair (z,y) is M-generic for CS X gg CS. Suppose that we have already found ¢,,_;.
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Then using the claim several times (precisely 2" times) we find a condition
Gn <n+2 Gn—1 such that for any two finite (including empty) binary sequences u, v
such that |u| + |v] = n we have that Vz € [¢“'")y € [¢“%!] the pair (z,y) is
M-generic.

Let g be the fusion limit. Then for any x,y € [g] such that minz\y < miny\z
there exists the least block b,(7) such that it lies in z but not in y and also there
exists the least block b,(j) such that it lies in y but not in x (note that i < j).
It follows that = € [¢¥'{"]y € [¢/%}'], where |u| =7 and |[v| = j —i — 1 for some
binary sequences u, v, and so we have guaranteed during the fusion that the pair

(x,y) is M-generic for CS X pg CS.

It remains to prove this last claim to finish the proof of Lemma 4.1.9 and
Theorem 4.1.8. The proof is similar to the proof of Claim 4.1.10.

Let r < ps and a finite binary sequences u,v be given. Since D, is dense
there exists s <ju|4[vj+2 r such that (s§'*?, s§%!) € Dy. Note that we are looking
for a pair (s,t) <gi (r*'° r“%!) lying in Dy and this pair (s,t) is of the form
(510, s§0%1) for some So <jytjo|+2 T

Suppose we have already found s, ;. Using that D, is open dense we ex-
tend s,,_1 to obtain s, <jutjsj4n+2 Sn_1 such that for every pair (w,w’) € (2")
of binary sequences of length n we have (s“'*0v su0vvy ¢ D To do this,
enumerate all such pairs of binary sequences of length n as {(w;,w}) : i <
22"} and set tg = s,_1. When we already have ¢;_; for i < 2*" — 1 we find
ti <jul+jo|+n+2 ti—1 such that (t?lvowi’l,tfovlwé’l) <m (t?_lzowi’l,t?ﬁlw;’l) and such
that (t?lvowi‘l,tfovlw;‘l) € D,. Finally, set s, = ty2n_; and the induction step is
done.

Once the fusion sequence is constructed we set s to be the fusion limit and it

is a routine to check that this is the desired s. O

The proof of the generalization for an alphabet containing more than two

elements is sketched here. It uses induction on the cardinality of A.

Theorem 4.1.12. Let A be a finite alphabet such that |A| > 3. Let X € (w)4 be a

condition in the Carlson-Simpson forcing and E an analytic equivalence relation
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on [X]. Then there exists a subcondition Y € (X)4 such that E | [Y] is equal to
Y] x [Y] or toid([Y]) or there exists B € By such that E | [Y] = Ep [ [Y].

Sketch of the proof. Let n = |A| and enumerate A as {ao,...,a,-1}. For every
i < n let us denote X g; the reduced product of (w)4 such that (Z,Y) € (w)4 X g
(w)4 iff for every j # ¢ the a;-block of Z is contained in the a;-block of Y and
the free blocks of Z and Y are the same. Moreover, let X g, denote the reduced
product of (w)4 such that (Z,Y) € (w)4 Xgn (w)4 iff for every j < n neither the
a;-block of Z is contained in the a;-block of Y nor the a;-block of Y is contained
in the a;-block of Z, and the free blocks of Z and Y are the same. Notice how
this generalizes Definition 4.1.7 for an arbitrary alphabet.

The following lemma is proved by analogous means as Lemma 4.1.9.

Lemma 4.1.13.

(i) Let X € (w)4 be any condition and let M be a countable elementary sub-
model of some Hy, where Hy is sufficiently large, which contains X and E.
Then there exists Y < X such that Vz,y € [Y] if there is i < n such that
for every j # i the a;-block of z is contained in the a;-block of y then the
pair (z,y) is M-generic for (w)4 X g; (w)4, and Yx,y € [q] if for every j <n
neither the a;-block of z is contained in the a;-block of y nor the a;-block

of y is contained in the a;-block of z then the pair (z,y) is M-generic for

(W)4 X pn (@)3-

(i) Let i < n and let (Z',Y') < (X,X) be any condition and let M be
again a countable elementary submodel of a large enough structure con-
taining (Z',Y") and E. Then there exists (Z,Y) <g; (Z',Y') such that
Vz € [Zly € [Y] if for every j # i the aj-block of z is contained in the
aj-block of y then the pair (z,y) is M-generic for (w)4 X gi (w)4.

(11i) Let (Z')Y") <gn (X, X) be any condition and let M be again a countable
elementary submodel of a large enough structure containing (Z',Y') and E.
Then there exists (Z,Y) <gn (Z',Y") such that Vz € [Zy € [Y] if for every

J < n neither the aj-block of z is contained in the a;-block of y nor the a;-
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block of y is contained in the a;-block of z then the pair (z,y) is M-generic

for ()3 Xrn (W)3-

We again have two cases. Note that for each i < n the forcing notion (w) X g;

(w)4 again adds a pair of reals again denoted as x;, and xg.
e Case 1Vi<n((X,X)IF; 2. FzR).
e Case 2 3i <ni(Z,Y) <g (X, X)(Z,Y) IF; x Expg).

If Case 2 holds then as in Theorem 4.1.8 using analytic absoluteness and tran-
sitivity of £ we prove that there exists a condition Y < X such that £ [ [Y] =
Y] x [Y].

Suppose that Case 1 holds. Then as in Theorem 4.1.8 using analytic ab-
soluteness we prove that there is Y < X such that Vz,y € [Y] if there isnoi < n
such that the a;-block of z is equal to the a;-block of y, then zEy. However,
notice that the case when there is some ¢ < n such that the a;-block of z is equal
to the a;-block of y is not treated by Lemma 4.1.13 since in such a case the pair
(z,y) is not generic for (w)4 X g; (w)4 for any i < n.

However, consider {ay,...,a, 1} € B4. We can use by an inductive argument
Theorem 4.1.12 for A" = {ay,...,a,_1} to obtain Yy <Y such that either Vz,y €
[Yo](2Exy = 2EYy), or there is some subset B C A’ (|B| > 2, including the case
when B = A’) such that Vz,y € [Yy](zEpy = zEy). If the latter case holds and
B = A’ then we are done. We found a condition Yj such that £ | [Yy] = Ep | [Yol.
If B is a proper subset of A’ then consider B’ = B U {ag} and we can again use
by an inductive argument Theorem 4.1.12 for B’. We obtain some Z < Yj such
that either F' [ [Z] = Ep | [Z] or E | [Z] = Ep/ | [Z].

If the former case holds then we will succesively use Theorem 4.1.12 for
{ag,a;}, for every 0 < i < n. Either we end up with a condition Z <Y such that
Vz,y € [Z](2EYy) or we end up with a condition Z <Y and some 0 < i < n such
that £ | [Z] = Eaga | [Z]- O

We finish by providing the proofs of Proposition 4.0.8 and Theorem 4.0.4.

Proof of Proposition 4.0.8. Fix an alphabet A with |A| = n > 2. Let us prove (1).

Let A, € I¢, for all n € w. Suppose that A =, . A, ¢ Ic,. It must contain

new
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[X] for some X € (w)4. We can define a Borel equivalence relation F on [X]
with countably many classes such that Va,y € [X](zEy < In € w(x,y € A,)).
Applying Theorem 4.1.1 we get Y < X such that E [ [Y] is the full relation, the
identity relation or E | [Y] for some B € B4. Since E has only countably many
classes only the first case is possible. Thus F | [Y] = [Y] x [Y], i.e. thereisn € w
such that [Y] C A,, which is a contradiction.

The item (2) follows from (1). For any X € (w)4, [X] is a Borel (closed) I¢, -
positive subset; conversely, it follows from (1) that any Borel I, -positive subset
of A contains [X] for some X € (w)4.

We prove (3) only for case |A| = 2 because of our notation introduced for this
special case. Consider the suborders <,C< on CS. It is easy to check that CS
with these relations satisfies Axiom A and thus it is proper (see [16] Definition

31.10 and then Lemma 31.11). O

Proof of Theorem /.0.4. This is just a special case of Theorem 4.1.8 if we consider
p to be the biggest condition in CS, i.e. a, = ) and b,(i) = {i} for every i € w.
Theorem 4.1.8 gives a subcondition ¢ < p on which E is simple. The condition ¢
determines the sequence (A, )new: Ao = a4 and A; = by(i — 1) for i > 1.

Let us just note that we cannot eliminate the set Ay from the statement, i.e.
demand it to be empty. Just consider an equivalence relation F on P(w) where

for a,b € P(w) we have aEb if mina = minb. O
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Chapter 5

Universal and ultrahomogeneous

metric structures

Introduction

In 1927, P. S. Urysohn constructed a metric space U which is now called The
Urysohn universal metric space ([32]). It is a Polish metric space that is both
universal and ultrahomogeneous for the class of all finite metric spaces. The uni-
versality means that every finite metric space can be isometrically embedded into
U and the ultrahomogeneity means that any finite isometry ¢ : {x1,...,z,} C
U — {y1,...,9.} C U extends to an isometry ¢ 2 ¢ : U — U on the whole
space. These two properties imply that U, in fact, contains an isometric copy of
every separable metric space and that U is unique with these two properties up
to isometry.

The aim of this chapter is to enrich the Urysohn space with some additional
structure so that this enriched Urysohn space is still universal and ultrahomoge-
neous for that specific (Polish) metric structure. The definition of Polish metric
structures considered here is given at the end of this section. A related work has
been done by W. Kubis$ in [24] (see also [13]).

Our initial motivation was to provide a general way of coding of such classes
of Polish metric structures as standard Borel spaces. Let us say we are given
some class of Polish metric structures and we would like to use methods of de-

scriptive set theory to investigate (e.g. classify) this class. In order to use these
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methods we need to represent such a class as a Polish space or, it is sufficient,
as a standard Borel space. Recall Definition 1.1.15 of an Effros-Borel structure.
Effors-Borel structure is an example of a standard Borel space that can serve in

this direction. Let us illustrate it on examples.

Examples.

e Recall (Fact 1.1.2) that every Polish space X is homeomorphic to a closed
subset of RY. Thus the Effros-Borel space of F((RY) can be interpreted as

a standard Borel space of all Polish spaces.

e Recall the classical result of Banach and Mazur that every separable Ba-
nach space can be be embedded by a linear isometry into the separable
Banach space C([0,1]), i.e. the Banach space of all real-continuous func-
tions on [0, 1]. Consider the following subset of the standard Borel space
F(C([0,1])), which can be checked to be Borel, Subs = {X € F(C([0,1])) :
X is a linear subspace}. It is a standard Borel space of all separable Ba-
nach spaces (that has been used, for instance, by V. Ferenczi, A. Louveau
and C. Rosendal in [9] for a classification result of separable Banach spaces
with the relation of linear isomorphism). There are a lot of Borel subsets of
Subs that represent certain subclasses of separable Banach spaces (see [2]

for example).

e Because of the properties of U the standard Borel space F/(U) can serve as a
coding of all Polish metric spaces. We remark that this approach was used
by Gao and Kechris in [12] in their classification of Polish metric spaces up

to isometry.

The Effros-Borel structure of F'(S), where & will be one of the structures we
investigate here, should serve in a similar way. Let us state the main definitions

of this chapter.

Definition 5.0.14 (Polish metric structure). Let Z1,..., Z; be a list of Polish
metric spaces. A finite or countably infinite set O is called a signature if it consists

of symbols for closed sets. Moreover, there is a functiona : O — ([0, ..., k] xN)<%;
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i.e. to each symbol from O it assigns a finite sequence of elements (a,b) where
0 <a<kandbeN. Byagr(n,i), fori € {1,2}, we denote the i-th coordinate
of the n-th element of a(F).

A Polish metric structure of signature O is a Polish metric space (X, d) such
that for every I € O there is a closed set Fx C Z," ((1112)) X ... X" ((‘f((;))",’f)) , where
by Zy we denote X.

Definition 5.0.15. Let (X,d, Ox) be a Polish metric space of some signature
O. We say that (X, d, Ox) is universal if for any Polish metric space (Y, d, Oy) of
the same signature O there is an isometric embedding ¢ : ¥ — X that moreover
reduces Fy into Fx (for every F' € O): ie. for any (yi,...,y,), where I C
{1,...,n} are the coordinates such that y; € Y iff i € I, we have (y1,...,y,) €
Fy & (z1,...,2,) € Fx, where x; = ¢(y;) if i € I and z; = y; otherwise.

We say that (X, d, Ox) is ultrahomogeneous if any isomorphism between two
finite (metric) substructures (F,d, Op, ) and (Fy,d, Op,) of (X, d, Ox) extends to
an automorphism of the whole (X, d, Ox).

Let us illustrate the universality and ultrahomogeneity on examples.

Examples.

e If the signature O is empty then (X,d, Ox) is just the Urysohn universal
metric space U, i.e. space containing an isometric copy of every Polish (or
just separable) metric space and with the property that every finite partial

isometry extends to an isometry of the whole space.

e Let us consider the case when the signature Ox contains a symbol for one
closed subset C' of X. Then for any Polish metric space (Y, d) equipped with
some closed subset D C Y there is an isometric embedding ¢ : ¥ — X
that maps D into C, ie. Yy € Y(y € D < ¢(y) € C); in other words,
o(Y)NC = ¢(D). Moreover, for any two finite subspaces Fy, F5 C X and an
isometry ¢ : F| — F; respecting the closed subset, i.e. ¢(F1NC) = F,NC,
there is an extension to an isometry on the whole space ¢ C ¢ : X — X

that still respects the closed subset, i.e. ¢(C) = C.
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e Let us consider the case when the signature Ox contains a symbol for a
closed subset C' of X x Z where Z is some fixed Polish metric space. Then
for any Polish metric space (Y,d) and a closed subset D C Y x Z there
is an isometric embedding ¢ : Y < X such that Vy € YVz € Z((y,2) €
D & (¢(y),z) € C). Moreover, for any two finite substructures Fi, Fy
and isometry ¢ between them respecting the structure, i.e. Vf € FiVz €
Z((f,z) € C & (¢(f),z) € O), there is an extension ¢ to the whole space

still respecting the closed set C.

e Let us consider the case when the signature Ox contains a symbol f for a
closed subset of X x Z and moreover
(X,d,Ox) = f is a graph of a continuous function, where Z is some fixed
Polish metric space. Then for any Polish metric space (Y, d) equipped with
a continuous function g : Y — Z (i.e. a Polish metric structure of that
signature which also models that this closed set is in fact a graph of a
continuous function) to that fixed space Z there is an isometric embedding
¢ 'Y — X that maps the graph of g into the graph of f; in other words,
Yy € Y(g(y) = foo(y)). Moreover, for any two finite metric substructures
Fi, F5 C X and an isometry ¢ between them that respects the continuous
function, i.e. Vo € Fi(f(x) = fop(x)), there is an extension to the isometry

on the whole space that still respects the continuous function.

In what follows we shall denote the Polish metric structures somewhat loosely.
For instance the Polish metric structure with two closed sets would be denoted
often as (X, Fy, Fy) instead of (X, d, Fi, F%) where F', F? are two symbols for

closed sets.

Definition 5.0.16 (Almost universal and ultrahomogeneous structures). Sup-
pose now that the signature O on (X,d) consists of countably many symbols
for closed sets of the same type, e.g. countably many closed subsets of X or
countably many continuous functions (resp. graphs of them) from X to some
fixed metric spaces. In such a case we will usually not be able to maintain uni-
versality and ultrahomogeneity in the full strength. Let us have O enumerated
as {O, : n € N}. We say that (X, d, (O,)nen) is almost universal and ultraho-

mogeneous if for any Polish metric space (Y, d, (F},)nen), where (F),) are of the

76



same type as (O,) there is an isometric embedding ¢ : ¥ < X and an injection
7 : N — N such that ¢ maps F), into Or,). Moreover, let Fy, I, be two finite
subspaces of X such that there is a finite isometry ¢ between F; and F, and
two sets of indices {k1,...,k,} € N and {ly,...,l,} € N such that ¢ maps the
restriction Oy, | F} into the restriction O, [ F3, for all ¢ < n. Then there is an
isometry ¢ O ¢ of the whole space X extending ¢ and a bijection 7 : N — N,
such that 7(k;) = I; for i < n, such that ¢ maps O,, into Oxr(m) for all m € N.

We remark that in all cases the underlying Polish metric space X for a given
structure is isometric to the Urysohn universal space U, thus from now on we will
always denote it as U. We will comment on this in Remark 5.1.7 after the proof

of Theorem 5.1.2.

Notational convention. For any metric space X we will denote the metric as
either dx but more often, when there is no danger of confusion, just as d. When
working with a metric on a product of metric spaces we always consider the sum
metric, i.e. d((z1,x2), (y1,92)) = d(x1, 1) + d(x2, y2).

We usually denote tuples (x1, ..., z,,), for an arbitrary m € N clear from the

context, by Z. When ¢ is some mapping we denote (¢(z1),. .., d(z,)) by ¢™(L).

5.1 Universal closed relations

Theorem 5.1.1. Let nqy < ... < n,, be an arbitrary non-decreasing sequence of
natural numbers. Then there exist closed relations (subsets) F,, C U™, fori < m,
such that the structure (U, F,,, ..., F,,,) is uniwersal and ultrahomogeneous and

it is unique (up to isometry preserving the relations) with this property.

Instead of giving a proof of this theorem we prove the theorem below which is
“almost” more general. In remarks after the proof of Theorem 5.1.2 we indicate

how to modify the proof so that it works also for Theorem 5.1.1.

Theorem 5.1.2. There exists an almost universal and ultrahomogeneous struc-
ture (U, (F)nmen) where F! C U™ is a closed n-ary relation (i.e. a closed subset
of the n-th power of U). It is also unique with this property (up to permutation

of the set of n-ary relations for each n and isometry preserving the relations).
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Remark 5.1.3. Let us elaborate more on the statement of the theorem. Let (X, d)
be a Polish metric space equipped with closed sets G, for all m,n € N, where
G C X". Then there exist an isometric embedding ¢ : X — U and injections
T, : N = N, for each n € N, such that Vn,m € N(¢(X)" N F} . =9"(Gy,)), or
in other words Vn,m € NVZ € X"(Z € G}, < ¢"(T) € I ).

In particular, ¢" : Gy, — F (m) is an isometric embedding.

Moreover, let My, My C U be two finite metric subspaces, some ny; < |[M;| =
|Ms|, for each n < ny, there are finite sets of indices IM1 M2 C N such that
|[IMi] = npr —n+ 1, for i € {1,2}, and for each n < ny; there are bijections
7, o IM — M2 and an isometry ¢ : My — M, such that Vn < ny,Vm € M7 e
My (% € F, < ¢"(2) € F} (,,,)); 1.e. ¥ reduces the closed relation F into F" .
Then there are an isometry ¢ : U — U and bijections 7, : N = N, for each i € N,
such that Vn,m € NVZ € UM% € ! < (%) € 2 (), and 1 extends ¢ and

T, extends 7, for each n < ny,.

We will construct these sets along with the underlying metric space (universal
Urysohn space) as a Fraissé limit of a certain countable class K of finite structures.
This is basically also an original method of construction of the Urysohn universal
space eventhough the general Fraissé theory did not exist at that time! We note
that there is another construction of the Urysohn space due to M. Katétov ([19]).

Let us make another notational convention here. In the languages of struc-
tures that we will use there will always be defined (partial) functions into some
fixed countable set, e.g. a function with rational values. It is clear that each such
function can be replaced by countably many predicates; for example, a rational
function f can be replaced by predicates f,, for each ¢ € Q, and then we could
demand that for each element a of our structure there is precisely (or at most)

one g € Q such that f,(a) holds. We will always implicitly assume this.

Let L be a countable language consisting of n-ary p, functions with values in
nonnegative rationals for every pair m,n € N and binary function d with values
in nonnegative rationals. For any structure A we will usually write just pl’ (or
d) on A instead of (p?)" (or d). However, we may use the latter in few cases

m

where there is a possibility of confusion.
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Definition 5.1.4 (The class K). A finite structure A (we will not notationally
distinguish a structure and its underlying set) for the language L of cardinality

k > 0 belongs to K if the following conditions are satisfied:
1. A is a rational metric space; i.e.

e d is a total function (defined on all pairs) on A
o Va,y € A(d(z,y) = d(y,z))
o Vu,y € A(d(z,y) =0 &z =y)

o Vz,y,2 € A(d(z,y) < d(z,z) +d(z,y))
Thus we will interpret d as a metric.

2. There is some ny < k (recall that k is the cardinality of A) such that for
every n <ny and m < ny+1—mnpl is a total function on A; on the other
hand, for n > ny or m > ns + 1 —n p; is defined on no n-tuple from A;

1.e.

HHA S k
o Vn,m € NVa € A™(pl,(a) is defined & n <ng Am <ng+1-—n)

We consider p!' as a function to rationals with an interpretation that it
gives a rational distance (in a “sum” metric on A™) of an n-tuple from one

of the desired set F),. We note that m and m’ will not necessarily be equal.

3. In order to satisfy the joint embedding property and the amalgamation

property we must put some additional restrictions on these structures.

e Vm,neNn<nsAm<ns+1—n=Vaibe A"pr(a) < p* (b) +

-

d(a,b))

The previous formula is interpreted as follows. Consider the ”sum” metric
don A", ie. d(@,b) = d(ay,br) + ...+ d(an,b,). The function p” assigns
to each n-tuple a non-negative rational. We interpret this function as a
distance function from a fixed closed set in the sum metric. The previous

formula says that a distance of some n-tuple from this closed set must be
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less or equal to the sum of a distance of another n-tuple from the same
closed set and the distance between these two n-tuples. In particular, if
this distance is 0 for some n-tuple a, i.e. we demand it will lie in the closed
set, then this distance for some other n-tuple b must be less or equal to the

distance between @ and b.

There is still one more condition which we must demand on these structures in
order to satisfy the amalgamation property and to have only countably many iso-
morphism types of finite structures. We specify when we consider two structures
to be isomorphic and what an embedding of one structure into another is. Infor-
mally, an isomorphism between two structures does not respect the enumeration
of the rational functions p!, for every power n, i.e. for example we consider struc-
tures A = {ay,as} and B = {by, by} such that p}(a1) = q, pi(az) =0, pi(a;) = h,
pa(az) = 0 and p? is equal to 0 on all pairs, and pi(by) = h, pi(bs) = 0, pi(b1) = ¢,
ps(be) = 0 and p? is equal to 0 on all pairs to be isomorphic although the roles of
pi and p} are switched in these two structures.

The precise definition follows.

Definition 5.1.5 (Isomorphism and embedding). An isomorphism between two
finite structures A, B in the language L is a pair ¢, (7%)) where ¢ is an isometry
between A and B for every n < na(=ng) 7% : {1,...,na+1—n} = {1,...,np+

1 —n} is a permutation such that
Vn <nsVm <ny+1—nvage A"

(pm(@) = g & P} (1) (@"(@)) = q)

Two structures are isomorphic if there exists an isomorphism (pair) between
them.

Similarly, an embedding of a structure A into a structure B is a pair (¢, (7,))
such that ¢ : A < B is an isometric embedding and for every n < ny (< np)

o {l,...,na+1—=n} = {l,...,np+1—n} is an injection such that

Vn <nsaVm<nsq+1—nVaec A"
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(pm(@) = g & P} (1) (0" (@) = q)

Now we must prove that IC is countable, satisfies the hereditary, joint embed-

ding and amalgamation property.
Lemma 5.1.6. K is a Fraissé class.

Proof. We will prove that K is countable, satisfies the hereditary property, joint
embedding property and amalgamation property.

For the cardinality, there are only countably many finite rational metric
spaces. For each finite rational metric space A of cardinality n there are n + 1
choices for n4 (recall that ng < n = |A|) and for each such a choice only finitely
many rational functions p}!, can be defined, hence the claim follows.

The hereditary property is obvious. To check the joint embedding prop-
erty, consider two structures A,B € K. Let my = max{q : (A F p,(a)) A
pq is either d, or pj,, for some n < ngym < ng+1—n,a € A%} mp is de-
fined similarly for B. Let m = max{ma,mp}. Let C = AJ[ B be the dis-
joint union of A and B. For a € A and b € B we may set d(a,b) = 2m,
so we extend the metric on the whole C'. To extend other predicates, we set
ne = max{na,np} and it is easy to see that for every n < ngand m < nc+1-—n
and every n-tuple (ci,...,¢,) € C™ on which p” has not been already defined
there is always a choice which is consistent. For instance, for any n < ng and
m <nc+1—nand (¢,...,c,) € C" for which p}, has not been yet defined we
may set p (c1,...,c,) = 0; this is consistent.

Finally, we need to check the amalgamation property. Let A, B,C € K be
structures, we can assume WLOG that A is a substructure of both B and C' and
for all n < ny and m <ng—n (PB)7, = (P)7. Let D = A[[(B\ A)[I(C \ A).

The metric is extended in a standard way, i.e. for b € B and ¢ € C we set
d(b,¢) = min{d(b,a) + d(a,c) : a € A}.
Let us set np = ng + (nc — na) (note that ny < min{ng,nc}). We reenu-

merate some rational functions on D (see Definition 5.1.5).

e Foralln < ng, m <ng+1—nand b e B" C D" we let (p)(b) =

m

-

(p?)n.(b), i.e. we keep the enumeration from the original one in B.
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e Foralln <ny,m<ng+1—nand e C"C D" we again let (p?)" (¢) =

m

(p©)" (), i.e. keep the previous enumeration.

e Forn<ngandns+1—n<m<ng+1—norforny <n<ne and any
m<nc+1—nand e C" we set (pD)ng(nB_nA)(é’) = () (0), i.e. we

change the enumeration by adding ng — n4.

We need to check that this metric extension along with the reenumeration of
some predicates is consistent.
Specifically, we need to check that the following formula still holds true when-

ever the function p?, is defined on both b and &

vga ce Dn(p:lv,(blv s )bn> < p?n(@ + d(bl) Cl) +.o..+ d<bn7 Cn))

=,

Let some n,m, b and & in D" such that both p= (b) and p" (¢) are defined be

given.

o Ifny <n<npgand m<ng+1—n then it follows that both b and ¢ are

from B™ and the formula holds in D since it holds in B.

e For any n if m > ng 4+ 1 — n then it follows that both b and @ are from C"

and the formula holds in D since it holds in B with m' =m — (np — na).

e Finally, assume that n <ny and m <ny+1—n. If b and ¢ are either both
from B™ or both from C™ then the formula holds in D since it holds in B,
resp. in C. So let us assume that b is originally from B™ and ¢ is originally
from C™ (the opposite case is the same of course). From definition, for every

i < n there is some a; € A such that d(b;, ¢;) = d(b;, a;) +d(a;, ¢;). We have
Pl (B) < p (@) + d(by,a1) + . .. + d(by, ay)

since this formula holds true in B. Similarly, we have

po (@) < phc)+d(ay,c)+ ...+ d(ap, )
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since this formula holds true in C'. Putting together, we obtain

-,

P (0) < p(€) + d(br, c1) + .o+ d(bn, )

which is what we wanted to prove.

For any other m,n that were not listed above the functions p]; were not yet
defined. So for n < np and m < np + 1 — n that were not listed above we
may set p”m(cf) — 0 for all d € D™ for instance. For any fixed pair n < np and
m < np-+1—n that was listed above but p]!, was not yet defined on some d e Dr
we define it canonically as follows (but there are other possible definitions too):
We set p? (d) = max{0, max{p" (&) —d(d', d) : p", was defined on d'}}. Note that
even if we used this definition on some n-tuple on which p;' had been already
defined then it would get the same value. That is why we call it canonical. To
check it is consistent let dE,d: € D" be some n-tuples. Assume at first that
P (do) > 0 and p™ (dy) > 0 and let d_’()),d_/; € D" be such that p" (do) = pﬁl(d%) -
d(dy, do) and pl:,(dy) = p(d}) — d(d;,dy). Then p(do) = pri(dh) — d(dy, doy) <
P (d}) — d(dy, dy) + d(dy, dr) < pi(d}) + d(dy, dy)- The case when pr (dg) = 0 or

—
V22

pi(dy) = 0 is similar and the proof is left to the reader. O

Since I is a Fraissé class it has a Fraissé limit which we denote U. Besides
other things it is a metric space. In fact it is a countable universal homogeneous
rational metric space (see Remark 5.1.7). By U we denote its metric completion
which is the universal Urysohn space. For every natural n we also have the set
Fyn of countably many rational functions on U™ without an enumeration arising
from the Fraissé limit though. We choose some enumeration and denote the set
Fn oas {f! : m € N} for every n. For every m,n € N the set F[fl of all n-tuples
@ from U such that f" (@) = 0 is a closed subset of U™. By F we denote the
closure of F in the completion U (thus we have F? N U = E”). This finishes
the construction of the sets from the statement of Theorem 5.1.2. We must now
prove the almost universality and ultrahomogeneity of these sets which we do in

the following section.
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5.1.1 The one-point extension property

When constructing the Fraissé limit we had to work only with rational metric
spaces and rational functions pj:, on them in order to have the class K countable
and to have the limit U. The one-point extension property holds for substruc-
tures of U (see 1.3.9). We formulate it here for convenience again. We call it here

“rational one-point extension property”.

Rational one-point extension property. Let A € IC be a finite rational metric
space such that the rational functions [, for n <ny < |A| and m < nus+1—n,
are defined on it. Let B € K be a one point extension of 4, i.e. |B]—|A| =1 and
there is an embedding (¢, (7)) : A < B. Assume that there is an embedding
(¢, (7?)) : A = U. Then there is an embedinng (¢, (%)) : B < U extending

(&, (7)), e (¢, (m7) = (&, (7)) © (1, (7))

Before we proceed further we use this place for the following remark.

Remark 5.1.7. We still owe the explanation that the underlying metric space
of our (almost) universal and ultrahomogeneous structure is isometric to the
Urysohn universal metric space. To prove it it suffices to check that the underly-
ing metric structure U of the countable Fraissé limit is isometric to the universal
rational metric space (as its completion is isometric to the Urysohn space). How-
ever, realize that a countable rational metric space X is isometric to the universal
rational metric space if and only if it has the rational one-point metric extension
property: for any finite metric subspace F© C X and any one-point extension
G D F which is still a rational metric space, there is an isometric embedding
t: G — X such that ¢ [ F =id.

However, U has this rational one-point metric extension property. Here,
and also in the next section, its rational one-point extension property is always

stronger.

However, since we made the completion U we want to have this kind of one-
point extension property for all finite substructures of U, not just for those that
are actually substructures of U. In this section we prove this full one-point

extension property. The almost universality and homogeneity, and uniqueness
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will follow by a standard argument. We define a generalized class K of structures

(that correspond to finite substructures of (U, (F))).

Definition 5.1.8. A substructure A € K is a finite metric space, moreover there
is some n4 < |A] and for each n < na there is a finite set of indices 7' C N such
that |I4| = ny —n + 1. For each n < ny and m € I? there is a closed subset
G, C A™. By p!' we shall again denote the distance function from the set G7.,.
An embedding of a substructure A into a substructure B is a pair (¢, (7,))
where ¢ : A — B is an isometric embedding and for each n < n4 m, : I;;‘ — ]f

is an injection such that Vn < n,v¥m € IAVT € A"(ph (¥) = Py () (0"(2)))

Thus we just drop the condition that the metric and functions p’, have to

have rational values.

Proposition 5.1.9 (One-point extension property). Let A be a finite substruc-
ture of (U, (F")) and let B € K be such that |B| = |A| + 1 and there is an
embedding (¢, (7)) of A into B. Then there exists an embedding (¢, (7¥)) of B
into (U, (F™)) such that id = (¢, (%)) o (¢, (72)).

Before we provide a proof we show that the almost universality and homo-

geneity and also the uniqueness follow from Proposition 5.1.9.
Claim 5.1.10 (Almost universality). (U, (F)) is almost universal.

Proof of the Claim. Let (X, d) be a Polish metric space (in fact, it can be just
separable metric) equipped with sets (G, )m.nen Where for each n and m G, C X"
is a closed subset of the n-th power of X. Let D C X be a countable subset with

the following properties:
e D is a dense subset of X
e For every m and n D" N G7, is a dense subset of G7.,.

We prove that there exist an isometric copy D’ of D in U and injections 7; from
N to N for all i such that for every m and n and d € D™ we have d € Gr & d e
EY oy and if d ¢ G then d(d,G"} = dy(d, E? ), where d' corresponds to d

in the copy. Then we will extend the isometry to the closure of D which is the
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whole space X and we will be done. To see that, let m,n € N and ¥ € X™ be
arbitrary.

If # € G7, then there is a sequence (d},...,d}); € D" converging to # such

r'n

and since F™ is

that d € Gn for every j. From our assumption, d” € F:n( o (m)

m)
closed the image of ¥ also lies in F" (m)-

If #¢ G and ¢ = d(Z,G7) then there is d € D™ such that d(Z,d) < /3. It
follows that d(d, G") > 2¢/3, thus dy(d', E7 ) > 2¢/3 and thus the image of &
also does not lie in F? .

Let us enumerate the set D as {d;,ds,...}. The construction of D’ is by
induction, just a series of applications of Proposition 5.1.9. Let B; be a one-
point structure containing d;, ng, = 1 and Ifh = {1}. Let A; be an empty
structure and use Proposition 5.1.9 to get an embedding of B; into U. The
embedding determines a point u; € U and also an injection 7 : I{B ' — N. We

have d(dl, G%) = p}rl(1)(u1) = dU(ul’ Fll(l))'

™

Assume we have found wq,...,ur_1. Consider a structure By containing
{dy,....dy}, np, =k, fori < k IP* = {1,...,k —i+1}. Let A; be a sub-
structure of (U, (F}})) containing {uy,...,ux_1}, na, =k —1and fori < k —1
I = {m(1),...,m(k —i)}. There is an obvious embedding of A into By so we
can use Proposition 5.1.9 to extend A by some new point ug. We also extend
the domain of m;, for « < k — 1, by £k — ¢+ 1 and obtain a new injection 7 with

domain {1}. This finishes the induction. O
Claim 5.1.11 (Almost ultrahomogeneity). (U, (E}%)) is almost ultrahomogeneous.

Sketch of the proof. Let A and B be two isomorphic substructures (witnessed by
(¢, (72))) of (U, (F")). WLOG assume that for every n < ny = ng we have
I2 =18 = {1,...,na —n + 1} and 7¢ is the identity on I2. Let D = {u, :
n € N} C U be a countable dense subset such that for every m,n D" N F}
is dense in F)'. By a back-and-forth series of use of the one-point extension
property (Proposition 5.1.9) we shall be extending the isomorphism (¢, (72)) into
a chain (¢, (7)) C (¢, (7@‘311)) C (¢o, (WSQQ)) C ... so that for every m € N w,, is
both in the domain and range of ¢,, and m is in the domain and range of 7, 1.

Upn (& (m8m,)) is the desired isomorphism of (U, (F})). O
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Claim 5.1.12 (Uniqueness). (U, (F)) is unique with the almost universality and

ultrahomogeneity property.

This is again done by a standard back-and-forth argument using Proposition
5.1.9.
Before we prove Proposition 5.1.9 we need the following lemma that will be

useful in the next section too.

Lemma 5.1.13. Let M = {dy,...,dy} be a given finite metric space. Also,
for every i < k let (uf)] C U be a given rational Cauchy sequence from the
rational Urysohn space such that d(ul,w!™") < 1/27 for all j and moreover,
dy(lim,, uf, lim,, u}) = da(ds, dj) for everyi,j < k.

Moreover, let | € N be given and let {u},,...,ut '} CU (ifl =1 then it is an
empty sequence) be a given finite rational sequence with the following property:
for every j < | and every i < k we have dy(dg, d;)+1/ (k-2 < d(ul, ul ™) <
dp(dy, d;) +1/27.

Then if we consider the space Aj, = {ul™F+? I+k+2

s Uk I resp. Ay =

{ult¥02 0 ultR T2y if 1 = 1) then there eists a rational metric extension U D

My = Ap U {gr} such that dy(dy,d;) + (20 — 1)/(k - 2" < d(gp, ul™?) <
dar(dy, di) + (20) ) (k - 29 for alli < k and if | > 1 then also d(gg,uk ") = 1/2".

Proof of the lemma.
We will treat separately two cases. Case 1 is when [ = 1 and Case 2 is when we

are moreover given a non-empty finite sequence {uj, ... ,uﬁ;l}, ie. [ > 1.

Case 1: [ = 1.

Let iy, ...,ix—1 be a permutation of {1, ..., k—1} such that we have d(dy, d;,) >
d(dy,di,) > ... > d(dk,d;,_,). For each j < k we shall denote v; the element
u§+k+2. We have that dy(vj,u;) < 1/27%72 We now work with {vq,...,v_1}.
For j < k let v; € R be arbitrary positive real numbers such that (25 — 1)/(k -
21y <y < (29)/(k - 2H1) and n; = d(dk, d;;) +v; € Q. We claim there exists
g € U such that dy(gx, v;) = n;. We just need to check that the triangle inequal-

ities are satisfied, then it will follow that such an element g, does exist from the

one-point (metric) extension property of U.
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Let @ < j < k, we shall check that n; —n; < d(vy;,vi;) < n; + ;. We have
‘d(Uii,'Uij) — d(dll,dl])‘ < 1/2l+k+1 < 1/(k . QZ) Since N — N < d(dk,d“) —
d(dk, dzj> - 1/(]{ : 21+1) S d(dk, dh) — d(dk, dz]) - 1/21+k+1, thus i —mnj S d(’UZ‘i, Ui].).
Since ni-+1y; > d(de, i) +d(di, diy) +1/(k:241) 2 d{dh, di)+d(dg, di ) +1/2754,
thus also d(vy,, vi;) < n; +1;.

So by the one-point extension there exists such g, € U.

Case 2: [ > 1. We proceed identically as in Case 1, we just need to care about
the element uf;l. Let again iy,...,ix_1 be a permutation of {1,... k — 1} such

that we have d(dy,d;,) > d(dg,d;,) > ... > d(dg, d;,_,). For each j < k we shall

I+k+2
J

denote v; the element u . We work with the space {uﬁc_l, U1, ..., Uk_1}. For
j < klet v; € RT be arbitrary positive real numbers such that (2j—1)/(k-2!1) <
v < (25)/(k - 2"%Y) and n; = d(dg,d;;) +v; € Q. We claim there exists g, € U
such that dy(gr,v;) = n; and moreover dy(gy,ul ') = 1/2!. We again just need
to check that the triangle inequalities are satisfied, then it will follow that such
an element g5 does exist.

For i < j < k the verification that 7; —n; < d(v;,,v;;) < n; + n; holds is the
same as in Case 1.

Now let j < k be given. We need to check that n; — 1/2" < d(v;;,uj.;) <
n; +1/2'. Note that

d(u§;17 quPrl) - d(ufflJrla Uij) < d(vij ) ué:il)

and
d(vi,, ul ) < d(ul "t uf ) + d(uiﬂ“,vij)

77;]-

The following estimates on d(ul, ', uf*) follow from the assumption from the

7ij

statement of the lemma. We have

d(di;, di) + (25 — 1)/ (k- 2') < d(up w4 < d(dy,, di) + (25)/ (k- 2Y)

) 7’j
Similarly, we have the following estimates on 7;:

d(dzj,dk‘) + (2] - 1)/(k . 2l+1> <n; < d<d7,J7dk‘) + (2])/(]{3 . 2l+1)
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We check the inequality n; —1/2! < d(v;;, ul"!). Putting the previous inequalities
together it suffices to check that

d(dy;, di.) +(27)/(k - 2 —1/2' < d(d;;,dy) + (25 —1)/(k - 2l) — 1/2k+tH2
By subtracting from both sides we get
<_2j + 2)/(k‘ . 21+1> o 1/21 S _1/2k+l+2

which clearly holds.
To check the other inequality d(v;;, uit) < m; 4+ 1/2' using the previous in-

equalities it suffices to check that
d(d;, dy,) + (27)/(k - 2) + /2" < d(dy, di) + (25 — 1)/ (k- 2F) + 1/2!
By subtracting from both sides we get
(2 +1)/(k - 21 + 1/2M12 <1/

Since 7 < k — 1 we have

(2] 4+ 1)/(k - 2%1) + 1/259182 < (2k = 1)/ (k- 27 41 /944072
and the following equality holds

(2k — 1)/ (k- 271 4 12842 — 1 /90 — 1/(k - 21FY) 4 1 /2R +I+2

The right hand side is clearly less or equal to 1/2! so we are done.
So again by the one-point (metric) extension property there exists such gy €

U. ]

Proof of Proposition 5.1.9. Let us at first treat the case when A is empty and B
is a one-point structure {b;}. We have ng = 1 and WLOG assume that I7 = {1}.
Thus we only need to find some a; € U and m € N such that p;,(a1) = pj(b1).

For every n € N let 6, € Qf be any non-negative rational number such that
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pi(by) <6, < pi(by) + 1/2%2. We use the rational one-point extension property
to define a sequence (u{)j C U and to obtain m € N such that for every 7 € N
pL (W) = 6; and dy(uw),u]™") = 1/27+1. Tt is straightforward to check that we

have pl (a;) = pt(b1) where a; is the limit of the sequence (u});.

We now assume that A is non-empty. Let us enumerate A as {aq,...,a5_1}
and B as {by,...,by} so that the embedding ((¢, (7¢)) of A into B sends a; to
b; for every i < k. We extend A by adding a point ax. We will find a Cauchy
sequence of elements from U such that the limit will be this desired point ay.
For each [ < k let us choose a converging sequence (u{ ); C U of elements from
the Fraissé limit such that lim; u{ = a, dU(u{, a;) < 1/27 and for i < j we have
dy(ul,a) < dy(ul, a).

In order to simplify the notation we assume that ng = ns+1 and for each n <
na I2={1,...,np—n+1} and also for eachn < ng I” = {1,..., np—n+1} and
the injections m¢ are the identities. Consider a structure S; = {u]f+3, e ,u’,jfi’
with ng, = na and for every n < ng,, m < ng, —n+1 and ¥ € S} pI'(¥) =
dy(Z, FL). Thus S) € K and for any i, j < k we have |dy(uf ™, uf™®) —d(b;, b;)| <
1/252. We use Lemma 5.1.13 to define a metric one-point extension M; =
{uf ™ ulT3 g} of S) such that for all i < k we have d(b;,by,) < dy(uit? g) <
d(b;,b;) + 1/2. We define a structure Vi with ny, = ng, + 1 = np such that
M, is its underlying (rational) metric space. We need to define (rational) p’, on
all n-tuples containing ¢ for all n < ng and m < ng —n + 1 and also on all
n-tuples (not necessarily containing ¢) for n < np and m = ng —n + 1 to obtain
a one-point extension V; of 97.

Fix such a pair n, m. Let us enumerate all n-tuples 7 € M7 as (f})j<J so that
all n-tuples not containing g precede every n-tuple containing g. Also, for any n-
tuple ¥ € M7 let bz denote the corresponding n-tuple ¢ from B™ (via the function
sending uf+3 to b; for i < k and g to by). We inductively define p?, on fjl»’s. Let f},
for some j < J, be given. Let 5]1 = p”m(gf}). It is not necessarily a rational number.
Let T'Jl- € Q be an arbitrary rational number such that 5} < rjl- < 8}+n /2k+3. Also,
let m}; = max{p}, (¥) — d(Z},Z) : £ € M A pj, has been already defined on '}

and M} = min{p} (%) + d(Z},Z) : € M} A p}}, has been already defined on 7},
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If mjl-

IN

rj < Mj then we set p, (L) = rj. If rj < mj, resp. rj > M] then we
set pp (L) = mj, resp. pj,(Z) = M;. Note that if n <ny and m <ny —n+ 1
and 7} € S} then mj = M} = pp (Z]), thus by our assigning we really obtain an
extension of S;. Thus by a weak one-point extension property we obtain some
u; € U playing the role of g.

Assume we have already constructed u}, ..., ul ' C U such that dy(uj, ui™) =
1/27*%! for 0 < i < [ — 1. Consider a structure S; = {uf T2 i t1+2 4111 with
ng, = ng and for every n < ng,, m <ng, —n+1and & € S} pl(¥) = dy(Z, F}}).
Thus S, € K and for any i,j < k we have |dy(u} ™™ uf**2) — d(b;,b))] <
1/281 We again use Lemma 5.1.13 to obtain a metric one-point extension
My, = {uftH2 i 42 =1 g of S) such that such that for all i < k we have
d(bs, by) < dy(uft+2 g) < d(b;, by) +1/2.

For n <mnpand m < np—n+1 we need to define p, on all n-tuples from M}
containing the new element g. We do it as before: Fix such a pair n,m. Let us
again enumerate all n-tuples ¥ € M" as (:E’é) j<k so that all n-tuples not containing
g precede any n-tuple containing g. Also, for any n-tuple ¥ € M let again bs

denote the corresponding n-tuple i from B" (via the function sending u**'*2 to b,

for + < k and uﬁ;l and g to b,). We inductively define p?, on fé-’s. Let fé-, for some
j < K, be given. Let ¢} = p;;(l;fz,). It is not necessarily a rational number. Let
J

rg- € Q be an arbitrary rational number such that 52- < 7’; < 53 + n/28+H+2 - Also,
let m; = max{pp, (Z) — d(Z,Z) : £ € M" A p}), has been already defined on '}
and M! = min{p;, () + d(Z,, %) : £ € M A p}, has been already defined on 7}.
If m} <rl < M then we set py, (&%) = r}. If ri < m), resp. rl > M] then we set
P (25) = mk, resp. pp (Z%) = M. This is again a consistent extension of S;. Thus
by a weak one-point extension property we obtain some ul € U playing the role
of g.

Assume the induction is finished. We have found a sequence (u7,);. Moreover,
realize that for every n < ng and m = ng —n+1 there is some w,, € N such that
for every 7 € {u] : i < k,j € N}" we have p(¥) = dy(, F ). Since for any
j € N we have dy(u),ul™") = 1/27%1, this sequence is Cauchy with a limit that

we denote a,. We define an embedding (¢, (7¥)) of B into (U, F) as follows:

Y(b;) = a; for every i < k and for n < np we set V(i) =i if i <np—n+1
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and 7¢(i) = @, if i = ngp — n + 1. It follows from the use of Lemma 5.1.13 that
dy(a;, ar) = d(b;, by) for every ¢ < k. We must check that p['(Z) = pzw(m) (Y™(Z))

foralln <ng,m <ng—n+1and ¥ € B".

Claim 5.1.14. For every j < K and | € N we have e} —n /282 < pn (71) <

I k142
g;+mn/2 .

Once the claim is proved the assertion follows. So it remains to prove the

claim.
Proof of the Claim. We prove it for every j < K by induction on .

Step 1.

Suppose [ = 1. Let us prove that p}(Z}) < e} + n/2¥3. We have pl,(Z]) =
1,1 - 1 1 141 ; 1 1

max{r;,m;}. Since r; < e; + 1/2'7 it suffices to prove that m; < e; + (2n +

1)/21+1,

Realize that m; = py,(Z,) — d(Z}, Z,) for some Z,

1

1. There exists #, € S{ such that m; = pp(Z}) — d(Z},Z,). Let 7, =

J’P

(wits .. ul*®). Since for every m < n we have d(uf'? a;,) < 1/283,

(5 ?

we hive that d(E, (@, . a;,)) < n/2%, thus piy(7) < <) +n/2°45. We
also have that d(gf}), gf}) < d(z),7}). Finally, since ) < ¢} + d(gfé, 55]1),

p’]

putting the inequalities together we obtain m} < e} 4 n /283,

2. There does not exist such #, € S7'. We claim that then mj = p (7,) —

d(z},Z}) where pp (%)) = r,. Once we prove this is true then from the

same series of inequalities as in the item above we prove the desired in-

equality. Suppose it is not true. Then m; = p (%)) — d(Z},Z}) and

pp(Z)) = P () — d(Z), 7)) for some . If still pp (7)) # r, then
pp(Ty) = ph (@) — d(Z}, ©,,)) for some 7 . We continue until after fi-

nitely many steps we reach @, such that p} (Z; ) = r; . However, observe

that it follows from the series of triangle inequalities that p"m(fjl) = mjl- =

pp (T ) — d(Z}, T, ) and we are done.

Let us now prove that ef — n/2%3 < pr (Z}). Since we have pl!, (7)) =

min{r}, M}} it suffices to prove that M} > e} — n/2"3  Again realize that

J
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1_ =1 : :
M} = pp (Z)) + d(Z}, Z}) for some Z}. There are again two cases:

1. There exists &, € Sy such that M} = pr,(Z}) + d(Z},Z,). Then since ¢} <

J’P

ey + d(b@g, bfjl_) we get from the inequalities above that e —n /283 < M.

2. If there is no such Z, € S then as in item (2) above we can find Z, such
that M} = p;(Z,) + d(Z},Z,) and p},(Z;) = r,. Then the verification is

]’p

again analogous.

Step 2. Now we assume that [ > 1 and for all m < [ the claim has been proved.
If pp () = rl then it is clear. So we only have to prove that m} < el 4n /2"++2
and 52 — n/2kHH2 < MJZ We only prove the former, the latter is completely
analogous.
We have m} = pr (#) — d(&}, Z) for some . As in Step 1 we find out that
there (now) three possibilities (the verification that there precisely one of these

three possibilities happens is similar to the verification that precisely one of those

two possibilities in Step 1 happens).

1. There exists 7, € (S;\ {ul"'})" such that ml = pp(24) — d(Z, Z). Then it

is analogous to the item (1) in Step 1.
o I _ on (A ! ! o

2. There exists 2, such that m! = p (7)) — d(2, 2%) and py,, () = rl. This is
analogous to the item (2) from Step 1.

3. There exists @, such that m! = pp (7)) — d(Z, 7)) and 7, is an n-tuple
obtained from fl< by replacing all occurences of g by uk_ , thus fi, is in

{—

fact equal to some 7 =1

1 l o — . . .

and e; = ¢, . By induction hypothesis we have
that pi (#7') < &5+ (2n + 1)/2". Since d(ul ™', g) = 1/2' we have that
d(ff]_l,fé-) > 1/28 > n/2kH2 thus mg = p’,‘n(ffl_l) — d(ffl_l,fé-) < 65- +
n/28H2 as desired.

]

Remark 5.1.15. The previous proof can be slightly modified so that it proves
Theorem 5.1.1. We consider a language containing a symbol for rational metric
and for every n;, ¢ < m, a symbol for rational n;-ary function p,,,. These functions

are interpreted as distance functions from the desired closed sets F},,. Since there
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are only finitely many such rational functions they are all defined on all finite
structures from K. The restrictions are the same, i.e. for any finite structure
A € K we have for all i < m that V@, b € A" (p,, (@) < pn, (@) + d(a1,by) + ... +
d(apn,,by,;)). The verification that such K is a Fralssé class is similar (only easier)
as in Lemma 5.1.6. Similarly, the proof one-point extension property is similar,

just easier, as in the proof of Proposition 5.1.9.

Observation 5.1.16. The method used in the proof of Theorem 5.1.2 to obtain
countably many almost universal closed sets can be repeated in other instances.
What we describe below is a general scheme. Note that we are very informal
there and we refer to the proof of Theorem 5.1.2 for an example with details.
Suppose we have a proof of universality and ultrahomogeneity of some metric
structure using a Fraissé limit of some class K of structures in some language L
consisting of rational metric and some other predicates or functions py, . .., p, with
values in some fixed countable set. We may consider a new language consisting of
the rational metric and predicates or functions p}, ..., p’ with values in the same
fixed countable set for each ¢ < N. A structure A belongs to this new class of
structures K if there is some n4 (e.g. |A]) such that for all i < ny the functions
(or predicates) pi,...,pi are defined on A with the same restrictions for each
i as in K for a single set of these functions (or predicates). The isomorphism
and embedding relation between structures in K is as in Definition 5.1.5. The
verification that K is a Fraissé class is similar as in Lemma 5.1.6. The one-point

extension property is also similar as in the proof of Proposition 5.1.9.

5.2 Universal and ultrahomogeneous closed sub-
sets of U x K and Lipschitz functions from

U to 7

In this section we consider a universal closed subset of U x K, where K is an
arbitrary fixed compact metric space, and a universal L-Lipschitz function from
U to Z, where L is an arbitrary fixed positive real number and Z is an arbitrary

fixed Polish metric space.
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Theorem 5.2.1. Let K be an arbitrary compact metric space, Z an arbitrary
Polish metric space and L € R™. Then the structure (U, C, F) is universal and
ultrahomogeneous and unique with this property, where C' C U x K 1is a closed

subset and F : U — Z is an L-Lipschitz function.
See the third and fourth example.

Proof. We split the proof into two parts. In order to increase transparency of the
proof we separately prove that there is such a universal closed set C C U x K
and then that there is such a universal L-Lipschitz function F' : U — Z. It
will be a routine modification to prove that are ”simultaneously” universal and

ultrahomogeneous. We will again use Fraissé theory.

The closed set C.

Let @ = {¢, : ¢ € N} be an enumeration of a countable dense subset of K.
We define the set F C (Qf)N of all suitable functions. A function f : N — Qf
belongs to F if there is a finite set /' C N and non-negative rationals r; > 0 for
i € F such that f(j) = max{0, max{r; — dx(¢;,¢;) : i € F}} and it is always
the case that f(i) = r; for every i € F; i.e. f has the domain N, however it is
uniquely determined only by values on the finite set F'. For f € F we will denote
such a finite set as Fy (it is not unique, however there is unique such a set F}
that is minimal in inclusion). Note that F is countable.

Let p be an unary function with values in the set F. Also, we again consider
the binary rational function d for metric. Let L be a language consisting precisely
of these functions.

We now define the new class K of finite structures of the language L.

Definition 5.2.2. A finite structure A for the language L of cardinality k& > 0

belongs to K if the following conditions are satisfied.

1. A is a finite rational metric space; i.e. it satisfies the same requirements as

in the definition 5.1.4.

2. The function p is a total function, i.e. defined on all elements of A.
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The interpretation of this functions is as follows: if p(a)(n) = ¢ > 0 then
the distance between (a,q,) and C' is at least (in fact precisely) ¢; on the

other hand, if p(a)(n) = 0 then (a,q,) € C.
3. Here we describe the restriction that we must put on these functions.
® Va,b € AVn,m € N(p(a)(n) < p(b)(m) + dx(¢n, ¢m) + d(a,b)

This requirement resembles the restriction from the proof of Theorem 5.1.2.
The value p(a)(n) determines a rational distance of (a, g,) in the sum metric
from the set C. Thus in case that for example p(a)(n) =0, i.e. (a,q,) € C
and p(b)(m) = ¢, i.e. the distance in the sum metric of (b, ¢,,) from C' is at

least ¢, then necessarily the distance between (a, g,,) and (b, g,) is at least

¢, i.e. d(a,b) + dx(qn, qm) > q.

We must check that C is again countable (up to isomorphism classes), satisfies
hereditary, joint embedding and amalgamation property. The first two properties
are clear. The verification of the third one is similar as in Theorem 5.1.2, we
can just put the structures sufficiently far apart from each other. To check the
amalgamation property, suppose we have structures A, B,C such that A is a
substructure of both B and C. We can again define D with underlying set
ATI(B\A) JI(C\ A) with metric extended so that d(b, ¢) = min{d(b,a)+d(a,c) :
a € A} for b € B and ¢ € C, and pP(b) = pB(b), resp. pP(c) = p®(c), for b € B,
resp. ¢ € C of course. Let us check that this works. Let b € B, ¢ € C and
n,m € N. We check that p(b)(n) < p(c)(m) + d(b, c) + dk(qn, ¢m). Let a € A be
such that d(b,c) = d(b,a) + d(a,c). Then we have p(b)(n) < p(a)(m) + d(b,a) +
A (qns @m) < p(c)(m)+d(a, c)+d(b, a)+dk (gn, gm) = p(c)(m)+d(b, ¢)+dk(gn, Gm)-

We again denote by U the Fraissé limit which is besides other things again
a rational Urysohn space. We define the set C' C U x K in the completion U
as follows: (a,7) € C' = -3(u,g) € U x @In € N(g = ¢, Nd(a,u) + dk(r,g) <
p(u)(n)). Tt is obviously closed.

Let us now state and prove the following useful claim that confirms that p is

really the distance function from the closed set.

Claim 5.2.3. For any u € U and n € N we have p(u)(n) = d((u, ¢,),C) = q.
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Proof of the claim. We prove that for an arbitrary € > 0 there exists v € U such
that d(u,v) < ¢+ € and p(v)(n) = 0. It follows that ¢ < d(u,q,),C) < q+¢
for an arbitrary ¢ > 0, thus p(u)(n) = d((u,q,),C) = ¢q. So let € > 0 be given.
Let d. € Q' be an arbitrary positive rational number so that ¢ < d. < ¢ + €.
Moreover, let ¢. € Qf be an arbitrary nonnegative rational number smaller or
equal to dy — q. Let F' = {i € Fy,) : p(u)(i) > d.}. We define f € F such that
Fy = F, and for i € F we set f(i) = p(u)(i) — dy + g.. We define a one-point
extension of {u} as follows: the underlying set is {u, v}, we set d(u,v) = d. and
p(v) = f. We claim it belongs to . Then by one-point extension property we
can find such v in U and it is as desired: we need to prove that p(v)(n) = 0.
Suppose not, then there is ¢ € Fy such that p(v)(i) — dx(gi,¢,) > 0. However,
since p(u)(i) = p(v)(i) — g- + d, we would have p(u)(n) > p(u)(i) — drx (¢, gn) =
p(v)(i) — ¢- + dy — di(qi, gn) > ¢, a contradiction.

It remains to prove that {u,v} € K. Let n,m € N be given. We prove
that p(u)(n) < p(v)(m) + d(u,v) + dr(gn, gm). I p(u)(n) < d(u,v) then it
is clear, so let us suppose that p(u)(n) > d(u,v) and let ¢ € F be such that
p(u)(n) = p(u)(i) — dk (g, ¢;). Then p(v)(m) = p(v)(i) — di (gm. ;) = p(u)(i) —
d(u, v)+q:—dx (qn, 4;) —dx (qn, Gm)- 1t follows that p(v)(m)+d(u, v)+dk (Gn, Gm) =
p(u)(i) = d(gn, ¢i) + ¢ = p(u)(n) + ¢-.

Now we prove that also p(v)(m) < p(u)(n)+d(u, v)+dk(¢n, gm)- If p(v)(m) =
0 then it is trivial, so let us suppose that p(v)(m) > 0 and let i € F be such
that p(v)(m) = p(v)(i) — dic(gm 65) = p(u)(3) — d(w,0) + g — dx(gm, ;). Then
p(u)(n) = p(u)(i) = di (gis Gm) — di (@n, @), thus p(u)(n) +d(u, v) + di (Gn: gm) >
p(u) (i) — dg (g, gm) + d(u,v) > p(u)(i) — d(u,v) + ¢ — dx(gm,q;) and we are
done. Note that the last inequality follows from d(u,v) > —d(u,v) + ¢. which is

immediate from the definition of d(u,v) and g. ]

5.2.1 The one-point extension property for (U, C)

Let K be again the “real” variant of K, i.e. a structure A belongs to K if it is a
finite metric space equipped with a closed subset C'y of A x Z, where C'4 need
not to be finite. For each n € N and a € A we denote by p(a)(n) the distance

of (a,q,) from Cy; p(a)(n) in this case need not to be rational. The notions of
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embedding and isomorphism are obvious.

We again prove the one-point extension property for X which simplifies the
proofs of universality, ultrahomogeneity and uniqueness of (U, C'). By “rational
one-point extension property” we again mean the one-point extension property

for structures from K.

Proposition 5.2.4 (The one-point extension property). Let (A, C4) be a finite
substructure of (U,C) and let (B,Cg) € K be a one-point extension, i.e. |B| =
|A| + 1 and there is an embedding ¢ : A — B. Then there exists an embedding
Y (B,Cp) — (U,C) such that id = 1) o ¢.

Before we provide the proof we again begin by showing how universality,

ultrahomogeneity and uniqueness follow.

Proposition 5.2.5. The Polish metric structure (U, C) is universal.

Proof. Let (X,d) be a Polish metric space and B C X x K a closed set. Let
again D = {d, : n € N} C X be a countable dense set. We will find an
isometric copy D’ of D in U such that for any d, € D and ¢,, € @ we have
d((dn, qm), B) = d((d.,, ¢m),C). This suffices. We can then extend the isometry,
let us call it ¢, to the closure of D which is the whole space X. Let (z,7) € X x K
be arbitrary. Assume at first that (z,r) ¢ B. Let ¢ = d((z,7), B). Then there
exist i,n € N such that d((d;,q,), B) > 2¢/3 and d((d;, qn), (z,7)) < €/3, thus
d((d},qn),C) > 2¢/3, so (¢(x),r) ¢ C. On the other hand, assume that (z,r) €
B. Then there exists a sequence (d,,, g, ), € D X @ such that (d,, ¢,) — (z,7) and
(d(dpn,qn), B) — 0. Thus also (d,,,q,) — (¢(x),r) and since d((d.,,q,),C) — 0
we have d((¢(x),r),C) = 0.

The construction of D’ is again just a series of applications of Proposition

5.2.4. [l

Claim 5.2.6. The structure (U, C) is ultrahomogeneous and a unique structure

having this kind of one-point extension property.

Proofs are completely analogous to those in the first section.
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Proof of Proposition 5.2.4. Let us again at first treat the case when A is empty
and B = {b;}. We just need to find some a; € U such that for every n € N we
have p(a;)(n) = p(by)(n). For every I € N we define f; € F such that for every n
we shall have | f;(n) — p(by)(n)| < 1/2%

For every n € N let ¢, = d((bx, gn),CB) (= p(bx)(n)). Let N C Q be a 1/2+2-
net in K, i.e. Vy € K3z € N(dg(y,z) < 1/2!72). N can be supposed to be finite
since K is totally bounded (this is the place where we need K to be compact). Let
F be the set of indices of elements from N, ie. N = {g; :i € F}. Foreveryi € F
let v/ € Qf be any non-negative rational number such that 0 < 4! —¢; < 1/21+2,

We define f; € F. It suffices to define f; on a finite set F'. Let F' be equal to
the set {i1,...,%n}. WLOG we assume that 'yfj > 'yfl for j <1 <m.

We define f; inductively as follows: at step 1 we set f;(i1) = fyfl. Suppose we
are at step n < m. If n! = max{y} — dx(q; @,) : i € {i1,...,in_1}} > 7. then
we set fi(i,) = 1} ; otherwise, we set fi(i,) =~/ . If we have finished then we
have defined f; on F' (= FY,) which uniquely determines the values of f; on N. We
now check that for every I,n € N we have |fi(n) — p(b))(n)| < 1/2'. Let n € N
be arbitrary. There exists ¢ € F such that dx(q;,q,) < 1/2'72. Since it follows
les — en| < 1/2%% and |p(u))(n) — p(u})(i)| < 1/2+% (the functions ¢; — &; and
¢ — p(u})(i) are 1-Lipschitz) it suffices to check that for any n € F}, we have
Ip(ul)(n) —e,| < 1/2%1 For n € Fy, we either have that p(u})(n) =+, or that

(u1)
(u1)

i € I such that p(u})(i) = 7} and p(uy)(n) = 1, = p(ui)(i) — dx (g, ¢n)- Since

p(ul)(n) = n.. If the former case holds then it is clear from the choose of /. If
p(ut)(n) = n', then from the definition of n!, we have !, > 1! and there exists
nt >4t > e, —1/2%1 it suffices to check that n!, < e, + 1/2"1. However since
g < &n+di(qi,qn) and |y — g;| < 1/2!F1 this follows.

Now we use the rational one-point extension property to define a sequence
(ul); C U such that for every j € N we have p(u]) = f; and dy(u),w]™) = 1/27+1.
It is straightforward to check that this is possible and since for every j,n € N we
have [p(u})(n) — p(b1)(n)] < 1/2! it follows that p(a;)(n) = p(b1)(n), for every

n € N, where a; = lim; u!.

We now assume that A is non-empty. Let us enumerate A as {a,...,a5_1}
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and B as {b1,...,b;} in such a way that for every i < k we have ¢(a;) = b;.
We shall find a new point a; € U such that the structures A U {ax} and B will
be isomorphic. For every i < k let (ul); € U be a sequence from the rational
space U converging to a; such that dy(u/,a;) < 1/2, for every n € N |p(a;)(n) —
p(ul)(n)| < 1/27* and for any pair j < | we have dy(ul,a;) > dy(ul,a;). We
shall find a new sequence from U converging to the desired point ay. This is done
by induction.

Consider a structure S; = {uf™, ... u}3} such that for every i < k and
n € N we have p(uf™)(n) = d((uF™,¢,),C). Thus S; € K. We use Lemma
5.1.13 to define a metric one-point extension M; = {uf*® ... uf*? g} such that
for all i < k we have d(b;, by) < dy(ut™, g) < d(b;, by)+1/2. We define a structure
V1 such that M is its underlying (rational) metric space. We need to define p
on g. This will be similar to the definition of p on u!’s (from case when A was
empty) but more complicated.

For every n € N let ¢, = d((bg,qn),Cp) (= p(bg)(n)). Let N C @ be a
1/23-net in K, i.e. Yy € K3z € N(dg(y,z) < 1/2%). N can be supposed to be
finite since K is totally bounded. Let F” be the set of indices of elements from

N,ie. N=A{¢ :i€ F'}. Weset F=F Ul (ui+s). For every i € F

i<k Fou
let ! € Q¢f be any non-negative rational number such that 0 < §! —¢; < 1/2%
Also, we define m} to be max{p(u}®)(i) — dy(g,us™) : j < k} and M} to be
min{p(u k+3)(z) + dy(g, f+3) j < k}. For every i € F if m} <6} < M} then we
set v} = o}, It 6} < mj, resp. M} < 6} then we set 7 =m;, resp. v} = M}.

We define f € F. It suffices to define f on a finite set F. Let F' be equal to
the set {i1,...,im}. WLOG we assume that yilj >, for j <1< m.

We define f inductively as follows: at step 1 we set f(i;) = 'yill. Suppose we
are at step n < m. If p}, = max{y! — dx(¢;,q,) : @ € {i,...,in_1}} >~} then
we set f(i,) = n} ; otherwise, we set f(i,) = 7} . If we have finished then we
have defined f on F' (= Fy) which uniquely determines the values of f on N.

We now put p(g) = f. It is straightforward to check it is consistent. We de-

fined an extension V; € K of Sy and thus there is some uj, € U playing the role of g.

Suppose we have already constructed ug,, . . ., ufk_l C U such that dy/(us, ?1) =
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1/27* for any i < [— 1. Consider a structure S; = {uf ™2 .. uft+2 4 =11 with
p(u)(n) = d((u,g,),C) for every u € S; and n € N. We use Lemma 5.1.13 to
obtain a metric extension M; = {uf™2 .. w2 4l g} such that such that
for all i < k we have d(b;,b,) < dy(uf™2 g) < d(b;,b) + 1/2'. We need to
define p on ¢g. This is done in the same way as in the first induction step: For
every n € N let &, = d((bg, ¢n),Cs) (= p(bx)(n)). Let N C Q be a 1/2!"2-net
in K, ie. Yy € K3z € N(dg(y,z) < 1/272). N can be supposed to be finite
since K is totally bounded. Let F’ be the set of indices of elements from N, i.e.
N={q:i€F'}. Weset F=F' UlJ,_, E,+1+2). For every i € F let ot e Qf
be any non-negative rational number such that 0 < §! —e; < 1/272. Also, we
define m! to be max{p(u)(i) — dy(g,u) : v € {uf”” 1 j < kYU {g}} and M!
to be min{p(u)(i) + dy(g,u) : uw € {u}***: j <k} U{g}}. For every i € F if
ml < 6L < M! then we set 7} = 0L, If 5! < m!, resp. M} < & then we set 7! = ml,
resp. 7 = M!.

We define f € F. It suffices to define f on a finite set F'. Let F' be equal to
the set {i1,...,in}. WLOG we assume that fyfj >yt for j <1< m.

We define f inductively as follows: at step 1 we set f(i1) = 7. . Suppose we
are at step n < m. If n! = max{y} — dx (¢, @,) : 7 € {i1,...,ip—1}} > 7. then
we set f(in) = 7! ; otherwise, we set f(i,) = 4! . If we have finished then we
have defined f on F' (= Fy) which uniquely determines the values of f on N.

We now put p(g) = f. It is straightforward to check it is consistent. We
defined an extension V; € K of S; and thus there is some ul, € U playing the role
of g.

Assume the induction is finished. We have produced a sequence (u{c)] -
U such that for every i € N we have dy(ul,ui ) = 1/277! thus the sequence
is Cauchy and we denote aj its limit point. It immediately follows from the
construction that dy(a;, ax) = d(b;, by) for every i < k. It remains to check that

for every y € K d((ax,y),C) = d((bk,y),Cp). It obviously suffices to check that
for every n € N d((ax, ¢,),C) = d((bx, gn), CB).

Claim 5.2.7. Let I,n € N be arbitrary. Then |p(ut)(n) —e,| < 1/2%.

Once the claim is proved the previous assertion is clear so it remains to prove

the claim.

101



Proof of the claim. As in the proof of the analogous Claim 5.1.14 we prove it by

induction on I.

Step 1.

Suppose [ = 1 (in some places where it may be confusing we shall still use the
symbol [ eventhough it is equal to 1 in Step 1). Let n € N be arbitrary. There
exists i € F such that dg (g, q,) < 1/2!72 = 1/22. Since it follows |e; — &,| <
1/2%2 and |p(ul)(n) —p(ui)(i)| < 1/2"2 (the functions ¢; — &; and ¢; — p(up)(4)
are 1-Lipschitz) it suffices to check that for any n € F we have |p(u;)(n) —e,| <
1/21+1,

From the definition of p(u;) above we have two cases:
e p(ui)(n) =~1. This splits into three subcases:

1. p(ul)(n) = 1. However we defined that 0 < 6% — ¢, < 1/20+1 = 1/22

so we are done.

2. p(ut)(n) = mk. In that case m! > 4§} and we must check that m) <
e, + 1/20FL

f+l+2)(

From the definition there is some 7 < k such that m! = p(u n)—

d(uf™2 ul). However, from the assumption we have |p(uf™"2)(n) —
p(a;)(n)] < 1/2%2 and recall that d(b;, b)+1/(k-241) < d(uf ™2 ul).
Since p(b;)(n) < &, + d(b;, by) (recall that p(b;)(n) = p(a;)(n) and

en = p(bx)(n)), putting these three inequalities together the inequality

ml < e, + 1/2"! follows.

3. p(up)(n) = M!. TIn that case M! < 6! and we must check that
M} > el —1/21 From the definition there is some i < k such
that M! = p(uP™2)(n) + d(uF"2 ul). We again use the inequalities
from the previous item, i.e. |[p(uf™*?)(n) — p(a;)(n)| < 1/25+2 and
d(bi, by)+1/(k-271) < d(uf+2 ul). Moreover, since &, (= p(bg)(n)) <
p(b;)(n)+d(b;, by), putting these three inequalities together the inequal-
ity M} > e, —1/2"% follows.

e p(uj)(n) = nt. Then it follows from the definition that there exists some
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i € F such that p(u.)(z) = 7} and n} = 7! — dx(qn,q) > 6. Since we
already know from the previous item that §! > ¢, — 1/2!*1 and we know
that n! > §! we have that n! > &, — 1/2""1. Thus it suffices to check that

n <e,+1/2%1 We again have three subcases:

L. 7 = 6;. We have that p(b)(i)(= &) < p(br)(n)(= €n) + dr (i, qn)-
Since we know from the previous item that 6} < e; + 1/2"! and since

nt =6} — dg(qn, ;) we get that 0} <e, + 1/2F1,

2. v} = M}. In that case we have that M} < §! thus the inequality
nl < e, +1/2" follows from (1) immediately above.

3. 7} = m}l. In that case there is some j < k such that v} = m} =

p(u ) (@) +d(uf T2 ). Since p(by) (i) < en(= p(br) (n))+dx (a, gn) +
d(b;, br), using the inequalities from (2) and (3) from the previous item

we get that nt <e, +1/2!FL.

Step 2.

Now we assume that [ > 1 and for all «+ < [ the claim has been proved. Let again
n € N be arbitrary. Then there exists i € F such that dg(q;, q,) < 1/2"72. Thus
it again suffices to check that for any n € F we have |p(u})(n) — e,| < 1/2+1
There are again two cases: either p(ul)(n) =1}, or p(ul)(n) = n'. Both of them
are treated similarly as in Step 1; let us illustrate it only on the former. We again

have three subcases:

1. p(ul)(n) = &'. However we defined that 0 < 0, — &, < 1/2*1 s0 we are

done.

l
n

l

n —

2. p(ut)(n) = ml. In that case m! > 6! and we must check that m

e, + 1/21F1,

From the definition there is some u € {uf*"*? : i < k} U {ul '} such that
m) = p(u)(n)—d(u,ut). Ifu € {ul™2 i < k} then the proof is completely
analogous to the corresponding item in Step 1. So we assume that u = uﬁ;l.

However, we have from the induction hypothesis that |p(ul')(n) — e,| <

1/2! and since d(ul ', ul) = 1/2! we have that m! < e, + 1/2!*1.
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3. p(ul)(n) = M.. In that case M! < §' and we must check that M! > el —
1/2%1. From the definition there is some u € {uf "% : i < k}uU{u} '} such
that M. = p(u)(n) —d(u,ul). Again as in (2) above, if u € {uf™? i < k}
then the proof is completely analogous to the corresponding item in Step
1, so we assume that u = ui‘l. However, we again use the induction
hypothesis that |[p(ul')(n) — e,| < 1/2" and since d(ul ', u}) = 1/2! we
have that M! > el — 1/20+1,

This finishes the proof of the claim and also of Proposition 5.2.4.

The Lipschitz function F

Let a Lipschitz constant L € RT be fixed. Let @ = {g, : n € N} be an
enumeration of some fixed countable dense subset () of the Polish metric space
Z.Let p be an unary function with values in N and d again a binary rational
function. Let L be a language consisting of these functions.

We again define the (new) class K of structures in the language L and then

prove it satisfies the required properties of the Fraissé theory.

Definition 5.2.8. A finite structure A for the language L of cardinality k belongs

to IC if the following conditions are satisified

1. A is again a finite rational metric space, i.e. it satisfies the same require-

ments as in definitions before. We will again interpret d as a metric.

2. The function p is a total function.

The intended interpretation of this function is that the value p(a) deter-

mines the value of the universal continuous function F at a as follows:

F(a) = p(a)-

3. Here we put the restrictions on these structures which is just the demand

that the desired function F' is L-Lipschitz. For every a and b from A
dz(Gp(a), Gp(v)) < L - d(a, b).

Now we verify that K satisfies all properties needed to have a Fral ssé limit.

The countability and hereditary property are clear. To check joint embedding
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property, consider two structures A and B. Consider again m 4 defined as max{d(a,b) :
a,b € A}, mp defined analogously for B and moreover, mp = max{L-dz(qp(a), p))

a € Abe B}. Set m = max{ma,mp,mp} and define the metric on A[[ B as
follows: for a € A, b € B, d(a,b) = 2m. This again works.

Finally, we need to check the amalgamation property. So let A, B,C' € K be
structures and we assume that A is a substructure of both B and C. We set
D = A[[(B\ A)II(C\ A). The metric is again extended in the standard way,
i.e. for b € B and ¢ € C we set d(b, c) = min{d(b,a) + d(a,c) : a € A}.

We need to check that for any b € B and ¢ € C we still have dz (g0, @p()) < L-
d(b,c). Let a € A be such that d(b,c) = d(b,a)+d(a, c). We have dz(qp@), Gp(e)) <
dz(apv) Ip(@) + dz(Gpa) Gp(e)) < L - d(b,a) + L - d(a,c) = L - d(b, c).

We again denote the Fraissé limit as U. We define a function ' on U to Z
as follows: F (u) = @puy- It follows from our construction that F is L-Lipschitz,
thus we may extend F to the completion U; we denote F' this unique L-Lipschitz
extension and claim that this is the desired universal L-Lipschitz function to the

Polish metric space Z.

5.2.2 The one-point extension property for (U, F)

We again prove a particular version of one-point extension property. The method
how to use it to derive the universality, ultrahomogeneity and uniqueness is the
same as before. By K we denote the class of all finite metric spaces equipped
with an L-Lipschitz function into Z. Recall that we have the rational one-point

extension property concerning structures from /C.

Proposition 5.2.9 (One-point extension property). Let A be a finite substructure
of (U, F) and let B € K be such that |B| = |A| + 1 and there is an embedding
¢ of A into B. Then there exists an embedding v of B into (U, F) such that
id=1o0¢.

Proof of the proposition. We again start with the case when A is empty and
B = {b,}. We just need to find some a; € U such that F(a;) = F(b;). Choose

some sequence (f{); € N such that for every n € N dz(qyr, qu1+1) < L/2"*! and
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qp — F (b1). Using the rational one-point extension property we find a sequence
(ul); C such that for every n € N we have p(u}) = f* and dy(u}, u}™) = 1/27+1.

This is possible and we have that F'(a;) = F(b;) where a; = lim,, u7.

We now assume that A is non-empty. Let us enumerate A as {ay,...,a5_1}
and B as {b1, ..., b} so that the embedding ¢ of A into B sends a; to b; for every
i < k. We shall find a new point a; € U and define an embedding ¢ : B — (U, F)
sending b; to a; for every ¢« < k. We will find a Cauchy sequence of elements
from U such that the limit will be this desired point a;. For each [ < k let us
choose a converging sequence (ul) C U of elements from the Fraissé limit such
that lim; v = a;, dy(u],a;) < 1/27, for i < j we have dy(u],a) < dy(ui,a), and
moreover for every natural numbers i > j we have dz(F (u}), F(u})) < L/(k-20+?).
For every [ < k and i € Nlet f/ € N be such that F(uj) = gy;.

Now, let us a choose a sequence ( f,g)] C N of natural numbers such that
Vi e NVi > j(dz(q fj,qf,i) < L/(k-272)) and qp = F(by). Consider a structure
Sy = {ul™ .. u}3Y. For every a € S; we set p(a) = n iff F(a) = ¢, thus
Sy € K. We use Lemma 5.1.13 to find a metric extension M, = {uf™, ... u}3 g}
such that for all i < k we have d(b;, b) +1/(k-22) < dy(uf™, g) < d(b;, by) +1/2.
We extend M; into a structure V; from K. We just need to define p on g. We
set p(g) = fi. To check that this is consistent we need to verify dz(qp, quz_c+3) <
L- d(u?“’,g) for all j < k. However, since dZ(F(bZ-),ff%) < L/(k - 2%5)) and
d(bj,bg) +1/(k-2%) < dU(u;‘?Jr?’, g) it follows that

dz(asp, qpers) < dz(F(b;), F(by)) + L/ (k- oK) 1 L/(k - 2%) < L - d(bj, by,

+L/(k-2%) < L-d(uf™ g) = L/(k-2°) + L/(k-2%) < L-d(u}*?, g)
Thus V; € K and there is some u,, € U playing the role of g.
Suppose we have already constructed u}, . .. ,uﬁ;l C U. We consider a struc-
ture S; = {ufT™2 . wfT? 4l with an obvious definition of p on elements

of S;. We use again Lemma 5.1.13 to obtain a metric extension

My, = {uft2 uf 2wl g} such that for all 4,k we have d(b;, by) + 1/(k
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2l < dU(ufH“, g) < d(b;,by)+1/2'. We need to define p on g; we set p(g) = f}.
The verification that it is consistent is the same as above. So we obtain some

u}, € U playing the role of g. This finishes the induction and the proof. O]
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