Temperature trends in Europe: comparison of different data sources

Abstract

Temperature trends differ markedly not only region-to-region and between seasons but also depending on the selected dataset. Only a few studies have attempted to compare temperature trends between data sources of different types. Here, one station-based (ECA&D), two gridded (E-OBS; CRUTEM) and two reanalysis (ERA-40; NCEP/NCAR) datasets are used for long-term temperature change detection over Europe. The period from 1957 to 2002 when all the datasets overlap is examined and the linear regression method is utilized to calculate temperature trends in each season separately. Raster maps illustrating differences in trends between datasets are accompanied by mean temperature series showing the causes of these discrepancies. We demonstrate that trends in reanalyses deviate considerably from the other datasets mainly because the type and amount of data assimilated into them change in time. Interestingly, whilst the ERA-40 shows lower trends due to an overestimation of the mean temperature prior 1967, the NCEP/NCAR reveal lower trends compared with other datasets owing to mean temperature underestimation at the end of the examined period. A noticeable anomaly in NCEP/NCAR data was detected in Eastern Europe in summer with temperature trends nearly twice as steep compared with other data sources. The study also reveals the weaknesses of gridded datasets, such as the unstable number of stations entering the interpolation over time. The lack of representativeness of some climate stations is the major drawback of the station data.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Aguilar E, Auer I, Brunet M, Peterson TC, Wieringa J (2003) Guidelines on Climate Metadata and Homogenization. World Climate Programme Data and Monitoring WCDMP 53, WMO-TD 1186, WMO. Geneva

  2. Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones PD, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisellin J, Begert M, Müller-Westermeier G, Kveton V, Bohnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP – historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46. https://doi.org/10.1002/joc.1377

    Article  Google Scholar 

  3. Bengtsson L, Hageman S, Hodges KI (2004) Can climate trends be calculated from reanalysis data? J Geophys Res 109:D11111. https://doi.org/10.1029/2004JD004536

    Article  Google Scholar 

  4. Brázdil R, Chromá K, Dobrovolný P, Tolasz R (2009) Climate fluctuations in the Czech Republic during the period 1961-2005. Int J Climatol 29:223–242. https://doi.org/10.1002/joc.1718

    Article  Google Scholar 

  5. Compo GP, Sardeshmukh PD, Whitaker JS, Brohan P, Jones PD, McColl C (2013) Independent confirmation of global land warming without the use of station temperatures. Geophys Res Lett 40:3170–3174. https://doi.org/10.1002/grl.50425

    Article  Google Scholar 

  6. Cornes RC, Jones PD (2013) How well does ERA-Interim replicate trends in extremes of surface temperature across Europe? J Geophys Res Atmos 118:10262–10276. https://doi.org/10.1002/jgrd.50799

    Article  Google Scholar 

  7. Cornes RC, van der Schrier G, van den Besselaar EJM, Jones PD (2018) An ensemble version of the E-OBS temperature and precipitation data sets. J Geophys Res Atmos 123:9391–9409. https://doi.org/10.1029/2017JD028200

    Article  Google Scholar 

  8. Dee DP, Uppala SM, Simmons AJ, Berrishford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kallberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Théput J-N, Vitart F (2011a) The ERA-Interim reanalysis: configuration and performance of the data assimilation systém. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  9. Dee DP, Källén E, Simmons AJ, Haimberger L (2011b) Comments on “Reanalyses suitable for characterizing long-term trends”. Bull Amer Meteor Soc 92: 65-70. https://doi.org/10.1175/2010BAMS3070.1

    Article  Google Scholar 

  10. Director H, Bornn L (2015) Connecting point-level and gridded moments in the analysis of climate data. J Clim 28:3496–3510. https://doi.org/10.1175/jcli-d-14-00571.1

    Article  Google Scholar 

  11. Donat MG, Sillmann J, Wild S, Alexander IV, Lippmann T, Zwier FW (2014) Consistency of temperature and precipitation extremes across various global gridded in situ and reanalysis datasets. J Clim 27:5019–5035. https://doi.org/10.1175/JCLI-D-13-00405.1

    Article  Google Scholar 

  12. Fall S, Niyogi D, Gluhovsky A, Pielke RA, Kalnay E, Rochon G (2009) Impacts of land use land cover on temperature trends over the continental United States: assessment using the North American Regional Reanalysis. Int J Climatol 30:1980–1993. https://doi.org/10.1002/joc.1996

    Article  Google Scholar 

  13. Greatbatch RJ, Rong P (2006) Discrepancies between different Northern Hemisphere summer atmospheric data products. J Clim 19:1261–1273. https://doi.org/10.1175/JCLI3643.1

    Article  Google Scholar 

  14. Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:1–29. https://doi.org/10.1029/2010RG000345

    Article  Google Scholar 

  15. Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2013) Observations: atmosphere and surface. In: Stocker TF (ed) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 160–254

    Google Scholar 

  16. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. J Geophys Res 113:D20119. https://doi.org/10.1029/2008jd010201

    Article  Google Scholar 

  17. Ho C-H, Lee J-Y, Ahn M-H, Lee H-S (2003) A sudden change in summer rainfall characteristics in Korea during the late 1970s. Int J Climatol 23:117–128. https://doi.org/10.1002/joc.864

    Article  Google Scholar 

  18. Hofstra N, Haylock M, New MG, Jones PD (2009) Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature. J Geophys Res 114:D21101. https://doi.org/10.1029/2009JD011799

    Article  Google Scholar 

  19. Hofstra N, New MG, McSweeney C (2012) The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data. Clim Dyn 35:841–858. https://doi.org/10.1007/s00382-009-0698-1

    Article  Google Scholar 

  20. Jones PD, Lister DH, Osborn TJ, Harpham C, Salmon M, Morice CP (2012) Hemispheric and large-scale land-surface air temperature variations: an extension revision and update to 2010. J Geophys Res 117:D05127. https://doi.org/10.1029/2011JD017139

    Article  Google Scholar 

  21. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woolen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetma A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

    Article  Google Scholar 

  22. Klein Tank AMG, Können GP, Selten FM (2005) Signals of anthropogenic influence on European warming as seen in the trend patterns of daily temperature variance. Int J Climatol 25:1–16. https://doi.org/10.1002/joc.1087

    Article  Google Scholar 

  23. Klein Tank AMG, Wijngaard JB, Können GP, Böhm R, Demarée G, Gocheva A, Mileta M, Pashiardis S, Hejkrlik L, Kern-Hansen C, Heino R, Bessemoulin P, Müller-Westermeier G, Tzanakou M, Szalai S, Pálsdóttir T, Fitzgerald D, Rubin S, Capaldo M, Maugeri M, Leitass A, Bukantis A, Aberfeld R, van Engelen AFV, Forland E, Mietus M, Coelho F, Mares C, Razuvaev V, Nieplova E, Cegnar T, Antonio López J, Dahlström B, Moberg A, Kirchhofer W, Ceylan A, Pachaliuk O, Alexander LV, Petrovic P (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J Climatol 22:1441–1453. https://doi.org/10.1002/joc.773

    Article  Google Scholar 

  24. Kyselý J, Plavcová E (2010) A critical remark of the applicability of E-OBS European gridded temperature data set for validating control climate simulations. J Geophys Res 115:D23118. https://doi.org/10.1029/2010JD014123

    Article  Google Scholar 

  25. Lindsay R, Wensnahan M, Schweiger A, Zhang J (2014) Evaluation of seven different atmospheric reanalysis products in the Arctic. J Clim 27:2588–2606. https://doi.org/10.1175/JCLI-D-13-00014.1

    Article  Google Scholar 

  26. Liu S, Su H, Tian J, Wang W (2018) An analysis of spatial representativeness of air temperature monitoring stations. Theor Appl Climatol 132:857–865. https://doi.org/10.1007/s00704-017-2133-6

    Article  Google Scholar 

  27. Mamara A, Argiriou AA, Anadranistakis M (2016) Recent trend analysis of mean air temperature in Greece based on homogenized data. Theor Appl Climatol 126:543–573. https://doi.org/10.1007/s00704-015-1592-x

    Article  Google Scholar 

  28. Marshall GJ, Kivinen S, Jylhä K, Vignols RM, Rees WG (2018) The accuracy of climate variability and trends across Arctic Fennoscandia in four reanalyses. Int J Climatol 38:3878–3895. https://doi.org/10.1002/joc.5541

    Article  Google Scholar 

  29. Mooney PA, Mulligan FJ, Fealy R (2011) Comparison of ERA-40, ERA-Interim and NCEP/NCAR reanalysis data with observed surface air temperatures over Ireland. Int J Climatol 31:545–557. https://doi.org/10.1002/joc.2098

    Article  Google Scholar 

  30. Osborn TJ, Jones PD (2014) The CRUTEM4 land surface air temperature data set: construction, previous versions and dissemination via Google Earth. Earth Sci Syst Data 6:61–68. https://doi.org/10.5194/essd-6-61-2014

    Article  Google Scholar 

  31. Peterson TC, Vose RS (1997) An overview of the Global Historical Climatology Network. Bull Am Meteorol Soc 78:2837–2849. https://doi.org/10.1175/JTECH-D-11-00103.1

    Article  Google Scholar 

  32. Pokorná L, Kučerová M, Huth R (2018) Annual cycle of temperature trends in Europe, 1961–2000. Glob Planet Chang 170:146–162. https://doi.org/10.1016/j.gloplacha.2018.08.015

    Article  Google Scholar 

  33. Quan X-W, Diaz HF, Fu C-B (2003) Interdecadal Change in the Asia-Africa Summer Monsoon and Its Associated Changes in Global Atmospheric circulation. Glob Planet Chang 37:171–188. https://doi.org/10.1016/S0921-8181(02)00200-X

    Article  Google Scholar 

  34. Reid PA, Jones PD, Brown O, Goodess CM, Davies TD (2001) Assessments of the reliability of NCEP circulation data and relationships with surface climate by direct comparisons with station based data. Clim Res 17:247–261. https://doi.org/10.3354/cr017247

    Article  Google Scholar 

  35. Scherrer SC, Appenzeller C, Liniger MA (2006) Temperature trends in Switzerland and Europe: implications for climate normals. Int J Climatol 26:565–580. https://doi.org/10.1002/joc.1270

    Article  Google Scholar 

  36. Scherrer SC, Ceppi P, Croci-Maspoli M, Appenzeller C (2012) Snow-albedo feedback and Swiss spring temperature trends. Theor Appl Climatol 114:509–516. https://doi.org/10.1007/s00704-012-0712-0

    Article  Google Scholar 

  37. Stickler A, Brönnimann S, Jourdain S, Roucaute E, Sterin A, Nikolaev D, Valente MA, Wartenburger R, Hersbach H, Ramella-Pralungo L, Dee D (2014) Description of the ERA-CLIM upper-air data. Earth Syst Sci Data 6:29–48. https://doi.org/10.5194/essd-6-29-2014

    Article  Google Scholar 

  38. Simmons AJ, Jones PD, da Costa BV, Beljaars ACM, Kälberg PW, Saarinen S, Uppala SM, Viterbo P, Wedi N (2004) Comparison of trends and low-frequency variability in CRU, ERA-40 and NCEP/NCAR analyses of surface air temperature. J Geophys Res 109:D24115. https://doi.org/10.1029/2004JD005306

    Article  Google Scholar 

  39. Thorne PW, Vose RS (2010) Reanalysis suitable for characterising long-term trends. Are they really achievable? Bull Am Meteorol Soc 91:353–361. https://doi.org/10.1175/2009bams2858.1

    Article  Google Scholar 

  40. Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: Surface and Atmospheric Climate Change. In: Solomon S (ed) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 235-336

  41. Uppala SM, Kallberg PW, Simmons AJ, Andrae U, da Costa BV, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf J, Morcrette J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Vitterbo P, Woolen J (2005) The Era-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. https://doi.org/10.1256/qj.04.176

    Article  Google Scholar 

  42. Van der Schrier G, Horstink G, van den Besselaar E, Klein Tank AMG (2012) ECA&D: a high resolution dataset for monitoring climate change and effects on viticulture in Europe. Centre de Recherchers de Climatologie/Biogeosciences-Université de Bourgogne, Proceedings of the IXth Intern Terroir Congres

    Google Scholar 

  43. Van der Schrier G, van den Besselaar EJM, Klein Tank AMG, Verver G (2013) Monitoring European average temperature based on E-OBS gridded data set. J Geophys Res Atmos 118:5120–5135. https://doi.org/10.1002/jgrd50444

    Article  Google Scholar 

  44. Van Oldenborgh GJ, Drijfhout S, van Ulden A, Haarsma R, Sterl A, Severins C, Hazeleger W, Dijkstra H (2009) Western Europe is warming much faster than expected. Clim Past 5:1–12. https://doi.org/10.5194/cp-5-1-2009

    Article  Google Scholar 

  45. Vose RS, Applequist S, Menne MJ, Williams N Jr, Thorne P (2012) An intercomparison of temperature trends in the US Historical Climatology Network and recent atmospheric reanalyses. Geophys Res Lett 39:L10703. https://doi.org/10.1029/2012GL051387

    Article  Google Scholar 

  46. Walton D, Hall A (2018) An assesment of high-resolution gridded temperature dataset over California. J Clim 31:3789–3810. https://doi.org/10.1175/JCLI-D-17-0410.1

    Article  Google Scholar 

  47. Wang J, Yan Z, Jones PD, Xia J (2013) On “observation minus reanalysis” method: A view from multidecadal variability. J Geophys Res Atmos 118: 7450-7458. https://doi.org/10.1002/jgrd.50574

    Google Scholar 

  48. Wilks (2016) “The stippling shows statistically significant gridpoints.” How research results are routinely overstated and overinterpreted, and what to do about it. Bull Amer Meteorol Soc 97: 2263-2273. https://doi.org/10.1175/BAMS-D-15-00267.1

    Article  Google Scholar 

  49. Xu W, Li Q, Yang S, Xu Y (2014) Overview of global monthly surface temperature data in the past century and preliminary integration. Adv Clim Chang Res 5:111–117. https://doi.org/10.1016/j.accre.2014.11.003

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all the data providers for their efforts and making their datasets publicly available.

Funding

This study was supported by the Czech Science Foundation, project 16-04676S. T.K. was also supported by the Grant Agency of the Charles University, project 558119.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tomáš Krauskopf.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krauskopf, T., Huth, R. Temperature trends in Europe: comparison of different data sources. Theor Appl Climatol 139, 1305–1316 (2020). https://doi.org/10.1007/s00704-019-03038-w

Download citation