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Abstract 

This paper is devoted to studying econometric models of smooth transition characterized by 

continuously changing parameter regimes. The process of specifying, estimating and 

evaluating smooth transition regression (STR) models is discussed. The first attempts at 

extending nonlinear STR techniques to vector autoregressive (VAR) models have emerged in 

the last few years. This paper proposes an augmented specification procedure for STVAR 

models that allows for different transition variables and different types of transition functions 

in different equations of the system. As an application of the described modelling approach, a 

three-variable linear vector error-correction model (VECM) of the components of the real 

exchange rate between Slovenia and Slovakia, namely the consumer price indices and the 

nominal exchange rate between the currencies of both countries is investigated. The closely 

related question of the validity of purchasing power parity (PPP) is also discussed.  
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1 INTRODUCTION AND LITERATURE OVERVIEW  

1.1 About Exchange Rates and Purchasing Power Parity 

The theory of purchasing power parity became particularly interesting after the introduction 

of flexible exchange rate regimes in the 1970s. Since then there is a number of theoretical as 

well as empirical studies dealing with the phenomena of purchasing power parity. 

The purchasing power parity theory suggests that exchange rate system should provide a 

mechanism, which would enable a basket of goods being purchased in both analyzed 

countries to cost the same amount of money when recalculated in one currency.  

Considering different views on how the process of economic transformation since the 

beginning of the nineties and its effects on reforming countries’ price mechanisms are 

compatible with rigorous assumptions of the theory of PPP (see Brada 1998), there is an 

obvious need for further empirical evaluation to supply clear-cut evidence on macroeconomic 

forces that govern the exchange rate behavior in transition economies. Because the majority 

of transition countries have undergone several phases of economic restructuring, these most 

likely also triggered shifts in their equilibrium real exchange rates. This suggests that, when 

comparing developed market economies with those still under economic reforms, the degree 

of a country’s similarity, especially in terms of trade pattern, level of development and the 

structure of relative prices, could importantly affect the assessment of PPP. 

The general model of testing for PPP can be specified in the following form: 

st = α0 + α1pt - α2pt* + ξt,                    (1) 

where st stands for nominal exchange rates, defined as the price of foreign currency in the 

units of domestic currency; pt denotes domestic price index and pt* foreign price index; while 

ξt stands for the error term showing deviations from PPP. All the variables are given in 

logarithmic form. In the strictest version of PPP, there are the following assumptions: α0=0, 

α1=α2=1. The symmetry restriction applies such that α1 and α2 are equal, whereas the 

limitation of α1 and α2 being equal to one is called the proportionality restriction (Froot and 

Rogoff 1995). 



According to Boršič (2003, 2005) and Boršič and Bekő (2007), we show results based on 

monthly data series for Slovenia from January 1992 December 2001, when the euro was put 

into circulation. Primary data included monthly averages of nominal exchange rates and 

consumer price indices gathered from the central bank. The exchange rate has been defined as 

tolar (SIT) cost of a unit of foreign currency. Consumer price indices used in this study for 

Slovenia refer to January 1992.  

The traditional empirical analysis starts off with the most restrictive version of equation (1), 

α1=α2=1, that is, with testing the properties of real exchange rates. In the context of relative 

PPP, the movements in nominal exchange rates are expected to compensate for price level 

shifts. Thus, real exchange rates should be constant over the long run and their time series 

should be stationary (Parikh and Wakerly 2000). 

Results of the augmented Dickey-Fuller test are given in Table 1. The figures show that the 

four time series of the real exchange rates the tolar are integrated of order one, which means 

we cannot reject the hypothesis of the presence of the unit root. Thus, the ADF tests confirm 

the non-stationarity in the observed time series. 

Table 1: Results of the ADF Test for Real Exchange Rates of the Slovenian tolar  

Level First difference Variable 
AIC t-statistic AIC t-statistic 

LRATSSIT -0.64006 0.08673 -2.95386 -2.95386 
LRDEMSIT -0.81626 0.01383 -3.25796 -3.25796 
LRFRFSIT -0.60036 -0.38642 -2.88506 -2.88506 
LRITLSIT -0.81234 -0.81234 -5.75933 -5.35574 

Notes: L stands for logarithm, R for real; the next three letters (ATS, DEM, FRF, ITL) represent the currencies 

of Austria, Germany, France and Italy, respectively, while the last two letters (CZK, SIT) denote the currencies 

of the Czech Republic and Slovenia, respectively. Critical values: -3.4890 (1%), -2.8870 (5%) and -2.5802 

(10%). The subscripts indicate the time lag used in the test. 

Source: Boršič and Bekő 2007 

Relaxing the proportionality condition in equation (1) allows us to test if nominal exchange 

rates and relative prices are cointegrated. PPP holds if the presence of long-run equilibrium 

relation is confirmed. In the case of searching for cointegration among two variables Engle-

Granger test is an appropriate one. 



Results of the Engle-Granger test for Slovenia are presented in Table 2, which show the 

estimated equations for individual pairs of countries. The first column contains the 

independent variable. In all cases the choice of the independent variable does not influence 

the results of cointegration tests. In the following columns, there are constants, estimated 

coefficients of independent variables, R2, CDRW statistics and ADF statistics for residuals. 

There are no t-statistics, since the time series are nonstationary and, as tests show, 

noncointegrated. Consequently, the estimated t-statistics are not reliable.  

Table 2 presents the results for Slovenia. It can be concluded that the series are not 

cointegrated. In the case of Italy CRDW statistics are above the critical value but the ADF 

statistics are below the critical values. Thus, there are no signs of cointegration among the 

observed variables and the validity of purchasing power parity cannot be accepted.  

Table 2: Results of Engle-Granger test for Slovenia 

Independent 
variable Constant Coefficient R2 CRDW ADF 

Austria 
LATSSIT -0.7484 1.9708 0.84 0.0344 -2.0751 
LCPISA 0.5040 0.4242 0.84 0.0257 -1.3594 
Germany 
LDEMSIT 0.2090 0.8948 0.84 0.0341 -2.4138 
LCPISN -1.0108 0.9363 0.84 0.0256 -1.6412 
France 
LFRFSIT -0.2091 1.3560 0.87 0.0478 -2.8212 
LCPISF 0.2791 0.6449 0.87 0.0387 -1.8946 
Italy 
LITLSIT -0.8956 1.9997 0.92 0.2360 -2.7893 
LCPISIT 0.5032 0.4592 0.92 0.2116 -2.4965 

Notes: L stands for logarithm, the next three letters (ATS, DEM, FRF, ITL) represent the currencies of Austria, 

Germany, France and Italy, respectively, while the last two letters (SIT) denote the currency of Slovenia. Critical 

values for Engle-Granger test: -3.73 (1%), -3.17 (5%) and -2.91 (10%). Critical values for CRDW test: 0.455 

(1%), 0.282 (5%) and 0.209 (10%). 

Source: Boršič 2003. 

Relaxing the symmetry assumption in equation (1) enables testing for cointegration among 

nominal exchange rates, domestic price indices and foreign price indices. Johansen 

cointegration test is appropriate for testing for cointegration among three variables. The 

results of the test are shown in the Table 3, which clearly shows that there is no evidence for 

purchasing power parity in the observed countries. Even when there is evidence of existing 



cointegration among the variables in question, there is a violation of signs in the cointegrating 

coefficients. In terms of equation (1), we are looking for a normalized cointegrating vector 

with positive coefficients α1 and α2.  

Table 3: Results of the Johansen Cointegration Test for Slovenia 

Slovenia Number of cointegrating 
equations 

Statistic 1,2 

Austria1 
α1=-0.7075(0.3732) 

-α2=-1.8258 (2.7453) 
 

H0: 
r=0 
r≤1 
r≤2 

 LRtr 
**61.4312 

13.6185 
*4.7704 

 
H0: 

r=0 
r=1 
r=2 

 LRmax 
**47.8127 

8.8481 
*4.7704 

Germany2 
α1=-0.7090 (0.3012)      
-α2=2.2350 (2.4313) 

α1=-0.4601 (0.0461)   
-α2=0.0000 

 
H0: 

r=0 
r≤1 
r≤2 

 LRtr 
**42.2441 
**20.7690 

2.7287 
 

H0: 
r=0 
r=1 
r=2 

 LRmax 
*21.4751 
*18.0402 

2.7287 

France1 
α1=-0.3307 (0.3878) 
-α2=-4.4198 (3.5580) 

 
H0: 

r=0 
r≤1 
r≤2 

 LRtr 
25.9711 

6.7105 
0.7913 

 
H0: 

r=0 
r=1 
r=2 

 LRmax 
19.2606 

5.9192 
0.7913 

Italy2 
α1=-1.1967 (0.4644) 
-α2=0.9779 (1.8231) 

 
H0: 

r=0 
r≤1 
r≤2 

 LRtr 
**37.7476 

12.3176 
*4.4377 

 
H0: 

r=0 
r=1 
r=2 

 LRmax 
*25.4300 

7.8798 
*4.4377 

Notes: ** (*) denotes rejection of the null hypothesis at the 1% (5%) significance level, respectively; figures in 

parentheses are standard errors. 1Critical values for LRtr at the 5% level are 29.68 (r=0), 15.41 (r≤1), and 3.76 

(r≤2); and at the 1% level are 35.65 (r=0), 20.04 (r≤1), and 6.65 (r≤2). 2Critical values for LRmax at the 5% level 

are 20.97 (r=0), 14.07 (r=1), and 3.76 (r=2); and at the 1% level are 25.52 (r=0), 18.63 (r=1), and 6.65 (r=2). 

Source: Boršič and Bekő 2007 

The values of LRtr and LRmax statistics show that there is cointegration among the nominal 

exchange rates and consumer price indices in comparison to Austria, Germany and Italy. In 



all three cases the coefficients of domestic prices are proven to be statistically significantly 

different from zero, while for coefficients of foreign prices the standard errors are too high to 

conclude the same. The signs of the estimated cointegrating coefficients are again not in 

accordance with PPP. Only the coefficient of Austrian consumer prices tends to have the right 

sign. In case of France, there is no proof of cointegration either. In addition, the estimated 

coefficients are statistically insignificant and only the coefficient of French consumer prices 

has a sign corresponding to the PPP theory. 

The discussed results of the time series unit root tests and cointegration tests in searching for 

evidence of purchasing power parity in Slovenia and Czech Republic failed to find any 

support for the theory. The limitations of the usage of time series analysis are: long-run data 

unavailability, nonstationarity and low power of time series unit root tests.   

Thus, the next step is to test for unit roots by panel data techniques, which are supposed to 

have higher power that time series unit root tests. Table 4 presents results of such tests.  

Despite the fact that panel unit root tests are supposed to have a higher power that time series 

unit root tests, the results show no evidence of PPP validity for the observed countries in the 

selected period. 

Table 4: Summary of Panel Unit Root Tests for Slovenia 

Method Statistic Prob. 
Null: unit root (assumes common unit root process) 
Levin, Lin, Chu 0.45054 0.6738 
Breitung -0.08462 0.4663 
Null: unit root (assumes individual unit root process) 
Im, Pesaran, Shin 1.76657 0.9613 
ADF-Fisher 1.49442 0.9928 
PP-Fisher 1.05497 0.9979 
Null: no unit root (assumes common unit root process) 
Hadri 10.4444 0.0000 

 

1.2 Nonlinearities in Real Exchange Rates: Overview of Recent Literature  

Since the real exchange rate in logarithmic form may be viewed as a measure of the deviation 

from PPP, the question of mean reversion in the real exchange rate is closely related to the 

issue of validity of purchasing power parity. In order to circumvent the low power problem of 

conventional unit root tests, the validity of PPP is usually investigated through long-span 



studies or panel unit root studies. Sarno and Taylor (2002) point out the disadvantages of both 

of the mentioned approaches. As far as the long-span studies are concerned, the long samples 

required to generate a reasonable level of power with univariate unit root tests may be 

unavailable for many currencies. Panel studies, on the other hand, impose the null hypothesis 

that all of the series under observation are generated by unit root processes implying that the 

probability of rejection of the null hypothesis may be quite high when as few as just one of 

the series is stationary. For this reason, Sarno and Taylor develop a smooth transition 

autoregressive (STAR) model to study the behaviour of the real exchange rate. In their model, 

the real exchange rate in the logarithmic form is explained by its lagged values. It is shown 

that the four major real dollar exchange rates are becoming increasingly mean reverting with 

the absolute size of the deviation from equilibrium, which is consistent with the recent 

theoretical literature on the nature of the real exchange rate dynamics in the presence of the 

international arbitrage costs. 

Traditional empirical analyses of purchasing power parity validity and its deviations are based 

on linear framework and mostly suggest that the long run equilibrium is constant. Moreover, 

these analyses suggest that real exchange rate dynamics should be explained by linear 

autoregressive process with continuous and constant speed of adjustment, not taking into 

account the size of deviations from purchasing power parity (Sarno and Taylor 2002). Using 

linear framework for a nonlinear dataset, the rejection of a unit root as a null hypothesis is 

more likely (Taylor 2006), while the assumption of constant speed of adjustment implies 

downward bias of the results.  

Taylor (2006) presents three potential reasons of nonlinearities in real exchange rates: 

- frictions due to transport costs, tariffs or non-tariff barriers; 

- interaction of heterogeneous agents in the foreign exchange market at the micro-

structural level; 

- influence of official intervention in the foreign exchange market. 

Sarno and Taylor (2002), Sarno (2003) and Taylor (2006) provide an overview of nonlinear 

exchange rate models and assess their contribution to explaining the behaviour of the 

exchange rates. Below we present some studies of real exchange rate dynamics providing 

evidence in support of the nonlinearity in exchange rate processes. 



Taylor, Peel, and Sarno (2001) take into account nonlinearly mean reverting models of real 

exchange rates and transaction costs in international arbitrage. By means of Monte Carlo 

simulations, the authors show that in this case the half lives of real exchange rates imply the 

fastest adjustment process in comparison to other techniques.  

Baum, Barkoulas and Caglayan. (2001) apply ESTAR models to deviations from purchasing 

power parity obtained by Johansen cointegration method. They find evidence that mean 

reverting process of deviations varies nonlinearly with the size of disequilibrium.  

On the basis of eleven Asian countries Liew, Chong and Lim (2003) show that the behaviour 

of real exchange rates is better presented by nonlinear STAR models than by linear 

autoregressive models.  

Guerra (2003) tests nonlinear adjustment towards purchasing power parity by estimating an 

ESTAR model for Swiss frank-German mark rate in the period of 1960-1998. The results 

imply that mean reversion is rapid for the whole period as well as for the post-Bretton-Woods 

period. 

Paya, Venetis, and Peel (2003) take into consideration two different approaches in solving the 

purchasing power parity puzzles: nonlinear adjustment of real exchange rates induced by 

transaction costs and non-constant real exchange rate equilibrium induced by different 

productivity growth rates. Consequently, the real exchange rate can be described as 

symmetric, nonlinear dynamics. Additionally, the authors show that the estimated half-lives 

of the shocks are much shorter than those obtained by linear models. 

ESTAR models have also been used to forecast the behaviour of real exchange rates. Kilian 

and Taylor (2003) find evidence of exchange rate predictability in 2 to 3 years given ESTAR 

real exchange rate dynamics. 

Liew, Bahrumshah and Lim (2004) find support of ESTAR nonlinear mean reverting 

adjustment process of nominal Singapure dollar-US dollar rate towards relative consumer 

prices.   

Due to the lack of correct size of stationarity for PPP within linear tests, Paya and Peel (2005) 

employ Monte Carlo experiments to show that nonlinear tests provide support for PPP. They 

also apply ESTAR models to data from high inflation countries and provide further evidence 

in support of PPP.  



Peel and Venetis (2005) present some theoretical limitations of ESTAR models and propose a 

new linear model consistent with rational expectations, while ESTAR model assumes 

adaptive expectations. Authors show fast adjustment speeds implied by their model using 

post-1973 monthly real exchange rate data. 

Sollis (2005) uses univariate smooth transition models to test for unit roots under the 

alternative hypothesis of stationarity around a gradually changing deterministic trend 

function. They reject the null hypothesis of a unit root for real exchange rates of some 

countries in comparison to the US dollar.  

Leon and Najarian (2005) check the stationarity of PPP deviations in the presence of 

nonlinearity and symmetry of adjustment towards PPP from above and below. Alternative 

nonlinear models including STAR models provide evidence of mean reversion and 

asymmetric adjustment dynamics.  

One of the relatively rare papers examining purchasing power parity deviations in Central 

European countries is Arghyrou, Boinet, and Martin (2005). The authors analyze the data 

from Czech Republic, Hungary, Poland, Slovakia and Slovenia. Among other results it is 

shown that the short run dynamics of the real exchange rates displays nonlinear and 

asymmetric behaviour while the speed of adjustment depends on the size and sign of the 

deviation.  

Lahtinen (2006) uses a STAR model on the basis of US dollar-euro exchange rate. The author 

distinguishes between the sudden and smooth adjustment to the long-run equilibrium and 

argues that the adjustment for the data under observation is sudden. 

Rapach and Wohar (2006) study the performance of nonlinear models of the US Dollar real 

exchange rate monthly data in the post-Bretton Woods period and point out that nonlinear 

models (ESTAR and threshold models) provide more accurate point forecasts at long horizons 

for some countries.  

 

2 SMOOTH TRANSITION REGRESSION 

Many elements of economic theory mention the idea that the economy behaves differently if 

values of certain variables lie in one region rather than in another, or, in other words, follow 



different regimes. The first attempt at modelling such phenomena is represented by discrete 

switching models, where a finite number of different regimes is assumed. The central tool of 

this class of models is the so-called switching variable that can be either observable or 

unobservable. 

As smooth transition between regimes is often more convenient and realistic than just the 

sudden switches, several scientists proposed a generalization of discrete switching models of 

the following form: 

 ( ) ( , ; )t t t t ty x x G c s uϕ θ γ′ ′= + ⋅ + ,     1, 2, ,t T= … , (2) 

where 0 1( , , , )pϕ ϕ ϕ ϕ ′= …  and 0 1( , , , )pθ θ θ θ ′= …  are the parameter vectors, tx  is the vector of 

explanatory variables containing lags of the endogenous variable and the exogenous variables, 

(i.e. 1 1 1(1, , , ) (1, , , , , , )t t tp t t m t tnx x x y y z z− −′ ′= … = … … ), whereas tu  denotes a sequence of 

independent identically distributed errors. G stands for a continuous transition function 

usually bounded between 0 and 1. Because of this property not only the two extreme states 

can be explained by the model, but also a continuum of states that lie between those two 

extremes. The slope parameter 0γ >  is an indicator of the speed of transition between 0 and 

1, whereas the threshold parameter c  points to where the transition takes place. The transition 

variable ts  is usually one of the explanatory variables or the time trend. 

The most popular functional forms of the transition function are as follows: 

• LSTR1 Model: 1 ( )
1( , ; )

1 tt s cG c s
e γγ − −=

+
, 

• LSTR2 Model: 
1 22 1 2 ( )( )

1( , , ; )
1 t tt s c s cG c c s

e γγ − − −=
+

 

This is a non-monotonous transition function that is particularly useful in case of 

reswitching. 

• ESTR Model: 
2( )

3 ( , ; ) 1 ts c
tG c s e γγ − −= −  

The function is symmetric about c  and very similar to the LSTR2 case with 1 2c c= . 

Therefore it is sometimes difficult to distinguish between an ESTR and an LSTR2 model. 



 

2.1 Testing Linearity against STR 

Let us start by defining a more convenient notation: * 0.5i iG G= −  for i = 1, 2 and *
3 3G G= . 

Obviously, * 0iG =  for 0γ = . The null hypothesis of linearity for model (2) can be expressed 

as 0 : 0H γ =  against 1 : 0H γ >  or as 0 : 0H θ′ =  against 1 : 0H θ′ ≠ . This indicates an 

identification problem, since the model is identified under the alternative but not identified 

under the null hypothesis. Namely, the parameters c  and θ  are nuisance parameters that are 

not present in the model under 0H  and whose values do not affect the value of the log - 

likelihood. Consequently, the likelihood ratio test, the Lagrange multiplier and the Wald test 

do not have their standard asymptotic distributions under the null hypothesis and one cannot 

use these tests for a consistent estimation of the parameters c  and θ . To overcome this 

problem, Luukkonen, Saikkonen and Teräsvirta (1998) replaced the transition function with 

its Taylor approximation of a suitable order. Let us write the first order Taylor approximation 

around 0γ =  for the logistic transition function *
1G  as a polynomial in the transition variable 

ts : 

 1 0 1 1( , ; )t tT a a s R c sγ= + + .  (3) 

After replacing *
1G  by 1T  in equation (2), one obtains 

 *
0 1( )t t t t ty x b x s b u′ ′= + + ,  (4) 

where 0b  and 1b  are (p+1)-dimensional column vectors of parameters. The null hypothesis of 

linearity can be tested as 0 1: 0H b′′ =  against 1 1: 0H b′′ ≠  with a straightforward Lagrange 

multiplier test. The test statistic is asymptotically 2χ -distributed with p+1 degrees of 

freedom. We have to emphasize that auxiliary regression (4) is suitable only if the transition 

variable ts  is not an element of the vector tx . Otherwise, the variable ts  appears twice on the 

right-hand side of equation (4). The problem is solved by substituting tx  with 

1( , , )t t tpx x x ′= …%  in the second term of (4).  



To avoid dealing with low power in some special cases, the third order Taylor polynomial is 

applied. This leads to the following auxiliary regression: 

 2 3 *
0 1 2 3( ) ( ) ( )t t t t t t t t ty x b x s b x s b x s b u′ ′ ′ ′= + + + + .  (5) 

Under the null hypothesis of linearity, the parameter vectors 1b , 2b  and 3b  are jointly tested to 

zero. F-version of the linearity test is usually preferred because of its better small sample 

properties. Comprehensive discussion on these issues is given in Teräsvirta (1998) and in 

Luukkonen, Saikkonen and Teräsvirta (1998). 

 

2.2 Model Specification 

The choice of the transition variable is not straightforward, since the underlying economic 

theory often gives no clues as to which variable should be taken for the transition variable 

under the alternative. Teräsvirta (1998) suggests testing the null hypothesis of linearity for 

each of the possible transition variables in turn. The candidates for the transition variable are 

usually the explanatory variables and the time trend. If the null is rejected for more than one 

variable, the variable with the strongest rejection of linearity (i.e. with the lowest p-value) is 

chosen for the transition variable. This intuitive and heuristic procedure can be justified by 

observing that the test is most powerful when the alternative hypothesis is correctly specified, 

and this is achieved for the "right" transition variable. It has to be emphasized that one cannot 

control the overall significance level of the linearity test for this heuristic procedure, since 

several individual tests have to be performed. 

If the transition variable has already been decided upon, the next step in the modeling process 

consists of choosing the transition function. The decision rule is based on a sequence of 

nested hypotheses that test for the order of the polynomial in auxiliary regression (5): 

                                                            04 3: 0H b =  

03 2 3: 0 0H b b= =                                                        (6) 

       02 1 2 3: 0 0H b b b= = = . 

The 3 hypotheses are tested with a sequence of F-tests named F4, F3 and F2, respectively. If 

the rejection of the hypothesis 03H  is the strongest, Teräsvirta (1998) advises choosing the 



LSTR2 or the ESTR model. In the practice, one usually chooses the LSTR2 model and 

additionally tests the hypothesis 1 2c c=  after estimation. If it cannot be rejected, it seems 

better to select the LSTR2 model, otherwise ESTR should be selected. In case of the strongest 

rejection of the hypotheses 04H  or 02H , LSTR1 is chosen as the appropriate model. This 

heuristic decision rule is based on expressing the parameter vectors 1b , 2b  and 3b  from 

auxiliary regression (5) as functions of the parameters γ , c  (or 1c  and 2c ) and θ  and the first 

three partial derivatives of the transition function *
iG  at the point 0γ = . 

Teräsvirta (1998) conducted a series of simulation experiments to investigate the properties of 

the proposed heuristic specification strategy for choosing the transition variable and the 

transition function. The study was conducted for smooth transition autoregressive (STAR) 

models in the univariate setting. Different types of STAR models were examined and their 

parameters were varied. The "true" transition variable was the lagged endogenous variable 

t dy − , where the delay parameter d  ran from 1 to 5. For each d  the linearity test was 

performed for every possible transition variable in turn (i.e. for 1 2 5, , ,t t ty y y− − −K ) and the 

variable with the lowest p-value was chosen. The empirical size of the overall linearity test 

was 3 to 4 % when the nominal size was 5 %. The results of the simulation study justified the 

heuristic specification procedure and also showed that the power of the linearity test is better 

for higher γ  values and for lower values of the delay parameter d . The decision rule for 

choosing the type of the transition function was tested for distinguishing between LSTAR1 

and ESTAR models. It works best when the number of observations of the transition variable 

that lie below c  is about the same as the number of observations above c . The performance 

of the rule improves with the sample size. 

 

2.3 Estimation of STR models 

The specified STR model is usually estimated with nonlinear least squares or with maximum 

likelihood estimation under the assumption of normally distributed errors. Both methods are 

equivalent in this case. Nonlinear optimization procedures are used to maximize the log-

likelihood or to minimize the sum of squared residuals. The applied STR models from the 

next sections are estimated with the Gauss package or with EViews. Several nonlinear 

optimization algorithms are available in Gauss. For example, the Newton - Raphson 



algorithm, the Broyden - Fletcher - Goldfarb – Shanno (BFGS) algorithm, the steepest descent 

algorithm and the Davidon - Fletcher - Powell (DFP) algorithm are all implemented in the 

Gauss library Optmum.  

An additional remark should be made on the slope parameter γ  of the transition function. The 

magnitude of the parameter γ  depends on the magnitude of the transition variable ts  and is 

therefore not scale-free. The numerical optimization is more stable if the exponent of the 

transition function is standardized prior to optimization. In other words, it is advisable to 

divide γ  by the sample standard deviation (in case of LSTR1 models) or by the sample 

variance (for ESTR and LSTR2 models) of the transition variable. In this way the magnitude 

of the slope parameter is brought closer to the magnitude of other parameters. 

 

2.4 Misspecification Tests 

The misspecification tests were first developed by Eitrheim and Teräsvirta (1996) for 

univariate time series, i.e. for smooth transition autoregressive (STAR) models, but the 

generalization to STR models is straightforward. Three tests have to be developed especially 

for the STAR models, namely the test of no remaining nonlinearity, the test of no error 

autocorrelation and the parameter constancy test. For a detailed derivation of these tests, see 

Eitrheim and Teräsvirta (1996) and Lin and Teräsvirta (1994). Other tests, like the LM test of 

no autoregressive conditional heteroscedasticity of Engle and of McLeod and Li, and the 

Lomnicki-Jarque-Berra test of the normal distribution of errors are performed in the same way 

as in the linear setting. 

 

3 SYSTEMS OF EQUATIONS 

From recent studies of univariate models one has learned that there is much to be gained by 

allowing a nonlinear specification. Representations of asymmetric reactions, structural 

changes and other phenomena of economic development can be fruitfully investigated by 

nonlinear modeling techniques. As many issues in economics require the specification of 

several relationships, techniques to handle nonlinear features in systems are required. Only 



during the recent years such methods have appeared in the literature. Most of the work has 

been done in the nonlinear VAR framework. 

Anderson and Vahid (1998) devised a procedure for detecting common nonlinear components 

in a multivariate system of variables. The common non-linearities approach is based on the 

canonical correlations technique and can help us interpret the relationships between different 

economic variables. The specification and estimation of the system of equations is also 

simplified, since the existence of common nonlinearities reduces the dimension of nonlinear 

components in the system and enables parsimony. This is particularly important in empirical 

investigations involving economic time series of shorter length. Namely, most of the 

macroeconomic indicators are published on a quarterly basis. 

Weise (1999), van Dijk (2001) and Camacho (2004) extended the STR modeling approach 

developed by Teräsvirta and coworkers to vector autoregressive models of smooth transition. 

Their STR specification is limited to the case where the transition between different parameter 

regimes is governed by the same transition variable and the same type of transition function in 

every equation of the system. They argue that since the economic practice imposes common 

nonlinear features, all equations share the same switching regime. But this argument is not 

convincing, since such a conclusion cannot be derived from economic theory, while applied 

econometric studies analyzing nonlinear systems are scarce. For this reason we shall try to 

extend their approach by allowing different smooth transition functional forms in different 

equations. The proposed augmented specification procedure is explained in section 3.2. 

 

3.1 Smooth Transition Approach to Vector Autoregressive Models 

Whereas there has been extensive research in the field of univariate nonlinear modeling, the 

statistical theory of multivariate nonlinear modeling has yet to be developed. The first 

attempts at extending nonlinear smooth transition regression techniques to a multivariate 

setting can be found in Weise (1999), van Dijk (2001) and Camacho (2004). Similarly, 

multivariate Markov – switching models are treated in Krolzig (1997) and multivariate 

threshold models in Tsay (1998). Van Dijk (2001) applies the STVAR modeling approach to 

study the intraday spots and futures prices of the FTSE100 index, whereas Camacho (2004) 

examines the nonlinear forecasting power of the composite index of leading indicators to 

predict both output growth and the business - cycle phases of the US economy. Since all three 



studies are similar, while the most comprehensive description of the methodological approach 

is given by Camacho (2004), we shall start with a short review of his work. 

 

3.1.1 Specification and Estimation 

Camacho (2004) considers a 2 - dimensional smooth transition vector autoregressive 

(STVAR) model 
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where 1 1(1, , , , , ) (1, )t t t t p t p tX y x y x X− − − − ′ ′= = %K , , , ,x y x yϕ ϕ θ θ  are the corresponding parameter 

vectors and ( , ) (0, )t yt xtU u u N′= Ω:  is a vector series of serially uncorrelated errors. The 

difference it it iD s c= − , ,i x y= , in the exponent of the transition function iG  is called the 

switching expression. The letters ty  and tx  are used for the two variables in the 

autoregressive system, since the smooth transition approach is applied to the rate of growth of 

the US GDP and the rate of growth of the US composite index of leading indicators, 

respectively. The discussion is restricted to the case of xt yt ts s s= =  and x yG G= , where the 

same transition variable and the same transition function is used in both equations. 

After the linear VAR has been specified, the linearity test is applied. The problems with 

nuisance parameters are solved with suitable Taylor series expansions, as usually. The 

auxiliary regression to be performed in case the transition variable ts  belongs to tX  is 
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and the null hypothesis of linearity reads as 

                                                 0 1 2 3: 0,      , .i i iH i x yη η η= = = =                                             (9) 

Consequently, the null hypothesis can be tested with the Lagrange multiplier test. 



If the null hypothesis of linearity is rejected in favor of the alternative smooth transition 

vector autoregressive model, one has to decide which transition function to use. The decision 

is based on the sequence of nested hypotheses tests described in section 2.2. The parameters 

of the specified model are estimated with the maximum likelihood estimator under the 

assumption of normally distributed errors: 

            ( , ) (0, ).t yt xtU u u N′= Ω:                                                  (10) 

 

3.1.2 Testing the Model Adequacy 

As proposed by Eitrheim and Teräsvirta (1994), three tests are performed in order to check for 

the adequacy of the estimated model, namely the test of no error autocorrelation, the test of no 

remaining nonlinearity and the parameter constancy test. The multivariate generalizations of 

the three tests were developed by Camacho (2004). 

 

3.2 Smooth Transition Vector Autoregressive Models with Different 
Transition Variables and Transition Functions 

As already mentioned, Weise (1999), van Dijk (2001) and Camacho (2004) all assume the 

same transition variable and the same type of the transition function in every equation of a 

smooth transition vector autoregressive model, with the interpretation that the economic 

practice imposes common nonlinear features. But this argument is not convincing, since such 

a conclusion cannot be derived from economic theory, while applied econometric studies 

analyzing nonlinear systems are scarce. For this reason we shall try to extend the work of 

Camacho by allowing different smooth transition functional forms in different equations. 

When performing the system linearity test Camacho postulates a two-variable linear VAR(p) 

model under the null hypothesis and the smooth transition vector autoregressive model (7) 

with the same transition variable xt yt ts s s= =  and the same type of transition function 

x yG G G= =  under the alternative. After estimating the auxiliary regression 
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the null hypothesis 

                                              0 1 2 3: 0,      ,i i iH i x yη η η= = = =                                              (12) 

(with the alternative of at least one of the coefficient vectors different from zero) is tested. 

The equations in (11) are estimated as a system with the method of maximum likelihood. 

Single equation estimators would also be consistent, although not efficient. Null hypothesis 

(12) can be tested with the LM test. 

If the restriction xt yt ts s s= =  is not imposed, the system linearity test can be performed by 

testing the same null hypothesis, this time based on the auxiliary regression allowing for 

different transition variables: 
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The system linearity test will be rejected if at least one of the relationships under observation 

is nonlinear, or more specifically, is characterized by smooth transition between parameter 

regimes. It is reasonable to believe that situations with only one of the equations being 

nonlinear can occur in the economic practice. Estimating both equations with the smooth 

transition specification would be inefficient in this case. To solve this problem, single 

equation linearity tests based on the system estimates of auxiliary regression (13) may be 

applied. For example, to develop the single equation linearity test for the first equation, the 

null hypothesis 

   0 1 2 3: 0,y y yH η η η= = =                                                          (14) 

should be verified. Testing such a null hypothesis corresponds to imposing the model 
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under the null and model (7) with the STR specification in both equations under the 

alternative. The heuristic procedure for selecting the transition variable(s) can be derived 

similarly to the one explained by Teräsvirta (1998) in the univariate setting: 

Perform the system linearity test for each of the pairs of the possible transition variables in 

turn. 

1. Carry out single equation linearity tests for each of the pairs of transition variables that 

reject the system linearity test. 

2. (i) If there are pairs of transition variables for which the single equation tests reject the null 

hypothesis of linearity for both equations, choose the pair with the strongest rejection of 

the system linearity test. 

 (ii) If for each of the pairs rejecting the null of system linearity only one of the single 

equation linearity tests is rejected, choose the pair of transition variables with the 

strongest rejection of the single equation test. Specify the corresponding equation as a 

smooth transition regression, while specifying the other equation as linear. 

After the transition variables (or variable) have been chosen, the decision about the type of the 

transition function should be made. Camacho proposes a straightforward generalization of the 

sequence of nested hypotheses from section 2.2, namely 
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which can be tested with a sequence of F-tests. The coefficient vectors ijη  refer to auxiliary 

regression (11). The decision rule determines the type of the transition function depending on 

the nested hypothesis with the strongest rejection (see section 2.2 for details). Note that the 

same functional form is selected for both equations. 

If the assumption of the same type of the transition function in both equations, namely 

x yG G G= = , is also relaxed, the transition function is chosen for each equation separately. In 

case of the first equation, the regressions in (13) are estimated with a system estimation 

method and the following sequence of nested hypotheses is verified: 
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When the second equation has a linear specification, auxiliary regression (13) should be 

modified accordingly, with the coefficient vectors 1xη , 2xη  and 3xη  set to zero prior to 

estimation. 

An alternative specification procedure would follow the suggestion of Camacho and specify a 

model for each pair of the transition variables rejecting the null hypothesis of system linearity. 

The final model can be selected on the basis of forecasting power or any other measure of the 

model adequacy. Of course this strategy is more time consuming, especially if the null 

hypothesis of system linearity is rejected for several pairs of transition variables. Our 

approach extends the modeling cycle developed by Camacho (2004), since the set of models 

considered for smooth transition specification includes all of the models studied by Camacho. 

The model adequacy tests for the proposed augmented specification procedure, namely the 

parameter constancy test, the test of no error autocorrelation and the test of no remaining 

nonlinearity are straightforward generalizations of the tests developed by Camacho (2004). 

To illustrate the proposed heuristic procedure, we shall apply it to the data analyzed by 

Camacho and obtained from his web site (www.um.es/econometria/maximo). The ty  and tx  

time series denoting the rate of growth of the US GDP and the rate of growth of the US 

composite index of leading indicators, respectively, include quarterly observations from 

1959:1 to 2002:1. 

Let us first derive the final model of Camacho. Using the information criteria, a linear 

VAR(1) model is specified and subjected to the system linearity tests. In addition to 1ty −  and 

1tx − , the variables 2ty −  and 2tx −  are also regarded as candidates for the transition variable. 

The results are given in the corresponding rows of Table 5. As the null of system linearity is 

rejected in all four cases, Camacho estimates four smooth transition autoregressive models. 

The type of the transition functions for each of the transition variables is selected using the 

decision rule explained on page 19 and is the same for both equations. The final model is 

decided upon on the basis of predictive accuracy (see Camacho (2004) for the description of 



the employed measures of predictive accuracy). The maximum likelihood estimates of the 

final model given below are slightly different from those in the paper by Camacho: 
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Standard errors of the parameter estimates are given in brackets. As pointed out by Teräsvirta 

(1998), precise joint estimation of the slope parameter and the threshold can be problematic, 

since it requires a high number of observations in the close neighborhood of the threshold 

parameter c . 

When the restrictions regarding the transition variable and the type of the transition function 

are omitted, the linearity tests have to be carried out for every pair of the possible transition 

variables. The results of the system linearity tests as well as single equation tests are given in 

Table 5. 

It can be observed that the single equation linearity test is strongly rejected for every pair of 

the transition variables when testing the second equation, while this holds true only for the 

pair 2 1,  t tx y− −  in case of the first equation. Thus the rejection of system linearity is due mainly 

to the nonlinear features in the second relation. Following the previously explained heuristic 

procedure, we choose the transition variables 2tx −  and 1ty −  for the first and second equation, 

respectively. 

Next, the question of the type of the transition function in each of the equations has to be 

investigated. The sequence of nested hypotheses (17) is performed with the results given in 

Table 6. The F2 test yields the lowest p-value for both equations thus indicating the LSTR1 

transition function in both cases. 

 

 

 



Table 5: Linearity Test Results (p-values) 

Tvar in 1. LINEARITY TESTS (p-values) 
and 2. eq. System test First eq. test Second eq. test 

1 1,t tx x− −  0.0020 0.4137 0.0017 
1 2,t tx x− −  0.0091 0.1882 0.0103 
1 1,t tx y− −  0.0039 0.1475 0.0038 
1 1,t tx y− −  0.0076 0.1332 0.0083 
2 1,t tx x− −  0.0003 0.0774 0.0004 
2 2,t tx x− −  0.0037 0.0755 0.0082 
2 1,t tx y− −  0.0008 0.0300 0.0014 
2 1,t tx y− −  0.0033 0.0565 0.0073 
1 1,t ty x− −  0.0041 0.6775 0.0003 
1 2,t ty x− −  0.0553 0.8199 0.0075 
1 1,t ty y− −  0.0315 0.8003 0.0035 
1 1,t ty y− −  0.0529 0.7331 0.0070 
2 1,t ty x− −  0.0018 0.3793 0.0005 
2 2,t ty x− −  0.0119 0.2449 0.0054 
2 1,t ty y− −  0.0057 0.2106 0.0022 
2 1,t ty y− −  0.0114 0.2005 0.0052 

 

Table 6: Tests for Choosing the Type of Transition Function (p-values) 

 NESTED TESTS (p-values) 
Tvar in 1. First equation Second equation 
and 2. eq. F4 F3 F2 F4 F3 F2 

2 1,t tx y− −  0.2250 0.3676 0.0112 || 0.6859 0.0370 0.0008 
 

The maximum likelihood estimates of the specified smooth transition vector autoregressive 

model are given by 
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It can be deducted from Table 7 that models (18) and (19) are comparable in terms of fit, if 

model (19) is not even slightly better. Therefore it would be wise to consider also (19) when 

searching for the model with the best forecasting properties. 

 

Table 7: Comparing the Fit of Models (18) and (19) 

 Model First equation Second equation 
Value logL R2 S.E. R2 S.E. 

Model (18) -327.14 0.352 0.754 0.253 0.718
Model (19) -322.20 0.369 0.744 0.287 0.701 

 

The modeling procedure proposed by Camacho has several drawbacks. Firstly, the system 

linearity test based on auxiliary regression (11) is rejected if at least one of the equations 

includes nonlinear terms. Specifying every equation as nonlinear based only on the rejection 

of the system linearity test thus neglects the possibility of a system involving linear and 

nonlinear equations and can yield inefficient estimates. Secondly, the limitations in the 

specified functional form can be justified neither by the relationships postulated within the 

economic theory nor by taking into account the very few existing applied studies. Thus, the 

specification with the same transition variable and the same type of the transition function in 

every equation of a smooth transition vector autoregressive model is too restrictive and should 

not be imposed a priory. 

 

4. Empirical analysis 

In this section, a three-variable smooth transition vector autoregressive model of the consumer 

price index for Slovenia, consumer price index of Slovakia and the nominal exchange rate 

between the currencies of both countries is discussed. The investigation applies the proposed 

augmented specification procedure to a small model of the real exchange rate, decomposed 

into its three components, domestic prices (Pt), foreign prices (Pt
*) and the nominal exchange 

rate (St). 

Monthly data for the period from January 1992 till May 2006 were obtained from the Vienna 

Institute for International Economics Studies (WIIW), the administrator of the Monthly 

Database on Central and Eastern Europe. Due to the fact that Slovenia declared independence 



in June 1991 and introduced its own currency (tolar) in October of the same year, only the 

data for the period from January 1993, when Tolar was already an established currency, were 

used in the study.  

Figure 1: Consumer Price Indices in Slovenia and Slovakia and Tolar/Koruna Nominal 

Exchange Rate  
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Notes: CPI_SLO stands for consumer price index in Slovenia, CPI_SK for consumer price index in Slovakia and 

SIT_SKK for nominal exchange rate of Slovenian tolar in Slovak koruna.  

Source of data: WIIW Monthly Database on Central and Eastern Europe. 

Figure 1 presents the graphs of consumer price indices in Slovenia and Slovakia and tolar 

nominal exchange rate, defined as a price of Slovak koruna in Slovenian tolar. It can be seen 

that the developments of consumer prices in the two observed economies are rather similar, 

although there are a few particularities. In the first years of the observed period inflation in 

Slovenia was higher than in Slovakia. Slovenian consumer prices show similar steady 

increases throughout the observed period with an exception of last two years when the 

increases were lower. This is due to the fact that Slovenia entered ERMII in June 2004 and 



has kept inflation low since then in order to fulfil the Maastricht criteria. In Slovakia steady 

increases in consumer price index fade away in 1998. Since then the consumer prices 

evidenced much bigger fluctuation. The third part of Figure 1 illustrates the movements in 

tolar/koruna nominal exchange rate. It can be clearly seen that tolar experienced nominal 

depreciation against koruna. Falling from 3.43 to 6.38 tolars for koruna in the whole observed 

period results in 86% of nominal depreciation. (Taking into account the inflation in the period 

1993-2006 in both economies the real depreciation amounts to 104%.) The steady 

depreciation of tolar against koruna was interrupted in 1998, when koruna depreciated. But 

the tolar appreciation against koruna was short-lived since Bank of Slovenia continued with 

the policy of steady depreciation throughout the existence of tolar while Slovak National 

Bank reacted to depreciation of koruna in 1998 with a change in exchange rate regime by 

introducing managed float (Amerini 2003) and kept the koruna rather stable thereafter. 

The econometric model employs variables expressed in growth rates with the help of the 

logarithmic transformation. Therefore small letters are used to denote the transformed 

variables, where st stands for the logarithm of nominal exchange rate of tolar, pt for logarithm 

of consumer price index in Slovenia and pt* represents logarithm of consumer price index in 

Slovakia. 

 

4.1. Does the purchasing power parity hold? 

We start our empirical investigation by testing for the purchasing power parity between 

Slovenia and Slovakia. The results of the augmented Dickey – Fuller (ADF) unit root tests for 

each of the three variables and their first differences are given in Table 8. The null hypothesis 

of unit root is rejected (at the 5 % level) only for the differenced variables, therefore ts , tp  

and *
tp  are all integrated of order 1.  

Table 8: ADF Unit Root Test Results for Slovenia and Slovakia 

Variable 
ts  tp  *

tp  
Test statistic 
(p-value) 

-3.3527 
(0.0617) 

-2.6867 
(0.2437) 

-1.9948 
(0.5991) 

Variable ts∆  tp∆  *
tp∆  

Test statistic 
(p-value) 

-8.2812 
(0.0000) 

-9.3496 
(0.0000) 

-10.4961 
(0.0000) 



 

Both the trace statistic and the max-eigenvalue statistic of the Johansen cointegration test 

indicate one cointegrating equation at the 5 % level. The normalized cointegration coefficients 

yield the following cointegrating equation: 

                                       
*4.5637 4.3801 -3.809361 .

                     (1.4164)    (1.4693)
t t t ts p p ξ= + ⋅ ⋅ +

                                  (20) 

The standard errors of the coefficient estimates are given in brackets. Note that the parameters 

1α  and 2α  (as denoted in equation (1)) are significantly different from zero and the signs are 

in accordance with purchasing power parity. The main advantage of the Johansen 

cointegration test over the Engle-Granger test when checking the purchasing power parity lies 

in the possibility to test linear restrictions imposed on the parameters of the cointegrating 

vectors. We shall test both the symmetry and the proportionality condition with the help of the 

likelihood ratio test. The proportionality condition 1 2 1α α= =  (p = 0.4294) and the symmetry 

condition 1 2α α=  cannot be rejected (p = 0.4294), thus PPP holds in its strictest form.  

 

4.2 Real exchange rate model 

In a preliminary specification, the linear vector error-correction model was specified. This 

simplifies the search for an appropriate nonlinear specification. As neglected autocorrelation 

structure may lead to false rejections of the linearity hypothesis (Teräsvirta, 1994), the order 

of autoregression was chosen on the basis of the serial correlation tests. Thus, a VECM model 

with 1 lag and 1 cointegrating equation (given in Equation (20)) was indicated as the best 

choice. The Schwarz information criterion also selected VECM(1), whereas according to 

Akaike information criterion 2 lags should be specified.  

The system linearity tests and the single equation linearity tests are performed in the next step. 

The variables 1ts −∆ , 1tp −∆ , *
1tp −∆  and tce  are regarded as candidates for the transition variable. 

Since in the augmented specification procedure different transition variables are allowed in 

different equations of the system, there are 34 64=  possible transition variable triplets. The 

results of the system linearity tests as well as single equation linearity tests are shown in Table 

9. Note that for the third equation, the null hypothesis of linearity is never rejected. Therefore 



we shall specify a linear relationship when *
tp∆  is the dependent variable. The system 

linearity test and the first equation linearity test are most strongly rejected (i.e. p-val.<0.0001), 

if 1ts −∆  is selected for the transition variable in the first equation. In this case there are 2 

candidates for the transition variable in the second equation, namely 1ts −∆  and 1tce − . We have 

chosen 1tce −  to examine different regimes in the tp∆  equation associated with different levels 

of the deviation from PPP. 

Table 9: Linearity Test Results (p-values) 

LINEARITY TESTS (p-values) 
Transition variables Test results 

1st eq. 2nd eq. 3rd eq. System  1st eq.  2nd eq. 3rd eq. 
∆st-1 ∆st-1 ∆st-1 0.0000 0.0000 0.0307 0.4145 
∆st-1 ∆st-1 ∆pt-1 0.0000 0.0000 0.0249 0.2364 
∆st-1 ∆st-1 ∆p*t-1 0.0000 0.0000 0.0236 0.8297 
∆st-1 ∆st-1 ce 0.0000 0.0000 0.0414 0.3505 
∆st-1 ∆pt-1 ∆st-1 0.0000 0.0000 0.7254 0.4538 
∆st-1 ∆pt-1 ∆pt-1 0.0000 0.0000 0.8304 0.4104 
∆st-1 ∆pt-1 ∆p*t-1 0.0000 0.0000 0.7014 0.8922 
∆st-1 ∆pt-1 ce 0.0000 0.0000 0.7151 0.3081 
∆st-1 ∆p*t-1 ∆st-1 0.0000 0.0000 0.1218 0.4197 
∆st-1 ∆p*t-1 ∆pt-1 0.0000 0.0000 0.1691 0.3756 
∆st-1 ∆p*t-1 ∆p*t-1 0.0000 0.0000 0.0831 0.7825 
∆st-1 ∆p*t-1 ce 0.0000 0.0000 0.1496 0.3376 
∆st-1 ce ∆st-1 0.0000 0.0000 0.0362 0.3837 
∆st-1 ce ∆p t-1 0.0000 0.0000 0.0399 0.2769 
∆st-1 ce ∆p*t-1 0.0000 0.0000 0.0406 0.8818 
∆st-1 ce ce 0.0000 0.0000 0.0672 0.3969 
∆pt-1 ∆st-1 ∆st-1 0.0075 0.0097 0.0486 0.3946 
∆pt-1 ∆st-1 ∆pt-1 0.0043 0.0094 0.0452 0.2495 
∆pt-1 ∆st-1 ∆p*t-1 0.0239 0.0093 0.0423 0.8198 
∆pt-1 ∆st-1 ce 0.0066 0.0093 0.0692 0.3538 
∆pt-1 ∆pt-1 ∆st-1 0.0782 0.0091 0.6502 0.4665 
∆pt-1 ∆pt-1 ∆pt-1 0.0657 0.0084 0.7558 0.4183 
∆pt-1 ∆pt-1 ∆p*t-1 0.1771 0.0084 0.6086 0.8650 
∆pt-1 ∆pt-1 ce 0.0491 0.0082 0.6196 0.3032 
∆pt-1 ∆p*t-1 ∆st-1 0.0137 0.0066 0.1031 0.4246 
∆pt-1 ∆p*t-1 ∆pt-1 0.0123 0.0064 0.1424 0.3835 
∆pt-1 ∆p*t-1 ∆p*t-1 0.0317 0.0064 0.0694 0.7576 
∆pt-1 ∆p*t-1 ce 0.0106 0.0064 0.1223 0.3360 
∆pt-1 ce ∆st-1 0.0044 0.0078 0.0279 0.3682 
∆pt-1 ce ∆pt-1 0.0028 0.0076 0.0327 0.2783 
∆pt-1 ce ∆p*t-1 0.0177 0.0074 0.0334 0.8576 
∆pt-1 ce ce 0.0046 0.0072 0.0569 0.3983 
∆p*t-1 ∆st-1 ∆st-1 0.2288 0.7595 0.0378 0.3742 
∆p*t-1 ∆st-1 ∆pt-1 0.1568 0.7341 0.0360 0.2397 



∆p*t-1 ∆st-1 ∆p*t-1 0.4381 0.7591 0.0336 0.8316 
∆p*t-1 ∆st-1 ce 0.2132 0.7529 0.0553 0.3504 
∆p*t-1 ∆pt-1 ∆st-1 0.7326 0.7442 0.5593 0.4459 
∆p*t-1 ∆pt-1 ∆pt-1 0.6786 0.7096 0.6817 0.4198 
∆p*t-1 ∆pt-1 ∆p*t-1 0.9091 0.7427 0.5310 0.8874 
∆p*t-1 ∆pt-1 ce 0.6234 0.7360 0.5459 0.3151 
∆p*t-1 ∆p*t-1 ∆st-1 0.3612 0.7374 0.0938 0.4152 
∆p*t-1 ∆p*t-1 ∆pt-1 0.3309 0.7094 0.1338 0.3830 
∆p*t-1 ∆p*t-1 ∆p*t-1 0.5330 0.7194 0.0599 0.7643 
∆p*t-1 ∆p*t-1 ce 0.3117 0.7211 0.1107 0.3354 
∆p*t-1 ce ∆st-1 0.2167 0.8049 0.0319 0.3509 
∆p*t-1 ce ∆pt-1 0.1604 0.7905 0.0389 0.2732 
∆p*t-1 ce ∆p*t-1 0.4625 0.8023 0.0385 0.8671 
∆p*t-1 ce ce 0.2248 0.7924 0.0666 0.4052 

ce ∆st-1 ∆st-1 0.0057 0.0064 0.0389 0.4087 
ce ∆st-1 ∆pt-1 0.0030 0.0057 0.0354 0.2439 
ce ∆st-1 ∆p*t-1 0.0183 0.0060 0.0332 0.8280 
ce ∆st-1 ce 0.0049 0.0061 0.0555 0.3595 
ce ∆pt-1 ∆st-1 0.0466 0.0037 0.4840 0.4654 
ce ∆pt-1 ∆pt-1 0.0381 0.0036 0.6090 0.4212 
ce ∆pt-1 ∆p*t-1 0.1160 0.0037 0.4463 0.8727 
ce ∆pt-1 ce 0.0283 0.0036 0.4591 0.3074 
ce ∆p*t-1 ∆st-1 0.0095 0.0036 0.0815 0.4409 
ce ∆p*t-1 ∆pt-1 0.0080 0.0034 0.1132 0.3822 
ce ∆p*t-1 ∆p*t-1 0.0220 0.0035 0.0517 0.7645 
ce ∆p*t-1 ce 0.0070 0.0034 0.0933 0.3354 
ce ce ∆st-1 0.0052 0.0098 0.0416 0.3841 
ce ce ∆pt-1 0.0032 0.0091 0.0478 0.2699 
ce ce ∆p*t-1 0.0207 0.0090 0.0468 0.8550 
ce ce ce 0.0054 0.0090 0.0808 0.4078 

Notes: ce stands for the cointegrating vector given by Equation (20) and d denotes the first difference operator. 

Next, the question of the type of the transition function in each of the equations has to be 

investigated. The sequence of nested hypotheses (17) is performed with the results given in 

Table 10. The F3 test yields the lowest p-value for both equations thus indicating the LSTR2 

transition function in both cases. The F3 test for the first equation is strongly significant, 

whereas for the second equation the hypothesis 03H  is rejected only at the 10% significance 

level.   

Table 10: Tests for Choosing the Type of Transition Function (p-values) 

NESTED TESTS (p-values) 
Transition variables First equation Second equation 
1st eq. 2nd eq. F4 F3 F2 F4 F3 F2 
∆st-1 ce 0.0492 0.0000 0.1548 0.3057 0.0671 0.2121 



The estimated coefficients of the specified smooth transition vector error-correction model 

and the results of the diagnostic tests are given in Table 11 below. The transition function in 

the i -th equation is denoted by ( )i tG s  with 

            ( )2
1 1 2 1 1 1( , , ; ) 1 1 Exp( 1.3714( 0.0660)( 0.0256) / ( ))

                                             (0.7613)          (0.0046)           (0.0020)
t t t tG c c s s s sγ σ− − −= + − ∆ + ∆ − ∆

     (21) 

( )2
2 1 2( , , ; ) 1 1 Exp( 14.9249( 0.9370)( 0.4152) / ( ))

                                             (19.8342)       (0.0359)        (0.0137)
t t t tG c c s ce ce ceγ σ= + − + −

 

3 0G =  

Table 11: Smooth Transition Vector Error-Correction Model 

 Equations 
Regressors ts∆  tp∆  *

tp∆  

( )1 ( )i tconst G s⋅ −  0.0045 
(0.0017) 

0.0056 
(0.0007) 

0.0068 
(0.0012) 

( )1 1 ( )t i ts G s−∆ ⋅ −  0.6100 
(0.0866) 

0.0721 
(0.0299)  

( )1 1 ( )t i tp G s−∆ ⋅ −  -0.3946 
(0.2093) 

0.1727 
(0.0824) 

-0.2269 
(0.1372) 

( )*
1 1 ( )t i tp G s−∆ ⋅ −    0.1614 

(0.0816) 

( )1 ( )t i tce G s⋅ −  -0.0084 
(0.0031) 

-0.0068 
(0.0015) 

-0.0051 
(0.0020) 

( )i tconst G s⋅   -0.0011 
(0.0019)  

1 ( )t i ts G s−∆ ⋅  -1.0523 
(0.3537) 

0.0949 
(0.0536)  

1 ( )t i tp G s−∆ ⋅  6.6055 
(1.4409)   

*
1 ( )t i tp G s−∆ ⋅  -4.7047 

(2.9421) 
1.1366 

(0.1617)  

( )t i tce G s⋅  0.0253 
(0.0121)   

2
nlR  0.3984 0.4822  

. .nlS E  0.0121 0.0048  
2
linR  0.1453 0.3937 0.0717 

. .linS E  0.0141 0.0048 0.0085 
ˆ ˆnl linσ σ  0.8557 0.9394  

Diagnostic tests (p-values) 
AR(12) 0.6415 0.1719 0.0458 

ARCH(12) 0.2915 0.8918 0.1908 



White 0.2693 0.2675 0.5643 

Notes: standard errors are given in brackets. AR(12) denotes the serial correlation LM test with no 
autocorrelation up to 12 lags under the null hypothesis. The ARCH(12) notation is analogous.  

According to linearity tests the best transition variable for the first equation in Table 11 (with 

ts∆  as dependent variable) is the lagged change in nominal exchange rates and LSTR2 type of 

transition function is appropriate. The estimates of c1 and c2 are statistically significant 

(Equation 21). Thus, one regime is identified by small changes in nominal exchange rates 

(G=0) and is represented in the first part of Table 11, while the other regime reflects large 

changes in nominal exchange rates (G=1, the second part of Table 11). According to small 

adjustment parameter (γ=1.3714), the transition among regimes (from G=0 to G=1) is slow. 

When changes in nominal exchange rates are small, the coefficient of -0.0084 for deviations 

from PPP (cet) indicates that exchange rates adjust to equilibrium, while in the second regime 

(G=1) the exchange rates move away from the equilibrium, which is indicated by coefficient 

of 0.0253 for cet. It is interesting to note that in the second regime, when nominal changes in 

exchange rates are high, the signs of coefficients for both price indices indicate the validity of 

PPP. When nominal exchange rate is far away from the equilibrium, the price movements 

work in favor of converging to PPP.  

Deviation from PPP (cet) turned out to be an appropriate transition variable for the second 

equation (with tp∆  as dependent variable), while the best type of transition function is again 

LSTR2. Threshold parameters c1 and c2 are again statistically significant (Equation 21) 

indicating the existence of two regimes. One of them (G=0) is presented in the first five rows 

of Table 11 and is determined by small deviations from PPP, while the other regime in the 

second equation is characterized by large deviations from PPP and is presented in the second 

five rows of Table 11 (G=1). A relatively high value of γ in the second transition function 

(γ=14.9249) indicates a rapid transition from G=0 to G=1. STVECM estimate of the 

coefficient for lagged domestic prices in the regime, when the deviations from PPP are small, 

confirms the trend of Slovenian price index in Figure 1.  

The third equation (with *
tp∆  as dependent variable) in Table 11 is estimated as linear 

relationship among variable, as the null hypothesis of linearity was not rejected due to 

linearity tests and 3 0G = , which indicates only one regime. The coefficient of the lagged 

change in p* is in line with the increasing trend of consumer price index in Slovakia in Figure 

1.  



Diagnostic tests are presented in the third part of Table 11. The error variance ratios of 

nonlinear relative to linear models for the first and the second equation show that the 

nonlinear models have a better fit ( ˆ ˆnl linσ σ < 1). 

 

5 Conclusion 
 
After reviewing the literature and presenting an example of testing of PPP in linear 

framework, the article proceeds with an overview of smooth transition regression approach in 

different frameworks (single equation regression, system of equations with one transition 

variable and system of equations with different transition variables).  

 

While traditional unit root test rejected the null of non-stationarity in level real exchange rate 

for Slovenian tolar against Slovak koruna in the period of January 1993 to December 2006, 

Johansen cointegration test confirmed the validity of PPP among the two economies.  

 

Within the methodological overview of nonlinear framework we argue that system of 

equations with one transition variable and one transition function is not realistic. Indeed, in 

our empirical case the linearity tests show that different transition variables are appropriate to 

use, while the type of transition function is the same (LSTR2) in two equations. In the case of 

the third equation, linearity tests cannot be rejected and the equation was estimated as linear 

relationship among variables. The model reflects some evidence in favor of PPP theory. Since 

both of the analyzed countries are transition economies, such result was expected.  
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