Photosynthetica, 2015 (vol. 53), issue 3

Photosynthetica 2015, 53(3):430-435 | DOI: 10.1007/s11099-015-0135-0

The effects of the phenol concentrations on photosynthetic parameters of Salix babylonica L.

H. Li1, G. C. Zhang1,*, H. C. Xie1, K. Li1, S. Y. Zhang1
1 Shandong Province Key Laboratory of Soil Erosion and Ecological Restoration, Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Taian, China

As a common waterfront and wet environment tree species, Salix babylonica shows a great potential for restoration of contaminated water or soil environments, such as phenol-polluted water. However, studies on such remediation effects have not been carried out yet. The objective of this study was to investigate the effects of phenols on photosynthesis of S. babylonica. Photosynthetic and chlorophyll fluorescence parameters of S. babylonica cuttings were determined in hydroponic experiment, where six phenol concentrations was used (0, 50, 100, 200, 400, and 800 mg L-1). Phenol presence inhibited photosynthesis of S. babylonica significantly, as the net photosynthetic rate (P N), light-saturated net photosynthetic rate, apparent quantum yield, maximal quantum yield of PSII photochemistry, and effective quantum yield of PSII photochemistry declined significantly. The higher the concentration of phenol solution, the greater inhibition of photosynthesis occurred. Our data indicated that nonstomatal limitation was responsible for the reduction of P N. S. babylonica should be used to remediate phenol-contaminated water, when the concentration of phenol solution is lower than 200 mg L-1. Otherwise, the efficiency of photosynthesis of S. babylonica would decrease markedly. However, further study is needed to determine the maximum concentration of phenol that S. babylonica can tolerate to maintain normal photosynthetic activity.

Keywords: antenna pigment; gas exchange; light compensation point; phytoremediation; pollution; willow

Received: April 25, 2014; Accepted: August 28, 2014; Published: September 1, 2015Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Li, H., Zhang, G.C., Xie, H.C., Li, K., & Zhang, S.Y. (2015). The effects of the phenol concentrations on photosynthetic parameters of Salix babylonica L. Photosynthetica53(3), 430-435. doi: 10.1007/s11099-015-0135-0.
Download citation

References

  1. Berry J.A., Downton W.J.S.: Environmental regulation of photosynthesis. - In: Govindjee (ed.): Photosynthesis, Vol. II. Pp. 265-335. Academic Press, New York 1982. Go to original source...
  2. Brack W., Frank H.: Chlorophyll a fluorescence: a tool for the investigation of toxic effects in the photosynthetic apparatus. - Ecotox. Environ. Safe. 40: 34-41, 1998. Go to original source...
  3. Chen C.H., Liu Y.K., Chen G.C. et al.: [Uptake kinetic characteristics of Cu2+ by Salix jiangsuensis CL J-172 and Salix babylonica Linn and the influence of organic acids.] - Acta Ecol. Sin. 31: 5255-5263, 2011. [In Chinese]
  4. Chen Z.C., Wang R.R., Wang Z.W. et al.: [Light response of photosynthesis of Koelreuteria paniculata Laxm under different soil water conditions.] - Sci. Soil Water Conserv. 10: 105-110, 2012. [In Chinese]
  5. Chen H.X., Chen W., Jiang C.D. et al.: [Effects of temperature and light treatment on violaxanthin de-epoxidase activity and xanthophyll cycle-dependent energy dissipation in wheat leaves.] - Chin. J. Plant. Ecol. 32: 1015-1022, 2008. [In Chinese]
  6. Conger R.M., Portier R.J.: Phytoremediation experimentation with the herbicide bentazon. - Remediation J. 7: 19-37, 1997. Go to original source...
  7. Fang G., Lou G., Chen G.C. et al.: [Uptake kinetic characteristics of Pb2+ by Salix jiangsuensis CL J-172 and Salix babylonica Linn and the influence of organic acids.] - Environ. Chem. 30: 1569-1575, 2011. [In Chinese]
  8. Farquhar G.D., Sharkey T.D.: Stomatal conductance and photosynthesis. - Annu. Rev. Plant. Phys. 33: 317-345, 1982. Go to original source...
  9. González P.D., Capozucca C.E., Tigier H.A. et al.: Phytoremediation of phenol from wastewater by peroxidases of tomato hairy root cultures. - Enzyme Microb. Tech. 39: 647-653, 2006. Go to original source...
  10. Guerinot M.L., Salt D.E.: Fortified foods and phytoremediation. Two sides of the same coin. - Plant Physiol. 125: 164-167, 2001. Go to original source...
  11. Han W.H.: [The migration and diffusion models of phenolic pollutants in the Songhua river and carbon emergency measures.] - Master Thesis. Harbin Institute of Technology, Harbin 2010. [In Chinese]
  12. Hang G., Zhao Z.: [Light response characteristics of photosynthesis of four xerophilous shrubs under different soil moistures.] - Acta Ecol. Sinica 30: 4019-4026, 2010. [In Chinese]
  13. Jiang D.Y.: [Distribution of excited energy and photoprotective mechanisms during photosynthesis in higher plants.] - Ph. D. Thesis. Shan Dong Agricultural University, Taian 2003. [In Chinese]
  14. Krause G.H., Weis E.: Chlorophyll fluorescence and photosynthesis: the basics. - Annu. Rev. Plant Biol. 42: 313-349, 1991. Go to original source...
  15. Liu Q.G., Li T.Y.: [The study progress in innocuous treatment of phenolic wastewater.] - Techniq. Equip. Environ. Pollut. Cont. 3: 62-64, 2002. [In Chinese]
  16. Lang Y., Zhang G.C., Zhang Z.K. et al.: [Light response of photosynthesis and its simulation in leaves of Prunus sibirica L. under different soil water conditions.] - Acta Ecol. Sinica 31: 4499-4508, 2011. [In Chinese]
  17. Liu C.Y., Chen D.Y., Gai S.P. et al.: [Effects of high- and low temperature stress on the leaf PSII functions and physiological characteristics of tree peony (Paeonia suffruticosa cv. 'Roufurong).] - Chin. J. Appl. Ecol. 23: 133-139, 2012. [In Chinese]
  18. Liang F., Zheng C.S., Shun X.Z., Wang W.L.: [Effects of low temperature- and weak light stress and its recovery on the photosynthesis and chlorophyll fluorescence parameters of cut flower chrysanthemum.] - Chin. J. Appl. Ecol. 21: 29-35, 2010. [In Chinese]
  19. Maxwell K, Johnson G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  20. Mirck J., Isebrands J.G., Verwijst T., Ledin S.: Development of short-rotation willow coppice system for environmental purposes in Sweden. - Biomass Bioenergy 28: 219-228, 2005. Go to original source...
  21. Nijs I., Ferris R., Blum H. et al.: Stomatal regulation in a changing climate: A field study using free air temperature increase (FATI) and free air CO2 enrichment (FACE). - Plant Cell Environ. 20: 1041-1050, 1997. Go to original source...
  22. Olivier S., Scragg A.H., Morrison J.: The effect of chlorophenols on the growth of Chlorella VT-1. - Enzyme Microb. Tech. 32: 837-842, 2003. Go to original source...
  23. Piñol R., Simón E.: Effect of 24-epibrassinolide on chlorophyll fluorescence and photosynthetic CO2 assimilation in Vicia faba plants treated with the photosynthesis-inhibiting herbicide terbutryn. - J. Plant Growth Regul. 28: 97-105, 2009. Go to original source...
  24. Quan X., Shi H., Zhang Y., Qian Y.: Biodegradation of 2,4-dichlorophenol and phenol in an airlift inner-loop bioreactor immobilized with Achromobacter sp. - Sep. Purif. Technol. 34: 97-103, 2004. Go to original source...
  25. Qian Y.Q., Zhou X.X., Han L. et al.: [Rapid light-response curves of PSII chlorophyll fluorescence parameters in leaves of Salix leucopithecia subjected to cadmium-ion stress.] - Acta Ecol. Sinica 31: 6134-6142, 2011. [In Chinese]
  26. Roháček K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. - Photosynthetica 40: 13-29, 2002. Go to original source...
  27. Scragg A.H., Spiller L., Morrison J.: The effect of 2,4-dichlorophenol on the microalga Chlorella VT-1. - Enzyme Microb. Tech. 32: 616-622, 2003. Go to original source...
  28. Susarla S., Medina V., McCutcheon S.C.: Phytoremediation: An ecological solution to organic chemical contamination. - Ecol. Eng. 18: 647-658, 2002. Go to original source...
  29. Ucisik A.S., Trapp S.: Uptake, removal, accumulation, and phytotoxicity of phenol in willow trees (Salix viminalis). - Environ. Toxicol. Chem. 25: 2455-2460, 2006. Go to original source...
  30. Wang L., Yang H.Q., Fan W.G., Zhang Z.: [The effect of CdCl2 treatment on photosynthetic rate and chlorophyll a fluorescence parameters in Malus hupehensis leaves.] - Sci. Agric. Sinica 43: 3176-3183, 2010. [In Chinese]
  31. Xia H.L., Wu L.H., Tao Q.N.: [A review on phytoremediation of organic contaminants.] - Chin. J. Appl. Ecol. 14: 457-460, 2003. [In Chinese]
  32. Xu D.Q.: The Efficiency of Photosynthesis. Pp. 112-121. Sci. and Technol. Press. Shanghai 2002.
  33. Yang W.D., Chen Y.T.: [Studies on cadmium uptake, accumulation and tolerance in Salix babylonica.] - J. Nanjing For. Univ. (Natural Sci. Ed.). 33: 17-20, 2009. [In Chinese]
  34. Yu X.Z., Trapp S., Zhou P.H.: Phytotoxicity of cyanide to weeping willow trees. - Environ. Sci. Pollut. R. 12: 109-113, 2005. Go to original source...
  35. Yulla, A.K., Martin. F.: Willows beyond wetland: use of Salix L. species for environmental projects. - Water Air Soil Pollut. 162: 183-204, 2005.
  36. Zhu Y.H., Tu N.M., Xiao H.Q., Zhang G.: [Effect of sulfur on chlorophyll fluorescence of flue-cured tobacco at maturation stage.] - Acta Ecol. Sinica 31: 3796-3801, 2011. [In Chinese]