Photosynthetica 2018, 56(1):86-104 | DOI: 10.1007/s11099-018-0770-3

Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses?

A. Stirbet1,*, D. Lazár2,*, J. Kromdijk3, Govindjee4
1 Newport News, USA
2 Department of Biophysics, Center of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
3 Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
4 Department of Biochemistry, Department of Plant Biology, and Center of Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, USA

Chlorophyll (Chl) a fluorescence induction (transient), measured by exposing dark-adapted samples to high light, shows a polyphasic rise, which has been the subject of extensive research over several decades. Several Chl fluorescence parameters based on this transient have been defined, the most widely used being the FV [= (FM-F0)]/FM ratio as a proxy for the maximum quantum yield of PSII photochemistry. However, considerable additional information may be derived from analysis of the shape of the fluorescence transient. In fact, several performance indices (PIs) have been defined, which are suggested to provide information on the structure and function of PSII, as well as on the efficiencies of specific electron transport reactions in the thylakoid membrane. Further, these PIs have been proposed to quantify plant tolerance to stress, such as by high light, drought, high (or low) temperature, or N-deficiency. This is an interesting idea, since the speed of the Chl a fluorescence transient measurement (<1 s) is very suitable for high-throughput phenotyping. In this review, we describe how PIs have been used in the assessment of photosynthetic tolerance to various abiotic stress factors. We synthesize these findings and draw conclusions on the suitability of several PIs in assessing stress responses. Finally, we highlight an alternative method to extract information from fluorescence transients, the Integrated Biomarker Response. This method has been developed to define multi-parametric indices in other scientific fields (e.g., ecology), and may be used to combine Chl a fluorescence data with other proxies characterizing CO2 assimilation, or even growth or grain yield, allowing a more holistic assessment of plant performance.

Additional key words: JIP-test; Kautsky effect; performance index; tolerance to stress

Received: July 13, 2017; Accepted: October 24, 2017; Published: March 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Stirbet, A., Lazár, D., Kromdijk, J., & Govindjee, (2018). Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica56(1), 86-104. doi: 10.1007/s11099-018-0770-3
Download citation

References

  1. Acosta-Motos J.R., Ortuño M.F., Bernal-Vicente A. et al.: Responses to salt stress: Adaptive mechanisms.-Agronomy 7: 18, 2017. Go to original source...
  2. Adams III W.W., Zarter C.R., Mueh K.E. et al.: Energy dissipation and photoinhibition: A continuum of photoprotection.-In: Demmig-Adams B., Adams III W.W., Mattoo A.K. (ed.): Photoprotection, Photoinhibition, Gene Regulation, and Environment. Pp. 49-64. Springer Science+Business Media B.V., Dordrecht 2008. Go to original source...
  3. Adamski J.M., Cargnelutti D., Sperotto R.A. et al.: Identification and physiological characterization of two sister lines of indica rice (Oryza sativa L.) with contrasting levels of cold tolerance.-Can. J. Plant Sci. 96: 197-214, 2016. Go to original source...
  4. Ainsworth E.A., Yendrek C.R., Sitch S. et al.: The effects of ozone on net primary productivity and implications for climate change.-Annu. Rev. Plant Biol. 63: 637-661, 2012. Go to original source...
  5. Allakhverdiev S.I., Murata N.: Salt stress inhibits photosystem II and I in cynobacteria.-Photosynth. Res. 98: 529-539, 2008. Go to original source...
  6. Alloway B.J.: Sources of heavy metals and metalloids in soils.-In: Alloway B. (ed.): Heavy Metals in Soils. Environmental Pollution, Vol. 22. Springer, Dordrecht 2013. Go to original source...
  7. Appenroth K.J., Stöckel J., Srivastava A. et al.: Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements.-Environ. Pollut. 115: 49-64, 2001. Go to original source...
  8. Baker N.R.: Chlorophyll fluorescence: A probe of photosynthesis in vivo.-Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  9. Baldassarre V., Cabassi G., Ferrante A.: Use of chlorophyll a fluorescence for evaluating the quality of leafy vegetables.-Aust. J. Crop Sci. 5: 735-741, 2011.
  10. Bazzaz M.B., Govindjee: Effects of cadmium nitrate on spectral characteristics and light reactions of chloroplasts.-Environ. Lett. 6: 1-12, 1974a. Go to original source...
  11. Bazzaz M.B., Govindjee: Effects of lead chloride on chloroplast reactions.-Environ. Lett. 6: 175-191, 1974b. Go to original source...
  12. Beliaeff B., Burgeot T.: Integrated biomarker response: a useful tool for ecological risk assessment.-Environ. Toxicol. Chem. 21: 1316-1322, 2002. Go to original source...
  13. Björkman O., Demmig B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins.-Planta 170: 489-504, 1987. Go to original source...
  14. Blankenship R.E.: Molecular Mechanisms of Photosynthesis, 2nd ed. Pp. 312. Blackwell-John Wiley, Oxford 2014.
  15. Blevins D.G., Lukaszewski K.M.: Boron in plant structure and function.-Annu. Rev. Plant Phys. 49: 481-500, 1998. Go to original source...
  16. Bohnert H.J., Nelson D.E., Jensen R.G.: Adaptations to environmental stresses.-Plant Cell 7: 1099-1111, 1995. Go to original source...
  17. Boureima S. Oukarroum A., Diouf M. et al.: Screening for drought tolerance in mutant germplasm of sesame (Sesamum indicum) probing by chlorophyll a fluorescence.-Environ. Exp. Bot. 81: 37-43, 2012. Go to original source...
  18. Broeg K., Lehtonen K.K.: Indices for the assessment of environmental pollution of the Baltic Sea coasts: Integrated assessment of a multi-biomarker approach.-Mar. Pollut. Bull. 53: 508-522, 2006. Go to original source...
  19. Bussotti F., Agati G., Desotgiu R. et al.: Ozone foliar symptoms in woody plants assessed with ultrastructural and fluorescence analysis.-New Phytol. 166: 941-955, 2005. Go to original source...
  20. Bussotti F., Strasser R.J., Schaub M.: Photosynthetic behavior of woody species under high ozone exposure probed with the JIPtest: A review.-Environ. Pollut. 147: 430-437, 2007. Go to original source...
  21. Butler W.L., Kitajima M.: Fluorescence quenching in photosystem II of chloroplasts.-Biochim. Biophys. Acta 376: 116-125, 1975. Go to original source...
  22. Chaves M.M., Flexas J., Pinheiro C.: Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell.-Ann. Bot.-London 103: 551-560, 2009. Go to original source...
  23. Chen S., Yang J., Zhang M. et al.: Classification and characteristics of heat tolerance in Ageratina adenophora populations using fast chlorophyll a fluorescence rise O-J-I-P.-Environ. Exp. Bot. 122: 126-140, 2016. Go to original source...
  24. Clijsters H., Cuypers A., Vangronsveld J.: Physiological responses to heavy metals in higher plants; Defence against oxidative stress.-Z. Naturforsch. 54c: 720-734, 1999. Go to original source...
  25. D'Agostino I.B., Kieber J.J.: Molecular mechanisms of cytokinin action.-Curr. Opin. Plant Biol. 2: 359-364, 1999.
  26. Demmig-Adams B., Adams W.W., Heber U. et al.: Inhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by dithiothreitol in spinach leaves and chloroplasts.-Plant Physiol. 92: 293-301, 1990. Go to original source...
  27. Dinis L.-T., Ferreira H., Pinto G. et al.: Kaolin-based, foliar reflective film protects photosystem II structure and function in grapevine leaves exposed to heat and high solar radiation.-Photosynthetica 54: 47-55, 2016. Go to original source...
  28. Duarte B., Pedro S., Marques J.C. et al.: Zostera noltii development probing using chlorophyll a transient analysis (JIP-test) under field conditions: Integrating physiological insights into a photochemical stress index.-Ecol. Indic. 76: 219-229, 2017. Go to original source...
  29. Edwards G.E., Baker N.R.: Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis?-Photosynth. Res. 37: 89-102, 1993.
  30. Fahlgren N., Gehan M.A., Baxter I.: Lights, camera, action: highthroughput plant phenotyping is ready for a close up.-Curr. Opin. Plant Biol. 24: 93-99, 2015.
  31. Fan J., Hu Z., Xie Y. et al.: Alleviation of cold damage to photosystem II and metabolisms by melatonin in Bermudagrass.-Front. Plant Sci. 6: 925, 2015.
  32. Feller U., Crafts-Brandner S.J., Salvucci M.E.: Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) activase-mediated activation of Rubisco.-Plant Physiol. 116: 539-546, 1998. Go to original source...
  33. Ferrante A., Maggiore T.: Chlorophyll a fluorescence measurements to evaluate storage time and temperature of Valeriana leafy vegetables.-Postharvest Biol. Tec. 45: 73-80, 2007. Go to original source...
  34. Ferreira N.G.C., Cardoso D.N., Morgado R. et al.: Long-term exposure of the isopod Porcellionides pruinosus to nickel: costs in the energy budget and detoxification enzymes.-Chemosphere 135: 354-362, 2015b. Go to original source...
  35. Ferreira N.G.C., Morgado R., Santos M.J.G. et al.: Biomarkers and energy reserves in the isopod Porcellionides pruinosus: The effects of long-term exposure to dimethoate.-Sci. Total Environ. 502: 91-102, 2015a. Go to original source...
  36. Flexas J., Bota J., Loreto F. et al.: Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants.-Plant Biol. 6: 269-279, 2004. Go to original source...
  37. Frolec J., Řebiček J., Lazár D. et al.: Impact of two different types of heat stress on chloroplast movement and fluorescence signal of tobacco leaves.-Plant Cell Rep. 29: 705-714, 2010. Go to original source...
  38. Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.-Biochim. Biophys. Acta 990: 87-92, 1989. Go to original source...
  39. Genty B., Briantais J.-M., Da Silva J.B.V.: Effect of drought on primary photosynthetic processes of cotton leaves.-Plant Physiol. 83: 360-364, 1987. Go to original source...
  40. Goltsev V., Zaharieva I., Chernev P. et al.: Drought-induced modifications of photosynthetic electron transport in intact leaves: Analysis and use of neural networks as a tool for a rapid non-invasive estimation.-Biochim. Biophys. Acta 1817: 1490-1498, 2012.
  41. Govindjee, Amesz J., Fork D.C. (ed.): Light Emission by Plants and Bacteria. Pp. 660. Academic Press, Orlando 1986.
  42. Govindjee, Papageorgiou G.C.: Chlorophyll fluorescence and photosynthesis: fluorescence transients.-In: Giese A.C. (ed.): Photophysiology, Vol. 6. Pp. 1-46. Academic Press, New York 1971. Go to original source...
  43. Govindjee, Shevela D., Björn L.-O.: Evolution of the Z-scheme of photosynthesis: a perspective.-Photosynth. Res. 133: 5-15, 2017. Go to original source...
  44. Govindjee: Chlorophyll a fluorescence: a bit of basics and history.-In: Papageorgiou G.C., {ieGovindjee (ed.): Chlorophyll a fluorescence: A signature of Photosynthesis, Advances in Photosynthesis and Respiration. Vol. 19. Pp. 1-41. Springer, Dordrecht 2004. Go to original source...
  45. Govindjee: Sixty-three years since Kautsky: chlorophyll a fluorescence.-Aust. J. Plant Physiol. 22: 131-160, 1995. Go to original source...
  46. Gravano E., Bussotti F., Strasser R.J. et al.: Ozone symptoms in leaves of woody plants in open-top chambers: ultrastructural and physiological characteristics.-Physiol. Plantarum 121: 620-633, 2004. Go to original source...
  47. Greenbaum N.L., Ley A.C., Mauzerall D.C.: Use of a lightinduced respiratory transient to measure the optical cross section of photosystem I in Chlorella.-Plant Physiol. 84: 879-882, 1987. Go to original source...
  48. Guanter L., Zhang Y., Jung M. et al.: Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence.-Proc. Natl. Acad. Sci. USA 111: E1327-E1333, 2014. Go to original source...
  49. Guissé B., Srivastava A., Strasser R.J.: The polyphasic rise of the chlorophyll a fluorescence (O-K-J-I-P) in heat stressed leaves.-Arch. Sci. Genève 48: 147-160, 1995.
  50. Hakala M., Tuominen I., Keränen M.: Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of Photosystem II.-Biochim. Biophys. Acta 1706: 68-80, 2005. Go to original source...
  51. Hamdani S., Qu M., Xin C.-P. et al.: Variations between the photosynthetic properties of elite and landrace Chinese rice cultivars revealed by simultaneous measurements of 820 nm transmission signal and chlorophyll a fluorescence induction.-J. Plant Physiol. 177: 128-138, 2015. Go to original source...
  52. Hasegawa P.M., Bressan R.A., Zhu J. et al.: Plant cellular and molecular responses to high salinity.-Annu. Rev. Plant Phys. 51: 463-499, 2000. Go to original source...
  53. Hendrickson L., Förster B., Pogson B.J. et al: A simple chlorophyll fluorescence parameter that correlates with the rate coefficient of photoinactivation of photosystem II.-Photosynth. Res. 84: 43-49, 2005. Go to original source...
  54. Hermans C., Smeyers M., Rodriguez R.M. et al.: Quality assessment of urban trees: A comparative study of physiological characterisation, airborne imaging and on site fluorescence monitoring by the OJIP-test.-J. Plant Physiol. 160: 81-90, 2003. Go to original source...
  55. Hoagland D.R., Arnon D.I.: The water-culture method for growing plants without soil.-In: Agricultural Experiment Station, Circular 347. Pp. 1-39. College of Agriculture, University of California, Berkeley 1938.
  56. Humplík J.F., Lazár L., Husičková A. et al.: Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses-a review.-Plant Methods 11: 29, 2015. Go to original source...
  57. Jedmowski C., Ashoub A., Momtaz O. et al.: Impact of drought, heat, and their combination on chlorophyll fluorescence and yield of wild barley (Hordeum spontaneum).-J. Bot. 2015: 120868, 2015. Go to original source...
  58. Jedmowski C., Bayramov S., Brüggemann W.: Comparative analysis of drought stress effects on photosynthesis of Eurasian and North African genotypes of wild barley.-Photosynthetica 52: 564-573, 2014. Go to original source...
  59. Jedmowski C., Brüggemann W.: Imaging of fast chlorophyll fluorescence induction curve (OJIP) parameters, applied in a screening study with wild barley (Hordeum spontaneum) genotypes under heat stress.-J. Photoch. Photobio. B 151: 153-160, 2015. Go to original source...
  60. Jiang C.-D., Shi L., Gao H.-Y. et al.: Development of photosystems 2 and 1 during leaf growth in grapevine seedlings probed by leaf chlorophyll a fluorescence transient and 820 nm transmission in vivo.-Photosynthetica 44: 454-463, 2006. Go to original source...
  61. Jiang H.-X., Chen L.-S., Zheng J.-G. et al.: Aluminum-induced effects on Photosystem II photochemistry in citrus leaves assessed by the chlorophyll a fluorescence transient.-Tree Physiol. 28: 1863-1871, 2008.
  62. Jiang H.-X., Tang N., Zheng J.-G. et al.: Antagonistic actions of boron against inhibitory effects of aluminum toxicity on growth, CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/ oxygenase, and photosynthetic electron transport probed by the JIP-test, of Citrus grandis seedlings.-BMC Plant Biol. 9: 102, 2009. Go to original source...
  63. Joshi M.K., Mohanty P.: Chlorophyll a fluorescence as a probe of heavy metal ion toxicity in plants.-In: Papageorgiou G.C., {ieGovindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Vol. 19. Pp. 637-661. Springer, Dordrecht 2004. Go to original source...
  64. Kalaji H.M., Carpentier R., Allakhverdiev S.I. et al.: Fluorescence parameters as early indicators of light stress in barley.-J. Photoch. Photobio. B 112: 1-6, 2012. Go to original source...
  65. Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions.-Acta Physiol. Plant. 38: 102, 2016.
  66. Kalaji H.M., Oukarroum A., Alexandrov V. et al.: Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements.-Plant Physiol. Biochem. 81: 16-25, 2014b. Go to original source...
  67. Kalaji H.M., Schansker G., Brestic M. et al.: Frequently asked questions about chlorophyll fluorescence, the sequel.-Photosynth. Res. 132: 13-66, 2017a. Go to original source...
  68. Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about chlorophyll fluorescence: practical issues.-Photosynth. Res. 122: 121-158, 2014a. Go to original source...
  69. Kalaji M.H., Goltsev V.N., Żuk-Gołaszewska K. et al.: Chlorophyll Fluorescence: Understanding Crop Performance-Basics and Applications. Pp. 222. CRC Press, Boca Raton 2017b. Go to original source...
  70. Kale R., Hebert A.E., Frankel L.K. et al.: Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem II.-Proc. Natl. Acad. Sci. USA 114: 2988-2993, 2017. Go to original source...
  71. Kaňa R., Govindjee: Role of ions in the regulation of light harvesting.-Front. Plant Sci. 7: 1849, 2016.
  72. Kouřil R., Lazár D, Lee H. et al.: Moderately elevated temperature eliminates resistance of rice plants with enhanced expression of glutathione reductase to intensive photooxidative stress.-Photosynthetica 41: 571-578, 2003.
  73. Krause G.H., Weis E.: Chlorophyll fluorescence and photosynthesis: the basics.-Annu. Rev. Plant Phys. 42: 313-349, 1991. Go to original source...
  74. Kromdijk J., Głowacka K., Leonelli L. et al.: Improving photosynthesis and crop productivity by accelerating recovery from photoprotection.-Science 354: 857-861, 2016. Go to original source...
  75. Lazár D., Ilík P., Nauš J.: An appearance of K-peak in fluorescence induction depends on the acclimation of barley leaves to higher temperatures.-J. Lumin. 72-74: 595-596, 1997. Go to original source...
  76. Lazár D., Ilík P.: High-temperature induced chlorophyll fluorescence changes in barley leaves. Comparison of the critical temperatures determined from fluorescence induction and from fluorescence temperature curve.-Plant Sci. 124: 159-164, 1997. Go to original source...
  77. Lazár D., Nauš J.: Statistical properties of chlorophyll fluorescence induction parameters.-Photosynthetica 35: 121-127, 1998. Go to original source...
  78. Lazár D., Pospíšil P., Nauš J.: Decrease of fluorescence intensity after the K step in chlorophyll a fluorescence induction is suppressed by electron acceptors and donors to photosystem 2.-Photosynthetica 37: 255-265, 1999. Go to original source...
  79. Lazár D., Schansker G.: Models of chlorophyll a fluorescence transients.-In: Laisk A., Nedbal A.L., Govindjee (ed.): Photosynthesis in Silico: Understanding Complexity from Molecules to Ecosystems. Advances in Photosynthesis and Respiration. Vol. 29. Pp. 85-123. Springer,Dordrecht
  80. Lazár D.: Chlorophyll a fluorescence induction.-Biochim. Biophys. Acta 1412: 1-28, 1999. Go to original source...
  81. Lazár D.: Chlorophyll a fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of photosystem II and considering photosystem II heterogeneity.-J. Theor. Biol. 220: 469-503, 2003. Go to original source...
  82. Lazár D.: Modelling of light-induced chlorophyll a fluorescence rise (O-J-I-P transient) and changes in 820 nm-transmittance signal of photosynthesis.-Photosynthetica 47: 483-498, 2009. Go to original source...
  83. Lazár D.: Parameters of photosynthetic energy partitioning.-J. Plant Physiol. 175: 131-147, 2015. Go to original source...
  84. Lazár D.: Simulations show that a small part of variable chlorophyll a fluorescence originates in photosystem I and contributes to overall fluorescence rise.-J. Theor. Biol. 335: 249-264, 2013. Go to original source...
  85. Lazár D.: The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light.-Funct. Plant Biol. 33: 9-30, 2006. Go to original source...
  86. Ley A.C., Mauzerall D.C.: Absolute absorption cross-sections for photosystem II and the minimum quantum requirement of photosynthesis in Chlorella vulgaris.-Biochim. Biophys. Acta 680: 95-106, 1982. Go to original source...
  87. Liang Y., Chen H., Tang M.J. et al.: Responses of Jatropha curcas seedlings to cold stress: photosynthesis-related proteins and chlorophyll fluorescence characteristics.-Physiol. Plantarum 131: 508-517, 2007. Go to original source...
  88. Lichtenthaler H.K., Buschmann C., Rinderle U. et al.: Application of chlorophyll fluorescence in ecophysiology.-Radiat. Environ. Biophys. 25: 297-308, 1986. Go to original source...
  89. Liu Q.D., Zhu Y.R., Tao H.L. et al.: Damage of PSII during senescence of Spirodela polyrrhiza explants under long-day conditions and its prevention by 6-benzyladenine.-J. Plant Res. 119: 145-152, 2006. Go to original source...
  90. Makino A.: Rubisco and nitrogen relationships in rice: Leaf photosynthesis and plant growth.-Soil Sci. Plant Nutr. 49: 317-327, 2003. Go to original source...
  91. Marschner H.: Mineral Nutrition of Higher Plants, 2nd ed. Academic Press, London 1995.
  92. Mathur S., Jajoo A., Mehta P. et al.: Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum).-Plant Biol. 13: 1-6, 2011. Go to original source...
  93. McGrath J.M., Beztelberger A.M., Wang S. et al.: An analysis of ozone damage to historical maize and soybean yields in the United States.-Proc. Natl. Acad. Sci. USA 112: 14390-14395, 2015. Go to original source...
  94. Mehta P., Jajoo A., Mathur S. et al.: Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves.-Plant Physiol. Biochem. 48: 16-20, 2010. Go to original source...
  95. Meroni M., Rossini M., Guanter L. et al.: Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications.-Remote Sens. Environ. 113: 2037-2051, 2009. Go to original source...
  96. Mishra K.B., Mishra A., Klem K. et al.: Plant phenotyping: a perspective.-Ind. J. Plant Physiol. 21: 514-527, 2016a.
  97. Mishra K.B., Mishra A., Novotná K. et al.: Chlorophyll a fluorescence, under half of the adaptive growth-irradiance, for high-throughput sensing of leaf-water deficit in Arabidopsis thaliana accessions.-Plant Methods 12: 46, 2016b. Go to original source...
  98. Misra A.N. Srivastava A., Strasser R.J.: Utilization of fast chlorophyll a fluorescence technique in assessing the salt/ion sensitivity of mung bean and Brassica seedlings.-J. Plant Physiol. 158: 1173-1181, 2001. Go to original source...
  99. Morales F., Abadía A., Abadía J.: Photoinhibition and photoprotection under nutrient deficiencies, drought and salinity.-In: Demmig-Adams B., Adams III W.W., Mattoo A.K. (ed.): Photoprotection, Photoinhibition, Gene Regulation, and Environment. Pp. 65-85. Springer Science+Business Media B.V. Dordrecht 2008. Go to original source...
  100. Moya I., Cerovic Z.G.: Remote sensing of chlorophyll fluorescence: instrumentation and analysis.-In: Papageorgiou G.C., {ieGovidjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 429-445. Springer, Dordrecht 2004. Go to original source...
  101. Müller P., Li X.P., Niyogi K.K.: Non-photochemical quenching. A response to excess light energy.-Plant Physiol. 125: 1558-1566, 2001. Go to original source...
  102. Munday J.C. Jr., Govindjee: Light-induced changes in the fluorescence yield of chlorophyll a in vivo. III. The dip and the peak in the fluorescence transient of Chlorella pyrenoidosa.-Biophys. J. 9: 1-21, 1969a. Go to original source...
  103. Munday J.C. Jr., Govindjee: Light-induced changes in the fluorescence yield of chlorophyll a in vivo. IV. The effect of preillumination on the fluorescence transient of Chlorella pyrenoidosa.-Biophys. J. 9: 22-35, 1969b. Go to original source...
  104. Munns R., Tester M.: Mechanisms of salinity tolerance.-Annu. Rev. Plant Biol. 59: 651-681, 2008. Go to original source...
  105. Murata N., Takahashi S., Nishiyama Y. et al.: Photoinhibition of photosystem II under environmental stress.-Biochim. Biophys. Acta 1767: 414-421, 2007. Go to original source...
  106. Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications.-J. Exp. Bot. 64: 3983-3998, 2013. Go to original source...
  107. Nagajyoti P.C., Lee K.D., Sreekanth T.V.M.: Heavy metals, occurrence and toxicity for plants: a review.-Environ. Chem. Lett. 8: 199-216, 2010. Go to original source...
  108. Nash D., Miyao M., Murata N.: Heat inactivation of oxygen evolution in photosystem II particles and its acceleration by chloride depletion and exogenous manganese.-Biochim. Biophys. Acta 807: 127-133, 1985. Go to original source...
  109. Nauš J., Kuropatwa R., Klinkovský T. et al.: Heat injury of barley leaves detected by the chlorophyll fluorescence temperature curve.-Biochim. Biophys. Acta 1101: 359-362, 1992. Go to original source...
  110. Nernst W.H.: [Kinetics of solids: theory of difussion.]-Z. Phys. Chem. 3: 613-637, 1888. [In German]
  111. Niinemets U.: A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance.-Ecol. Res. 25: 693-714, 2010. Go to original source...
  112. Nikiforou C., Manetas Y.: Inherent nitrogen deficiency in Pistacia lentiscus preferentially affects photosystem I: a seasonal field study.-Funct. Plant Biol. 38: 848-855, 2011. Go to original source...
  113. Nilkens M., Kress E., Lambrev P. et al.: Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis.-Biochim. Biophys. Acta 1797: 466-475, 2010. Go to original source...
  114. Oukarroum A., El Madidi S., Schansker G. et al.: Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering.-Environ. Exp. Bot. 60: 438-446, 2007. Go to original source...
  115. Oukarroum A., El Madidi S., Strasser R.J.: Differential heat sensitivity index in barley cultivars (Hordeum vulgare L.) monitored by chlorophyll a fluorescence OKJIP.-Plant Physiol. Biochem. 105: 102-108, 2016. Go to original source...
  116. Oukarroum A., Strasser R.J., van Staden J.: Phenotyping of dark and light adapted barley plants by the fast chlorophyll a fluorescence rise OJIP.-S. Afr. J. Bot. 70: 277-283, 2004.
  117. Pan X., Chen X., Zhang D. et al.: Effect of Chromium(VI) on photosystem II activity and heterogeneity of Synechocystis sp. (Cyanophyta): studied with in vivo chlorophyll fluorescence tests.-J. Phycol. 45: 386-394, 2009. Go to original source...
  118. Paoletti E., Bussotti F., Della Rocca G. et al.: Fluorescence transient in ozonated Mediterranean shrubs.-Phyton 44: 121-131, 2004.
  119. Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Vol. 19. Pp. 820. Springer, Dordrecht 2004. Go to original source...
  120. Papageorgiou G.C., Govindjee: Photosystem II fluorescence: slow changes - scaling from the past.-J. Photochem. Photobiol. B. 104: 258-270, 2011 Go to original source...
  121. Papageorgiou G.C., Tsimilli-Michael M., Stamatakis K.: The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint.-Photosynth. Res. 94: 275-290, 2007. Go to original source...
  122. Pareek A., Sopory S.K., Bohnert H.K. et al. (ed.): Abiotic Stress Adaptation in Plants: Physiological, Molecular and Genomic Foundation. Pp. 526, Springer, Dordrecht 2010. Go to original source...
  123. Parida A.K., Das A.B.: Salt tolerance and salinity effects on plants: A review.-Ecotoxicol. Environ. Safe. 60: 324-349, 2005. Go to original source...
  124. Prakash J.S.S., Srivastava A., Strasser R.J. et al.: Senescence induced alterations in the photosystem II functions of Cucumis sativus cotyledons: probing of senescence driven alterations of photosystem II by chlorophyll a fluorescence induction O-J-IP transients.-Indian J. Biochem. Biophys. 40: 160-168, 2003.
  125. Rapacz M., Sasal M., Kalaji H.M. et al.: Is the OJIP test a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under variable winter environments?-PLoS ONE 10: e0134820, 2015b. Go to original source...
  126. Rapacz M., Sasal M., Wójcik-Jagła M.: Direct and indirect measurements of freezing tolerance: advantages and limitations.-Acta Physiol. Plant. 37: 157-173, 2015a. Go to original source...
  127. Rapacz M., Woźniczka A.: A selection tool for freezing tolerance in common wheat using the fast chlorophyll a fluorescence transient.-Plant Breeding 128: 227-234, 2009. Go to original source...
  128. Rapacz M.: Chlorophyll a fluorescence transient during freezing and recovery in winter wheat.-Photosynthetica 45: 409-418, 2007. Go to original source...
  129. Schansker G., Tóth S.Z., Holzwarth A.R. et al.: Chlorophyll a fluorescence: beyond the limits of the QA-model.-Photosynth. Res. 120: 43-58, 2014. Go to original source...
  130. Schansker G., Tóth S.Z., Kovács L. et al.: Evidence for a fluorescence yield change driven by a light induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise.-Biochim. Biophys. Acta 1807: 1032-1043, 2011.
  131. Schreiber U., Berry J.A.: Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of photosynthetic apparatus.-Planta 136: 233-238, 1977. Go to original source...
  132. Serbin S.P., Dillaway D.N., Kruger.E.L. et al.: Leaf optical properties reflect variation in photosynthetic metabolism and its sensitivity to temperature.-J. Exp. Bot. 63: 489-502, 2012. Go to original source...
  133. Shabnam N., Sharmila P., Govindjee et al.: Differential response of floating and submerged leaves of long leaf pondweed to silver ions.-Front. Plant Sci. 8: 1052, 2017.
  134. Srivastava A, Govindjee, Strasser R.J.: Greening of peas: parallel measurements on 77 K emission spectra, OJIP chlorophyll a fluorescence transient, period four oscillation of the initial fluorescence level, delayed light emission, and P700.-Photosynthetica 37: 365-392, 1999. Go to original source...
  135. Srivastava A., Guissé B., Greppin H. et al.: Regulation of antenna structure and electron transport in PSII of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient OKJIP.-Biochim. Biophys. Acta 1320: 95-106, 1997. Go to original source...
  136. Stauffer P.H.: Flux flummoxed: A proposal for consistent usage.-Ground Water 44: 125-128, 2006. Go to original source...
  137. Stefanov D., Petkova V., Denev I.D.: Screening for heat tolerance in common bean (Phaseolus vulgaris L.) lines and cultivars using JIP-test.-Sci. Hortic.-Amsterdam 128: 1-6, 2011.
  138. Stirbet A., Govindjee, Strasser B.J. et al.: Chlorophyll a fluorescence induction in higher plants: Modelling and numerical simulation.-J. Theor. Biol. 193: 131-151, 1998. Go to original source...
  139. Stirbet A., Govindjee: Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise.-Photosynth. Res. 113: 15-61, 2012. Go to original source...
  140. Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: Basis and applications of the OJIP fluorescence transient.-J. Photochem. Photobiol. B 104: 236-257, 2011. Go to original source...
  141. Stirbet A., Riznichenko G.Yu., Rubin A.B. et al.: Modeling chlorophyll a fluorescence transient: relation to photosynthesis.-Biochemistry-Moscow 79: 291-323, 2014. Go to original source...
  142. Strasser B.J, Strasser R.J.: Measuring fast fluorescence transients to address environmental questions: The JIP test.-In: Mathis P. (ed.): Photosynthesis: from Light to Biosphere. Vol. 5. Pp. 977-980. Kluwer Academic Publishers, Dordrecht 1995. Go to original source...
  143. Strasser B.J.: Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients.-Photosynth. Res. 52: 147-155, 1997. Go to original source...
  144. Strasser R.J., Srivastava A., Govindjee: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria.-Photochem. Photobiol. 61: 32-42, 1995. Go to original source...
  145. Strasser R.J., Srivastava A., Tsimilli-Michael M.: Screening the vitality and photosynthetic activity of plants by fluorescence transient.-In: Behl R.K., Punia M.S., Lather B.P.S. (ed.): Crop Improvement for Food Security. Pp. 72-115. SSARM, Hisar, India 1999.
  146. Strasser R.J., Tsimilli-Michael M., Dangre D. et al.: Biophysical phenomics reveals functional building blocks of plants systems biology: a case study for the evaluation of the impact of mycorrhization with Piriformospora indica.-In: Varma A., Oelmüler R. (ed.): Advanced Techniques in Soil Microbiology. Soil Biology. Pp. 319-341. Springer, Berlin 2007. Go to original source...
  147. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient.-In: Papageorgiou G.C., {ieGovindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration, Vol. 19. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  148. Strasser R.J., Tsimilli-Michael M., Srivastava A.: The fluorescence transient as a tool to characterize and screen photosynthetic samples.-In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 443-480. Taylor & Francis, London 2000.
  149. Strasser R.J.: The grouping model of plant photosynthesis.-In: Akoyunoglou G., Argyroudi-Akoyunoglou J.H. (ed.): Chloroplast Development. Pp. 513-538. Elsevier Biomedical, Amsterdam 1978.
  150. Strauss A.J., Krüger G.H.J., Strasser R.J. et al.: Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P.-Environ. Exp. Bot. 56: 147-157, 2006. Go to original source...
  151. Sudhir P., Murthy S.D.S.: Effects of salt stress on basic processes of photosynthesis.-Photosynthetica 42: 481-486, 2004. Go to original source...
  152. Toepel J., Gilbert M., Wilhelm C.: Can chlorophyll a in-vivo fluorescence be used for quantification of carbon-based primary production in absolute terms?-Arch. Hydrobiol. 160: 515-526, 2004. Go to original source...
  153. Tsimilli-Michael M., Eggenberg P., Biro B. et al.: Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity of alfalfa, probed by the polyphasic chlorophyll a fluorescence transient O-J-I-P.-Appl. Soil Ecol. 15: 169-182, 2000. Go to original source...
  154. Tsimilli-Michael M., Pêcheux M., Strasser R.J.: Vitality and stress adaptation of the symbionts of coral reef and temperate foraminifers probed in hospite by the fluorescence kinetics OJ-I-P.-Arch. Sci. Genève 51: 1-36, 1998.
  155. Tsimilli-Michael M., Strasser R.J.: In vivo assessment of plants' vitality: applications in detecting and evaluating the impact of mycorrhization on host plants.-In: Varma A. (ed.): Mycorrhiza: State of the Art. Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics, 3rd ed. Pp. 679-703. Springer, Dordrecht 2008. Go to original source...
  156. van Heerden P.D.R., Strasser R.J., Krüger G.H.J.: Reduction of dark chilling stress in N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics.-Physiol. Plantarum 121: 239-249, 2004b. Go to original source...
  157. van Heerden P.D.R., Tsimilli-Michael M., Krüger G.H.J. et al.: Dark chilling effects on soybean genotypes during vegetative development: Parallel studies of CO2 assimilation, chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation.-Physiol. Plantarum 117: 476-491, 2003. Go to original source...
  158. van Heerden P.D.R., Viljoen M.M., DeVilliers M. et al.: Limitation of photosynthetic carbon metabolism by dark chilling in temperate and tropical soybean genotypes.-Plant Physiol. Biochem. 42: 117-124, 2004a. Go to original source...
  159. van Straten G., van Thoor B., van Willegenburg L.G. et al: A 'big leaf, big fruit, big substrate' model for experiments on receding horizon optimal control of nutrient supply to greenhouse tomato.-Acta Hortic. 718: 147-155, 2006. Go to original source...
  160. Volgusheva A., Yakovleva O.V., Kukarskikh G.P. et al.: Performance index in assessing the physiological state of trees in urban ecosystems.-Biophysics 56: 90-95, 2011. Go to original source...
  161. Wang X.Y., Xu X.M., Cui J.: The importance of blue light for leaf area expansion, development of photosynthetic apparatus, and chloroplast ultrastructure of Cucumis sativus grown under weak light.-Photosynthetica 53: 213-222, 2015. Go to original source...
  162. Wong D., Govindjee: Effects of lead ions on photosystem I in isolated chloroplasts: Studies on the reaction center P700.-Photosynthetica 10: 241-254, 1976.
  163. Yan K., Chen P., Shao H. et al.: Responses of photosynthesis and photosystem II to higher temperature and salt stress in sorghum.-J. Agron. Crop Sci. 198: 218-226, 2012. Go to original source...
  164. Yusuf M.A., Kumar D., Rajwanshi R. et al.: Overexpression of gamma-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll fluorescence measurements.-Biochim. Biophys. Acta 1797: 1428-1438, 2010. Go to original source...
  165. Yusuf M.A., Sarin N.B.: Antioxidant value addition in human diets: genetic transformation of Brassica juncea with γ-TMT gene for increased α-tocopherol content.-Transgenic Res. 16: 109-113, 2007. Go to original source...
  166. Zhu X.-G., Govindjee, Baker N.R. et al.: Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with Photosystem II.-Planta 223: 114-133, 2005. Go to original source...
  167. Zubek S., Stojakowska A., Anielska T. et al.: Arbuscular mycorrhizal fungi alter thymol derivative contents of Inula ensifolia L.-Mycorrhiza 20: 497-504, 2010. Go to original source...
  168. Živčák M., Olšovská K., Slamka P. et al.: Measurements of chlorophyll fluorescence in different leaf positions may detect nitrogen deficiency in wheat.-Zemdirbyste-Agriculture 101: 437-443, 2014.