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PROJECTIONS IN LIPSCHITZ-FREE SPACES INDUCED

BY GROUP ACTIONS

MAREK CÚTH AND MICHAL DOUCHA

Abstract. We show that given a compact group G acting continuously
on a metric space M by bi-Lipschitz bijections with uniformly bounded
norms, the Lipschitz-free space over the space of orbits M/G (endowed
with Hausdorff distance) is complemented in the Lipschitz-free space
over M. We also investigate the more general case when G is amenable,
locally compact or SIN and its action has bounded orbits. Then we get
that the space of Lipschitz functions Lip0(M/G) is complemented in
Lip0(M). Moreover, if the Lipschitz-free space over M, F(M), is com-
plemented in its bidual, several sufficient conditions on when F(M/G)
is complemented in F(M) are given. Some applications are discussed.
The paper contains preliminaries on projections induced by actions of
amenable groups on general Banach spaces.

1. Introduction

Lipschitz-free Banach spaces are free objects in the category of Banach
spaces over (pointed) metric spaces and also canonical preduals of spaces
of scalar-valued Lipschitz functions on metric spaces. They currently form
one of the most studied classes of spaces in Banach space theory. As their
investigation is proceeding further, it is becoming apparent that the linear
geometric structure of Lipschitz-free spaces is highly sensitive to geomet-
ric properties of metric spaces over which they are defined. Indeed, more
and more results show the subtle relations between various standard prop-
erties studied in metric geometry and the structure of the corresponding
Lipschitz-free spaces, see e.g. [1,2,11,18]. In this note, we contribute to this
research programme by studying Lipschitz-free spaces over spaces of orbits
of compact (or more generally amenable) group actions by isometries (or
more generally by bi-Lipschitz bijections with uniform bound on Lipschitz
norms) equipped with the Hausdorff distance. Spaces of this form have a
prominent role in metric geometry as many homogeneous metric space can
be considered in this way. The following summarizes some of our main
results.
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2 M. CÚTH AND M. DOUCHA

Theorem A. Let (M, d, 0) be a pointed metric space and let G be a group
acting by isometries on M such that some (or equivalently every) orbit is
bounded. Denote by M/G the space of closures of the orbits {Gx : x ∈ M}
endowed with the Hausdorff metric.

• If G is compact, then F(M/G)
C
↪→ F(M).

• If G is commutative or locally compact and amenable, then

Lip0(M/G)
C
↪→ Lip0(M).

IfM is moreover proper and bothM andM/G are purely 1-unrectifiable,

then F(M/G)
C
↪→ F(M).

One of the main application has already appeared in a separate paper
in [7] where it was used to prove the metric approximation property in
free spaces over all compact metric groups, however other suggestions for
applications are presented at the end of the paper. Nevertheless, the results
seem to be of independent interest and after completing the first version
of the paper, we found interesting that some of the questions have been
also considered for Wasserstein spaces of measures by Lott and Villani in
[16, Subsection 5.5] (see also [9] for further generalizations).

Finally, let us say that the paper also has a secondary goal. That is, to put
our new results about Lipschitz-free spaces into the context of more general
actions of amenable groups on Banach spaces and the associated projec-
tions. We believe that these more general results are essentially known (and
likely studied in the more general framework of amenable Banach algebras).
However, since we lack any suitable reference we prove these results here
which, we are sure, will be of benefit for most of the readers, who we do not
want to expect to be familiar with amenable group actions.

Besides this introduction, the next section consists of preliminaries on
Lipschitz-free spaces, amenable groups and basic notation concerning group
actions on Banach spaces. In Section 3 we concentrate the aforementioned
review of amenable group actions on Banach spaces. Then we present our
main new results and the article is finished by suggestions for further appli-
cations and with some open problems.

Let us mention that we consider real Banach spaces, but many of the
results have straightforward generalization to the complex case. Also, given
a Banach space X, we denote by κX : X → X∗∗ the canonical isometric
embedding and for A ⊂ X we put A⊥ =

⋂
a∈A{x∗ ∈ X∗ : x∗(a) = 0},

for A ⊂ X∗ we put A⊥ =
⋂
a∈A{x ∈ X : a(x) = 0}. If X and Y are

Banach spaces, the symbol Y
C
↪→ X means that Y is linearly isomorphic to

a complemented subspace of X.
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2. Preliminaries

The aim of this section is to recall the relevant information concerning
Lipschitz-free spaces and amenable groups and settle a basic notation con-
cerning groups actions on Banach spaces.

2.1. Lipschitz-free spaces. Lipschitz-free spaces, also known as Arens-
Eells spaces, are free objects in the category of Banach spaces over the cate-
gory of (pointed) metric spaces and they are characterized by the following
universal property.

Theorem 2.1. Let (M, ρ) be a pointed metric space. Then F(M) is the
unique Banach space for which there exists a linear isometry δ :M→ F(M)
onto a linearly dense set such that for every Banach space X and every
Lipschitz map f : M → X with f(0) = 0 there exists a unique linear map
Tf : Fp(M)→ X with Tf ◦ δM = f . Moreover ‖Tf‖ = Lip(f). Pictorially,

M
f //

δM ##

X

F(M)

Tf

<<

It follows (considering the case when X = R in Theorem 2.1) that F(M)
is canonical preduals of the Banach space of scalar-valued Lipschitz func-
tions vanishing at a distinguished point, and this point of view also allows
the fastest construction of the space F(M). That is, letM be a metric space
with a distinguished point 0 (different choices will produce linearly isometric
spaces though) and let Lip0(M) denote the Banach space of all scalar-valued
Lipschitz function vanishing at 0, with the norm being the minimal Lipschitz
constant. The Lipschitz-free space over M, denoted by F(M), can be de-
fined as the closed linear span of {δ(m) : m ∈M} ⊆ Lip0(M)∗ in the dual of
Lip0(M), where δ(m) is the evaluation functional, that is, δ(m)(f) = f(m)
for every f ∈ Lip0(M). It is not so difficult to verify that this construction
gives a Banach space F(M) which satisfies Theorem 2.1, see e.g. [5, Section
2] for a proof, some more references and basic facts. Let us emphasize that
the w∗ topology on bounded subsets of Lip0(M) ≡ (F(M))∗ then coincides
with pointwise convergence (which easily follows using the fact that δ(M)
is linearly dense in F(M)).

There is also an abstract construction of F(M) which avoids using the
space Lip0(M) and which defines the norm on F(M) as a variant of the
Kantorovich-Rubinstein distance and connects the theory with optimal trans-
port. We refer to [21] for a proper introduction to the subject.

2.2. Amenable groups and related notions. Let G be a topological
Hausdorff group. Then G acts on `∞(G) by left-shift and by right-shift,
that is, for any f ∈ `∞(G) and g, h ∈ G we have g · f(h) = f(g−1h) and
f · g(h) = f(hg−1), respectively.



4 M. CÚTH AND M. DOUCHA

By Cblu(G) and Cbru(G) we denote the closed subspaces of `∞(G) defined
as

Cblu(G) := {f ∈ `∞(G) : x 7→ x−1 · f ∈ `∞(G) is continuous map

from G to (`∞(G), ‖ · ‖∞)},

Cbru(G) := {f ∈ `∞(G) : x 7→ f · x−1 ∈ `∞(G) is continuous map

from G to (`∞(G), ‖ · ‖∞)},
Let us note that Cblu(G) and Cbru(G) are exactly the spaces of all bounded
left-uniformly continuous and right-uniformly continuous functions from G
to the scalar field, respectively. We denote by Cbu(G) the set Cblu(G)∩Cbru(G).

We say that a linear functional M : Cblu(G)→ C is left-invariant mean on
G if the following conditions are satisfied:

(1) M(1G) = 1;
(2) M is left-invariant, that is, M(f) = M(g · f) for all f ∈ Cblu(G) and

g ∈ G;
(3) M(f) ≥ 0 for all f ∈ Cblu(G) with f ≥ 0.

Similarly, M : Cbru(G) → C is right-invariant mean on G if we replace left-
invariance of M by right-invariance of M . Recall that for any left-invariant
of right-invariant mean M we have ‖M‖ ≤ 1 (see e.g. [3, p. 422]).

Definition 2.2. G is said to be amenable if there exists a left-invariant mean
M : Cblu(G)→ C.

Remark 2.3. Note that the existence of left-invariant and right-invariant

means are equivalent since once M is left-invariant mean, then M̃ defined

as M̃(f) := M(g 7→ f(g−1)) is right-invariant mean and vice versa.
Once we have a left-invariant mean Ml on G, it is easy to see that the

mapping M : Cbu(G) → C defined as M(f) := Ml(g 7→ Ml(fg)), f ∈ Cbu(G)
is a bi-invariant mean, that is, M(1) = 1, M(f) ≥ 0 for f ∈ Cbu(G) with
f ≥ 0 and M(f · g) = M(g · f) = M(f) for f ∈ Cbu(G) and g ∈ G.

In the special case when G is locally compact, it is more convenient to
consider invariant means on larger function algebras than Cblu(G). Recall
that every locally compact group G comes equipped with a left-invariant
Haar measure µ which is unique up to multiplication by a positive scalar.
Moreover, if G is compact, then µ is finite, so without loss of generality it
is probabilistic, and moreover it is bi-invariant, i.e. both left and right in-
variant. We can then consider L∞(G,µ) ⊇ Cblu(G), further denoted just by

L∞(G), on which G acts like on Cblu(G) by the shift. Amenable locally com-
pact groups admit a left-invariant mean (or more generally, a bi-invariant
mean) on L∞(G) with the same properties as on Cblu(G), we refer to [3, Ap-
pendix G] for details. If G is compact, then the bi-invariant mean can be
given by the formula

M(f) :=

∫
G
f(g)dµ(g), f ∈ L∞(G),
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where µ is the bi-invariant probabilistic Haar measure on G, and it is more-
over w∗-continuous.
Convention. Therefore, when G is locally compact and amenable, the bi-
invariant mean associated to G is always assumed to be defined on L∞(G).

The basic examples of amenable groups are abelian and compact groups,
we again refer to [3, Appendix G] for more.

We will also need the notion of a SIN group. Well-known examples are
e.g. compact groups, discrete groups or commutative groups, see e.g. [19]
for more details.

Definition 2.4. Let G be a group with the identity element e. We say G is
SIN (small invariant neighborhoods) if for every neighborhood U of e there
exists a neighborhood V of e such that V = gV g−1 ⊂ U for every g ∈ G.

2.3. Actions of groups on Banach spaces. Suppose that a group G acts
by isometries on a Banach space X. If X is real, which is always going to
be our case, such isometries are automatically affine by the Mazur-Ulam
theorem. We shall however always write affine isometries when we want to
make clear that they are not necessarily linear. Notice also that when G
acts by affine isometries, then for any g ∈ G the map x 7→ gx−g0 is a linear
surjective isometry. Given an affine action A : G × X → X by isometries
we denote by π(A) the associated linear part of the action, that is, we have
π(A)(g, x) = A(g, x) − A(g, 0) for every g ∈ G and x ∈ X. We shall often
not use any special symbol for the given affine action G y X and write
simply gx for the result of acting by g ∈ G on x ∈ X and similarly we often
write π(g)x for gx− g0.

Note that in this case (π(g))g∈G defines an action of G on X by linear
isometries. Indeed, for every x ∈ X and g, h ∈ G we have

π(g)(π(h)(x)) = π(g)(hx− h0) = π(g)(hx)− π(g)(h0)

= (ghx− g0)− (gh0− g0) = ghx− gh0 = π(gh)(x).

and π(e)x = ex− e0 = x− 0 = x.
Notice that when a group G acts by linear isometries on a Banach space

X, then there is a dual action by linear isometries of G on X∗ defined by
gf(x) := f(g−1x), where g ∈ G, f ∈ X∗, and x ∈ X.

If G acts on X by affine isometries, then by π(g)x∗ we denote dual action
of π(g) on X∗, that is, π(g)x∗(x) = x∗(π(g−1)x), x ∈ X.

3. Projections associated to group actions in a general
Banach space

The starting point here is an observation that there is a very general
method of constructing a linear projection from an action of a compact group
on a Banach space (see part (b) of Lemma 3.2). The main outcome of this
section is contained in Lemma 3.2 and Theorem 3.3, where we summarize
what analogies are available in the more general setting of amenable groups.
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The results from this section will be used in Section 4, where everything
is investigated in the setting of Lipschitz-free spaces.

We start with a lemma which will be used several times in what follows.
Note that if G acts on a Banach space X by linear isometries, then its orbits
Gx are bounded in diameter by 2‖x‖ for every x ∈ X, so the following result
applies in particular to actions by linear isometries.

Lemma 3.1. Let X be a Banach space, G be a group acting continuously
on X by isometries such that some (or equivalently every) orbit is bounded.
Pick x ∈ X, x∗ ∈ X∗ and let ϕ : G→ R be defined by ϕ(g) = x∗(gx), g ∈ G.
Then ϕ ∈ Cbru(G). Moreover,

(1) if G is locally compact, then ϕ ∈ L∞(G); and
(2) if G is SIN, then ϕ ∈ Cbu(G).

Proof. Since the orbit Gx is bounded, we obtain ϕ ∈ `∞(G).
In order to check that ϕ ∈ Cbru(G), pick ε > 0 and using the continuity of

the map h 7→ hx pick a neighborhood U of e with ‖hx − x‖ < ε for every
h ∈ U . Then for every h ∈ U we obtain

‖ϕ · h−1 − ϕ‖∞ = sup
g∈G
|x∗(ghx)− x∗(gx)|

≤ ‖x∗‖ sup
g∈G
‖ghx− gx‖ = ‖x∗‖‖hx− x‖

< ε‖x∗‖,

so the mapping h 7→ ϕ · h−1 is continuous and we have ϕ ∈ Cbru(G).
Assume that G is SIN. In order to check that ϕ ∈ Cblu(G), pick ε > 0 and

using the continuity of the map h 7→ hx pick a neighborhood U of e with
‖hx− x‖ < ε for every h ∈ U . Since G is SIN, we find neighborhood V of e
with gV g−1 ⊂ U for every g ∈ G. Then for every h ∈ V we obtain

‖h−1 · ϕ− ϕ‖∞ = sup
g∈G
|x∗(hgx)− x∗(gx)|

≤ ‖x∗‖ sup
g∈G
‖hgx− gx‖

= ‖x∗‖ sup
g∈G
‖g−1hgx− x‖ < ε‖x‖

,

which shows that ϕ ∈ Cblu(G).
Finally, if G is locally compact, then it suffices to observe that ϕ is con-

tinuous and since we already know it is bounded, we obtain ϕ ∈ L∞(G). �

Lemma 3.2. Let X be a Banach space, G an amenable group acting con-
tinuously by affine isometries on X such that G is either locally compact or
SIN. Let M be bi-invariant mean on G. Then the mapping RG : X → X∗∗

defined as

RG(x)(x∗) := M
(
g 7→ x∗(π(g) · x)

)
, x ∈ X,x∗ ∈ X∗

is well-defined linear operator with ‖RG‖ ≤ 1 and the following holds.



PROJECTIONS IN LIPSCHITZ-FREE SPACES 7

(1) For every g ∈ G and x ∈ X we have

π(g) ·RG(x) = RG(x) = RG(π(g)x).

(2)

RG[X] ∩X = {x ∈ X : π(g)x = x for every g ∈ G} =: IG

and RG(x) = x for every x ∈ IG.
(3) kerRG ∩ IG = {0}, and the canonical projection of (kerRG) + IG

onto IG along kerRG has norm at most 1.

(4) The mapping P̃G := (RG)∗◦κX∗ : X∗ → X∗ is a norm-one projection
with

P̃G[X∗] = {x∗ ∈ X∗ : π(g)x∗ = x∗} =: ĨG.

(5) We have

kerRG = (ĨG)⊥.

Moreover,

(a) if some (or equivalently every) orbit is bounded, then for the operator

RG we have RG(gx) = RG(x) and P̃G(x∗)(gx) = P̃G(x∗)(x) for every
x ∈ X, x∗ ∈ X∗ and g ∈ G;

(b) if the group G is compact, then RG : X → X is a norm-one projection
onto IG and

(3.1) RG(x) =

∫
G
π(g)x dµ(g), x ∈ X,

where µ is the bi-invariant probability Haar measure on G.

Proof. It follows directly from the corresponding definitions and from Lemma 3.1
(applied to the action (π(g))g∈G on X by linear isometries) that RG is well-
defined, linear and ‖RG‖ ≤ 1. Pick g ∈ G, x∗ ∈ X∗ and x ∈ X. Using the
left-invariance of M we have

(π(g) ·RG(x))(x∗) = RG(x)(π(g−1) · x∗) = M
(
h 7→ x∗(π(gh)x)

)
= M

(
h 7→ x∗(π(h) · x)

)
= RG(x)(x∗),

so we have π(g) · RG(x) = RG(x) and RG[X] ∩ X ⊂ IG. Similarly, right-
invariance of M gives RG(π(g)x) = RG(x), which implies (1).

Pick x ∈ IG, then for every x∗ ∈ X∗ we have

RG(x)(x∗) = M
(
g 7→ x∗(π(g)x)

)
= M

(
g 7→ x∗(x)

)
= x∗(x),

which implies that IG ⊂ RG[X] and RG(x) = x for every x ∈ IG, so (2)
holds.

For (3) we observe that for any x ∈ kerRG and y ∈ IG we obtain ‖y‖ =
‖RG(x+ y)‖ ≤ ‖RG‖‖x+ y‖ from which (3) follows.

For (4) we observe that for x ∈ X and x∗ ∈ X∗ we have

P̃G(x∗)(x) = R∗GκX∗(x
∗)(x) = κX∗(x

∗)(RGx) = RG(x)(x∗),
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which, using (1), implies that for every g ∈ G

π(g)P̃G(x∗)(x) = P̃G(x∗)(π(g−1x)) = RG(π(g−1)x)(x∗) = RG(x)(x∗)

= P̃G(x∗)(x),

so we have P̃G[X∗] ⊂ ĨG. Conversely, for x∗ ∈ ĨG we obtain

P̃G(x∗)(x) = RG(x)(x∗) = M
(
g 7→ x∗(π(g)x)

)
= M

(
g 7→ π(g−1)x∗(x)

)
= M

(
g 7→ x∗(x)

)
= x∗(x),

so we have P̃G(x∗) = x∗ and so P̃G|ĨG = Id, which implies (4).

For (5) pick x ∈ X. If x ∈ kerRG, then for every x∗ ∈ ĨG we have

x∗(x) = P̃G(x∗)(x) = RG(x)(x∗) = 0.

On the other hand, if x ∈ (ĨG)⊥, then for every x∗ ∈ X∗ we obtain

RG(x)(x∗) = P̃G(x∗)(x) = 0,

so we have x ∈ kerRG.
For the “Moreover” part we compute (using Lemma 3.2 by which all the

evaluations of the function M below make sense)

RG(gx)(x∗) = M
(
h 7→ x∗(π(h) · gx)

)
= M

(
h 7→ x∗(π(hg) · x)

)
+M

(
h 7→ x∗(π(h) · g0)

)
= RG(x)(x∗) +M

(
h 7→ x∗(hg0)

)
−M

(
h 7→ x∗(h0)

)
= RG(x)(x∗),

where in the last two equalities we used the right-invariance of M .
Finally, if G is compact, using the w∗-continuity of M we have that

RG(x) ∈ (X∗, w∗)∗ = X and using that in this case M is given by M(f) =∫
G f(g) dµ(g), we obtain the formula (3.1). �

As we have seen above, if G is compact we obtain that IG is complemented
in X. This may be achieved also for a more general class of groups G under
the assumption that X is complemented in its bidual, see Theorem 3.3. As
we shall see later, the assumptions of Theorem 3.3 are satisfied e.g. if X is
a dual space or if it is an L-embedded space.

Theorem 3.3. Let X be a Banach space and G amenable group acting
continuously on X by affine isometries such that X is complemented in its
bidual via a projection Q satisfying π(G) ·kerQ ⊂ kerQ, that is, π(g) ·x∗∗ ∈
kerQ for every g ∈ G and x∗∗ ∈ kerQ. Assume G is locally compact or SIN
and M is bi-invariant mean on G.

If RG : X → X∗∗ and IG are as in Lemma 3.2, the mapping PG :=
Q ◦RG : X → X is projection of norm ≤ ‖Q‖ with PG[X] = IG and PG[X]
is a complemented subspace of RG[X].
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Moreover, if some (or equivalently every) orbit is bounded, then PG(x) =
PG(gx) for every g ∈ G and x ∈ X.

Proof. By Lemma 3.2, we have that PG is linear operator with ‖PG‖ ≤ ‖Q‖
and π(g) ·RG(x) = RG(x) for every x ∈ X and g ∈ G.

We claim that π(g) ·PG(x) = PG(x) for every x ∈ X and g ∈ G. Actually,
something more general holds.

(3.2) ∀ζ ∈ X∗∗ ∀h ∈ G : π(h)ζ = ζ ⇒ π(h)Qζ = Qζ.

Indeed, pick ζ ∈ X∗∗ and h ∈ G with π(h)ζ = ζ. Then we have

ζ = Qζ + (I −Q)(ζ)

and also

ζ = π(h)Qζ + π(h)(I −Q)(ζ),

so since we have π(h)Qζ ∈ X and π(h)(I−Q)(ζ) ∈ kerQ by the assumption,
using the uniqueness of the decomposition we obtain that π(h)Qζ = Qζ,
which proves (3.2) and so the claim is proved.

By the above, we have PG[X] ⊂ IG. Moreover, by Lemma 3.2 we have
RG(x) = x for every x ∈ IG which together with PG[X] ⊂ IG implies that
PG is a projection onto IG.

By Lemma 3.2 we have PG[X] = RG[X] ∩X, so Q|RG[X] is a projection
onto PG[X].

For the proof of the “Moreover” part we use the “Moreover” part of
Lemma 3.2. �

Let us observe that the assumptions of the previous result are met for
example if X is a dual space or if it is an L-embedded space.

Lemma 3.4. Let Y be a Banach space and G be a group acting by affine
isometries on Y ∗ such that π(g)x ∈ Y for every x ∈ Y . Then Q :=
κY ∗ ◦ (κY )∗ : Y ∗∗∗ → Y ∗∗∗ is norm-one projection with Q[Y ∗∗∗] = κY ∗(Y

∗)
satisfying π(G) · kerQ ⊂ kerQ.

Moreover, if G is locally compact or SIN and it acts continuously on Y ∗,
M is bi-invariant mean on G and RG, PG are as in Theorem 3.3 applied to
the space X = Y ∗, then for every x ∈ X we have PG(x) = RG(x)|Y .

Proof. It is well-known (and easy to check) that Q is norm-one projection
onto κY ∗(Y

∗) with kerQ = {f ∈ Y ∗∗∗ : f ◦ κY ≡ 0}. Pick f ∈ kerQ, g ∈ G
and y ∈ Y . By the assumption there exists z ∈ Y with π(g−1)κY y = κY z,
so we have

π(g)f(κY y) = f(π(g−1)κY y) = f(κY z) = 0,

so π(g)f ∈ kerQ.
For the “Moreover” part we observe that for x ∈ X and y ∈ Y we have

PG(x)(y) = (QRG(x))(κY y) = ((κY )∗RG(x))(y) = RG(x)(κY y).

�
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The following applies in particular e.g. to L-embedded spaces, or more
generally to Lp-summands in the bidual for every p ∈ [1,∞).

Lemma 3.5. Let X be a Banach space Q : X∗∗ → X∗∗ a projection satis-
fying that Q[X∗∗] = κX [X] and

‖f‖ > ‖f −Qf‖, f /∈ kerQ.

If G is a group acting by affine isometries on X, then we have π(G) ·kerQ ⊂
kerQ.

Proof. Pick f ∈ kerQ and g ∈ G. In order to get a contradiction, assume
that π(g)f /∈ kerQ. Pick x ∈ X \ {0} and y′ ∈ kerQ such that π(g)f =
x + y′. Then we have ‖π(g)f‖ > ‖y′‖ and since G acts by isometries, we
obtain ‖f‖ > ‖y′‖. Moreover, since the action π(G) is linear, we obtain
f = π(g−1)x + π(g−1)y′ and since G acts on X we have π(g−1)x ∈ X and
π(g−1)y′ = −π(g−1)x+f , so π(g−1)y′ /∈ kerQ and π(g−1)y′−Qπ(g−1)y′ = f .
Thus, we obtain

‖f‖ > ‖y′‖ = ‖π(g−1)y′‖ > ‖π(g−1)y′ −Qπ(g−1)y′‖ = ‖f‖,

a contradiction. �

4. Projections associated to group actions in Lipschitz-free
spaces

In this main part of our paper we aim at identifying the images of the map-
pings RG and PG from Lemma 3.2, and Theorem 3.3 in the case the Banach
space we deal with is a Lipschitz-free space. The main abstract outcomes
of our considerations are concentrated in Subsection 4.3 and some special
cases having connection to the class of purely 1-unrectifiable metric spaces
are explained in Subsection 4.4. Theorem A follows from Theorem 4.5, its
consequence Corollary 4.6 and from Theorem 4.10.

In Subsection 4.1 we settle some basic notation and explain why it suffices
to consider the case of actions by isometries. Then we describe the quotient
space M/G and identify both the Lipschitz-free space over M/G and its
dual. Finally, we come to our main abstract results and some special cases
related to purely 1-unrectifiable metric spaces.

4.1. Preliminaries. Fix an amenable group G and suppose that G acts
continuously by bi-Lipschitz isomorphisms on a metric spaceM so that the
Lipschitz constants of the maps are uniformly bounded. First we use the
standard trick to reduce such a general case to the case when G acts by
isometries.

Lemma 4.1. Let G be an amenable group which acts continuously on a met-
ric space (M, d) by bi-Lipschitz isomorphisms whose norms are uniformly
bounded. Then there exists a new metric D on M, bi-Lipschitz equivalent
to d, such that the formally same action of G on (M, D) is by isometries.
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Quantitatively, if there are 0 < r < R <∞ with

(4.3) rd(gx, gy) ≤ d(x, y) ≤ Rd(gx, gy), x, y ∈M, g ∈ G,
then we have rD(x, y) ≤ d(x, y) ≤ RD(x, y) for every x, y ∈M.

Proof. By assumption, there are 0 < r < R <∞ such that (4.3) holds. Let
M be a right-invariant mean on G. For any x, y ∈M set

D(x, y) := M(g 7→ d(gx, gy)).

In order to see that this is a well-defined map, we need to see the mapping
ϕ(g) := d(gx, gy), g ∈ G is in the domain of M . It is indeed a bounded
function on G as the action of G is by uniformly bounded bi-Lipschitz maps.
Pick ε > 0. Using the continuity of the map h 7→ hx and h 7→ hy pick a
neighborhood U of e with d(hx, x) + d(hy, y) < rε for every h ∈ U . Then
for every h ∈ U we have

‖ϕ · h−1 − ϕ‖∞ = sup
g∈G
|d(ghx, ghy)− d(gx, gy)|

≤ sup
g∈G

d(ghx, gx) + d(ghy, gy)

≤ r−1 sup
g∈G

d(hx, x) + d(hy, y) < ε,

which shows that ϕ ∈ Cbru(G) and M(ϕ) is defined.
We check that D is a metric on M bi-Lipschitz to d and that the action

of G on M is by isometries with respect to D. Pick x, y, z ∈M.

• If x 6= y, then we have infg∈G d(gx, gy) ≥ rd(x, y), thus we obtain
D(x, y) ≥ rd(x, y) > 0.
• The symmetry D(x, y) = D(y, x) is obvious.
• For every g ∈ G, d(gx, gz) ≤ d(gx, gy)+d(gy, gz). Thus for functions
f1, f2, f3 ∈ Cblu(G) defined by g 7→ d(gx, gz), g 7→ d(gx, gy), and
g 7→ d(gy, gz), respectively, we have M(f2) +M(f3) = M(f2 +f3) ≥
M(f1) by the positivity of M , so D(x, z) ≤ D(x, y) +D(y, z).
• Using the positivity of M , we have

rD(x, y) ≤ d(x, y) ≤ RD(x, y)

and so the metric D is bi-Lipschitz equivalent to d.
• Finally, for every x, y ∈ M and g ∈ G we need to check that
D(x, y) = D(gx, gy) which however follows from the right-invariance
of the mean.

�

Thus, from now on, we will assume that G acts by isometries on a metric
space M. Then G induces actions by affine isometries on both F(M) and
Lip0(M). Unless G preserves 0 in M, these actions are not linear.

More precisely, for every g ∈ G the mapping T ′g : M → F(M) defined
by m 7→ δ(gm)− δ(g0) is an isometry preserving 0, so it extends to a linear
isometry Tg : F(M) → F(M). Since for every g, h ∈ G, Tg ◦ Th = Tgh,
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it follows that each Tg is a linear surjective isometry. Denote also by Ag :
F(M) → F(M) the affine map x → Tg(x) + δ(g0). It is now easy to
check that Ag is an affine isometry extending the isometry g : M → M.
To conclude, the original action of G on M provided us with an action by
affine isometries on F(M) by the maps (Ag)g∈G and with an action by linear
isometries by the maps (Tg)g∈G. We denote by AG : G×F(M)→ F(M) the
affine action given by A(g, µ) = Ag(µ), g ∈ G, µ ∈ F(M). Note that, using
the notation from Subsection 2.3, we have π(AG)(g, µ) = Tg(µ) for every
g ∈ G and µ ∈ F(M). In what follows we denote the action π(AG) by TG. It
is straightforward to check that the action AG is norm-continuous. Indeed,
since the action G onM is continuous and δ(M) is linearly dense in F(M)
we obtain that for every µ ∈ F(M) the mapping g 7→ gµ is continuous, so
for every g ∈ G, µ ∈ F(M) and ε > 0 there exists an open neighborhood
U of g such that ‖Ahx − Agx‖ < ε

2 for every h ∈ U which, using that the
action is by isometries, implies that for every (h, y) ∈ U ×B(x, ε2) we have

‖Ahy −Agx‖ ≤ ‖Ahy −Ahx‖+ ε
2 < ε,

so the action AG is continuous.
Notice that we may consider the dual linear action of G on Lip0(M) by

considering Sg(f)(m) := f(g−1m)− f(g−10), for f ∈ Lip0(M) and m ∈M.
The action (Sg)g∈G on Lip0(M) is separately w∗-continuous.

4.2. The space M/G. In this subsection we work with a general Haus-
dorff topological group G. Suppose that G acts by isometries on a metric
space M. On the space of orbits consider the pseudometric D(Gx,Gy) :=
infx′∈Gx,y′∈Gy d(x′, y′). We consider the metric quotient, that is, points of

M/G are sets [Gx] := {z ∈ M : D(Gx,Gz) = 0} = Gx and the distance is
given as

dM/G([Gx], [Gy]) := inf
x′∈[Gx],y′∈[Gy]

d(x′, y′).

It is straightforward to verify that this coincides with the Hausdorff distance
between the closed sets [Gx] and [Gy].

As the distinguished point in M/G, we choose [G0], the closure of the
orbit of 0.

Given a Banach space X, by LipG0 (M, X) ⊂ Lip0(M, X) we denote the
subset of functions which are G-invariant, that is, f(x) = f(gx) for every g ∈
G and x ∈M. If X = R, we write simply LipG0 (M) instead of LipG0 (M,R).

Lemma 4.2. Let G be a group acting on (M, d) by isometries and let X
be a Banach space. Then the mapping Ψ : Lip0(M/G,X) → LipG0 (M, X)
defined as

Ψ(f)(x) := f([Gx]), f ∈ Lip0(M/G,X), x ∈M

is a linear surjective isometry.
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Proof. For every f ∈ Lip0(M/G,X) and two distinct points x, y ∈ M we
have

‖f([Gx])− f([Gy])‖ ≤ Lip(f)dM/G([Gx], [Gy]) ≤ Lip(f)d(x, y),

so it is easy to see that the mapping Ψ is a norm-one linear operator.
Pick f ∈ LipG0 (M, X). Consider the mapping Sf : M/G → X given as

Sf([Gx]) := f(x). Then given two distinct points [Gx], [Gy] ∈M, for every
ε > 0 we pick g, h ∈ G such that dM/G([Gx], [Gy]) > (1 + ε)−1d(gx, hy) and
we obtain

‖Sf([Gx]])− Sf([Gy]])‖ = ‖f(x)− f(y)‖ ≤ Lip(f)dM(gx, hy)

≤ (1 + ε)dM/G([Gx], [Gy])Lip(f),

so Sf is well defined and S : LipG0 (M, X) → Lip0(M/G,X) given by
S(f) := Sf is a norm-one linear operator.

Finally, it is easy to check that Ψ◦S = Id and S ◦Ψ = Id, so Ψ is a linear
isometry with Ψ−1 = S. �

We conclude this subsection by isometric characterization of the space
F(M/G).

Lemma 4.3. Let M be a pointed metric space and let G be a group acting
on M by isometries. Put YG := span{δ(gx) − δ(x) : g ∈ G, x ∈ M}. Then
there is surjective linear isometry Λ : F(M)/YG → F(M/G) satisfying

Λ
(

[δ(x)]
)

:= δ([Gx]), x ∈M.

Moreover, YG = LipG0 (M)⊥ and if Ψ is the mapping from Lemma 4.2 (where
X = R) then Λ∗ = Ψ.

Proof. Let Ψ be the mapping from Lemma 4.2 forX = R. Using the Banach-
Diedonné Theorem, see e.g. [8, Corollary 3.94], and the fact that on bounded
subsets of Lip0(M) the w∗-convergence coincides with the pointwies conver-
gence, it is easy to see that Ψ is w∗-w∗ homeomorphism as a mapping from
Lip0(M/G) into Lip0(M) and since by the definition we have

LipG0 (M) = {δ(gx)− δ(x) : g ∈ G, x ∈M}⊥,

its image is w∗-closed and moreover by the bipolar theorem we obtain
LipG0 (M)⊥ = YG.

It is well-known that whenever M ⊂ X∗ is w∗-closed subspace, then the
mapping I : M → (X/M⊥)∗ defined by I(f)([x]) := f(x), f ∈ M , x ∈ X is
w∗-w∗ homeomorphism and surjective linear isometry.

Thus, the mapping

Θ : Lip0(M/G)→
(
F(M)/YG

)∗
defined by

Θ(f)
(
[δ(x)]

)
= f

(
δ
(
[Gx]

))
, x ∈M
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is surjective linear isometry and w∗-w∗ homeomorphism. Thus, the mapping
Θ∗|F(M)/YG is isometry between F(M)/YG and F(M/G). Finally, it is easy
to observe that we have Λ = Θ∗|F(M)/YG and Ψ = Λ∗. �

4.3. Projections induced by group actions with bounded orbits.
We start with a preliminary observation.

Lemma 4.4. Let M be a metric space, G be an amenable group acting
by affine isometries on M which is either locally compact or SIN. If M is
right-invariant mean on G and RG, IG are as in Lemma 3.2 (applied to the
action AG), then

∀x ∈M ∀f ∈ LipG0 (M) : RG(δ(x))(f) = f(x).

Proof. Pick x ∈M and f ∈ LipG0 (M). For every g ∈ G we have

f
(
Tgδ(x)

)
= f(gx)− f(g0) = f(x),

which implies that

RG(δ(x))(f) = M
(
g 7→ f

(
Tgδ(x)

))
= M

(
g 7→ f(x)

)
= f(x).

�

The following identifies ranges of mappingsRG and P̃G defined in Lemma 3.2
in the case when the group G has bounded orbits and X = F(M).

Theorem 4.5. Let G be an amenable group acting continuously on a metric
space M by isometries with bounded orbits. Set X = F(M). Assume that
G is locally compact or SIN.

If RG, P̃G are the mappings from Lemma 3.2 (applied to the action AG),
then RG[X] ⊂ X∗∗ is a closed subspace linearly isometric to F(M/G),

P̃G[X∗] = LipG0 (M) and kerRG = span{δ(gx)− δ(x) : x ∈M, g ∈ G}.
In particular the following holds.

(1) Lip0(M/G) is isometric to a 1-complemented subspace of Lip0(M).
(2) If LipG0 (M) ∩ (IG)⊥ = {0}, then IG is 1-complemented in F(M).

Proof. We define a map T ′ : (M/G, dM/G)→ RG[X] as follows. For [Gx] ∈
M/G we set

T ′([Gx]) := RG(δ(x)).

We check that T ′ is a well-defined 1-Lipschitz map. Notice that by the
“Moreover” part of Lemma 3.2 we haveRG(δ(x)) = RG(Agδ(x)) = RG(δ(gx))
for all g ∈ G and x ∈M, so RG(δ(x′)) = RG(δ(x)) for every x′ ∈ Gx. Now,
consider two points [Gx], [Gy] ∈ M/G, some ε > 0, and pick x′ ∈ [Gx],
y′ ∈ [Gy] such that d(x′, y′) < dM/G([Gx], [Gy]) + ε. Also, choose x′′ ∈ Gx,
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resp. y′′ ∈ Gy satisfying d(x′′, x′) < ε, resp. d(y′′, y′) < ε. Thus we have

‖T ′([Gx])−T ′([Gy])‖ = ‖RG(δ(x′′))−RG(δ(y′′))‖
= ‖RG(δ(x′′))−RG(δ(x′)) +RG(δ(x′))−RG(δ(y′))+

RG(δ(y′))−RG(δ(y′′))‖
≤ d(x′′, x′) + d(x′, y′) + d(y′, y′′) ≤ dM/G([Gx], [Gy]) + 3ε.

Since ε > 0 was arbitrary, we get that T ′ is well-defined and 1-Lipschitz.
It follows that there is a linear extension T : F(M/G) → X∗∗ which is a

norm-one linear surjection onto RG[X].
Now, we claim that RG has closed range. Let us denote by A′ : M →

M/G the surjection given by A′(x) = [Gx], x ∈M. Since A′ is 1-Lipschitz,
it extends to a linear surjection A : F(M) → F(M/G) and then we obvi-

ously have RG = T ◦A, so RG[X] = T [F(M/G)] = RG[X] which proves the
claim.

In order to prove that T is actually an isometry, pick some z =
∑n

i=1 αiδ([Gxi]) ∈
F(M/G) and some 1-Lipschitz f ∈ Lip0(M/G) such that ‖z‖ = |

∑n
i=1 αif([Gxi])|.

By Lemma 4.2, the mapping Ψ(f) ∈ LipG0 (M) ⊆ Lip0(M) = X∗ is 1-
Lipschitz and therefore, using Lemma 4.4 we obtain

‖T (z)‖ ≥
∣∣∣ n∑
i=1

αi
(
RG(δ(xi))

)
(Ψ(f))

∣∣∣
=
∣∣∣ n∑
i=1

αiΨ(f)(xi)
∣∣∣ =

∣∣∣ n∑
i=1

αif([Gxi])
∣∣∣ = ‖z‖,

so the restriction of T to a dense subset of F(M/G) is an isometry which
implies that T is isometry.

Finally, by Lemma 3.2 we have that P̃G is a norm-one projection onto the
space

ĨG = {f ∈ Lip0(M) : f(g−1m)− f(g−10) = f(m) for every m ∈M}.

Obviously, we have LipG0 (M) ⊂ IG. Conversely, by the “Moreover” part

of Lemma 3.2 we have P̃G(f)(m) = P̃G(f)(gm) for every f ∈ Lip0(M),

m ∈ M and g ∈ G, so we obtain ĨG ⊂ LipG0 (M). Thus, P̃G is a projection
onto LipG0 (M). Using Lemma 3.2 (5), we obtain

kerRG = LipG0 (M)⊥ = ({δ(gx)− δ(x) : x ∈M, g ∈ G}⊥)⊥

= span{δ(gx)− δ(x) : x ∈M, g ∈ G}.
Finally, for the “In particular” part we use Lemma 4.2, Lemma 4.3 and

the fact that (2) implies that

(kerRG)⊥ ∩ (IG)⊥ = {δ(gx)− δ(x) : x ∈M, g ∈ G}⊥ ∩ (IG)⊥

= LipG0 (M) ∩ (IG)⊥ = {0},

so kerRG + IG = F(M) and we may use Lemma 3.2 (3). �
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As an immediate corollary we obtain an optimal result for compact groups.

Corollary 4.6. Let G be a compact group acting continuously by isometries
on a metric space M. Then RG[F(M)] = IG and it is linearly isometric to
F(M/G).

In particular, F(M/G) is isometric to a 1-complemented subspace of
F(M).

Proof. This follows from Theorem 4.5 and from (b) in Lemma 3.2 by which
IG = RG[X] and RG is a projection. �

Let us now consider the situation when the group G is not compact but
at least we know F(M) is complemented in its bidual via a projection Q.
In this case, by Theorem 3.3 there is a natural condition on the projection
Q (implied by another conditions, see Lemma 3.4 and Lemma 3.5) which
implies that IG is complemented in RG[X] which in turn, by Theorem 4.5,
is isometric to F(M/G). Hence, there are quite many situations when an
application of our results gives that IG is isomorphic to a complemented sub-
space of F(M/G) for which by Lemma 4.3 we have F(M/G) ≡ F(M)/YG.

In what follows we find a sufficient condition under which there is actually
an isomorphism between IG and F(M/G).

Theorem 4.7. Let G be an amenable group acting continuously on a metric
spaceM by isometries with bounded orbits. Assume that G is locally compact
or SIN. Set X = F(M) and assume that X is complemented in its bidual via
a projection Q satisfying TG(G) · kerQ ⊂ kerQ, that is, for every g ∈ G we
have Tg(kerQ) ⊂ kerQ. Let PG : X → X be the projection onto IG from the
statement of Theorem 3.3 (applied to the action AG) and Ψ : Lip0(M/G)→
LipG0 (M) the mapping from Lemma 4.2.

If Y ⊂ Lip0(M/G) separates the points of F(M/G) and kerPG ⊂ Ψ(Y )⊥,
then kerPG = LipG0 (M)⊥ and PG[X] is ‖Q‖-isomorphic to F(M/G).

In particular, we have

F(M/G) ' PG[X]
C
↪→ F(M).

Proof. We define a map T ′ : (M/G, dM/G)→ F(M) as follows. For [Gx] ∈
M/G we set

T ′([Gx]) := PG(δ(x)).

Similarly as in the proof of Theorem 4.5, using that by the “Moreover” part
of Theorem 3.3 we have PG(δ(x)) = PG(Agδ(x)) = PG(δ(gx)) for all g ∈ G
and x ∈M, we check that T ′ is a well-defined 1-Lipschitz map.

Thus, there is a linear extension T : F(M/G)→ F(M) which is a norm-
one linear surjection onto PG[X] = IG and we have T (δ([Gx])) = PG(δ(x))
for every x ∈M.

Similarly, there is a linear mapping S : F(M)→ F(M/G) with ‖S‖ ≤ 1
and S(δ(x)) = δ([Gx]) for every x ∈M. Note that S∗ = Ψ.



PROJECTIONS IN LIPSCHITZ-FREE SPACES 17

Let us observe that we have S ◦ T = Id. Pick x ∈ M and f ∈ Y . Then
we have

f
(

(S ◦ T − Id)
(
δ([Gx])

))
= f

(
S(PG(δ(x)))

)
− S∗f(δ(x))

= S∗f
(
PG(δ(x))− δ(x)

)
= 0,

where in the last equality we used that PG(δ(x))− δ(x) ∈ kerPG ⊂ Ψ(Y )⊥
and S∗f ∈ Ψ(Y ). Therefore, since Y separates the points of F(M/G) and
δ(M/G) ⊂ F(M/G) is linearly dense, we have that S ◦ T − Id = 0, so
S ◦ T = Id as required.

Thus, TS = PG is the projection onto a space ‖Q‖-isomorphic to F(M/G).
By Theorem 3.3 and Theorem 4.5 we have LipG0 (M)⊥ = kerRG ⊂ kerPG

and since Ψ(Y ) is w∗-dense in LipG0 (M), we have Ψ(Y )⊥ = LipG0 (M)⊥
and kerPG ⊂ LipG0 (M)⊥ follows from the assumption. Hence, we obtain
kerPG = LipG0 (M)⊥. �

4.4. Projections in Lipchitz-free spaces which are dual spaces. Let
us start with an abstract result following easily from our previous consider-
ations.

Corollary 4.8. Let G be an amenable group acting continuously on a metric
space M by isometries with bounded orbits. Let X = F(M) be a dual space
with X ≡ Y ∗ for some Y ⊂ Lip0(M) and assume that we have S(G)·Y ⊂ Y ,
that is, for every g ∈ G and f ∈ Y we have Sgf ∈ Y . Assume that G is
locally compact or SIN. Let PG : X → X be the projection from Theorem 3.3
(applied to the action AG) and Ψ : Lip0(M/G) → LipG0 (M) the mapping
from Lemma 4.2. Put Z := Ψ−1(Y ∩ LipG0 (M)) ⊂ F(M/G)∗.

If Z separates the points of F(M/G), then F(M/G) is isometric to a
1-complemented subspace of F(M).

Proof. We start with the following claim.

(4.4) ∀x ∈M ∀Φ ∈ LipG0 (M) ∩ Y : PG(δ(x))(Φ) = Φ(x).

Indeed, this follows directly from Lemma 4.4 and the fact that by Lemma 3.4
we have PG(m) = RG(m)|Y for every m ∈ F(M).

Thus, we obtain kerPG ⊂ Ψ(Z)⊥. Thus, using Lemma 3.4 we observe that
assumptions of Theorem 4.7 are satisfied (applied to the set Z separating
the points of F(M/G)). Thus, an application of Theorem 4.7 finishes the
proof. �

The case when F(M) is a dual space has recently been thoroughly inves-
tigated in [2]. Let us recall few notions.

Let M be a metric space. A Lipschitz function f : M → R is said
to be locally flat if for every ε > 0 there exists δ > 0 such that |f(x) −
f(y)| ≤ εd(x, y) whenever d(x, y) < δ. By lip0(M) we denote the space of
all functions in Lip0(M) that are locally flat and moreover flat at infinity,
i.e. such that ‖f |M\B(0,r)‖Lip → 0 as r → ∞. We say M is proper if every
closed ball is compact. Finally, we say M is purely 1-unrectifiable if, for
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every A ⊂ R and Lipschitz map f : A→M, the 1-dimenensional Hausdorff
measure of f(A) equals 0. By [15, Theorem 9], M is purely 1-unrectifiable
if and only if it does not contain a bi-Lipschitz image of a set K ⊂ R of
positive Lebesgue measure.

Now, we are ready to recall the following crucial result which was proved
recently in [2] (see Theorem 3.1 and the comment in the first paragraph of
Subsection 3.1 therein).

Theorem 4.9. Let M be a proper space. Then the following conditions are
equivalent:

• M is purely 1-unrectifiable;
• F(M) is a dual space;
• L1 6↪→ F(M);
• F(M) = lip0(M)∗ isometrically.

Moreover, if the conditions above hold, then F(M) is L-embedded.

Combined with our results we obtain the following.

Theorem 4.10. Let G be an amenable group acting continuously on a
proper purely 1-unrectifiable metric space M by isometries with bounded or-
bits. Assume that G is locally compact or SIN. Then the following conditions
are equivalent.

(1) M/G is purely 1-unrectifiable.
(2) F(M/G) is isometric to a 1-complemented subspace of F(M).
(3) F(M/G) ↪→ F(M).

Proof. Note that since the action of G has bounded orbits, every closed ball
in M/G is contained in a Lipschitz image of a closed ball in M, so since
M is proper, M/G is proper as well. Further, by Theorem 4.9, lip0(M)
separates the points of F(M).

If M/G is purely 1-unrectifiable, applying Theorem 4.9 we observe that
the space lip0(M/G) separates the points of F(M/G) and that F(M/G)
is L-embedded. Moreover, it is easy to observe that if Ψ : Lip0(M/G) →
LipG0 (M) is the mapping from Lemma 4.2, then

Ψ−1(lip0(M) ∩ LipG0 (M)) = lip0(M/G).

Thus, by Corollary 4.8 and Lemma 3.5 we obtain that (2) holds.
Trivially, (2) implies (3). Finally, using Theorem 4.9 and the fact that

both M and M/G are proper, it is easy to see that (3) implies (1). �

We do not know whether the equivalent conditions in Theorem 4.10 are
actually always satisfied, see Question 5.6. On the other hand, note that
Lipschitz image of a compact purely 1-unrectifiable metric space need not be
purely 1-unrectifiable as witnessed e.g. by the mapping Id : ([0, 1], | · |1/2)→
([0, 1], | · |). Thus, the following seems to be an interesting consequence.
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Corollary 4.11. Let G be a compact group acting continuously on a proper
purely 1-unrectifiable metric space M by isometries. Then M/G is purely
1-unrectifiable

Proof. Follows directly from Theorem 4.10 and Corollary 4.6. �

5. Problems and applications

One of the main advantages of the methods presented in this paper is
that it allows to conclude that free spaces over the spaces M/G, in many
cases, enjoy all the properties that the spaces F(M) do provided these are
inherited to complemented subspaces.

In [7], the authors used this observation in order to prove that F(G)
has MAP whenever G is a compact group. More precisely, the projection
considered in this paper enabled the authors to reduce the situation to the
case when G is a Lie group. Let us comment on this kind of reduction,
which could have some further applications.

Fix such a Banach space property P that is inherited to complemented
subspaces (resp. 1-complemented subspaces) e.g. the bounded approxima-
tion property (resp. the metric approximation property).

To illustrate this idea more properly on examples, consider homogeneous
metric spaces. We recall that a metric spaceM is homogeneous if each point
of M is ‘indistinguishable’ from each other, i.e. there is no metric property
that can tell two points from each other. Formally, this can be defined by
saying that the isometry group of M acts transitively on M, that is, for
each pair x, y ∈M there is an isometry φ of M satisfying φ(x) = y.

Suppose now that M is moreover proper, i.e. all the balls are compact.
Then for its isometry group with the pointwise convergence topology, de-
noted by G, it is well known and not difficult to verify that

• G is locally compact;
• G acts on M transitively;
• the stabilizer of any point x ∈ M is a compact subgroup K and
G/K is homeomorphic with M.

We briefly sketch the proof for the convenience of the reader. By defi-
nition of homogeneity, G acts transitively. Fix a countable dense subset
(xn)n∈N ⊆ M, fix g ∈ G and let us show that it has a compact neighbor-
hood. Set U = {h ∈ G : d(hx1, gx1) ≤ 1}, we claim it is compact. It suffices
to check that every sequence (gn)n∈N ⊆ U has a convergent subsequence.
Notice that for every m ∈ N the set

⋃
i∈N{gix1, . . . , gixm} is bounded (each

gixm is contained in the ball B(gx1, 1 + d(xm, x1))), therefore precompact.
Thus, using a diagonal argument, we can find a subsequence (gin)n such
that for every m ∈ N, (ginxm)n is convergent. It follows that the sequence
(gin)n is convergent. This finishes the proof of the claim. This also implies
that the stabilizer of any point is compact (a closed subset of a compact
neighborhood). For the last assertion see [10, Theorem 3.2.4].
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If in addition there exists a left-invariant metric on G such that the metric
on M = G/K is the quotient metric, then it follows from Corollary 4.6
(applied to the action of K on the metric space G) that F(M) has P if
F(G) does.

Example 5.1. Let M be a symmetric Riemannian manifold equipped with
a Riemannian distance. Let G be the identity component of its isometry
group equipped with a left-invariant Riemannian distance (since it is a Lie
group). Then F(M) has P if F(G) does. Indeed, see [17, §1.2 # 7] for
the fact that M is isometric to G/K, where G is as above and K ⊂ G a
compact subgroup.

This suggests it is important to understand the structure of free spaces
over (connected) Lie groups, with their canonical left-invariant Riemann-
ian distance, but also with other compatible left-invariant metrics. Indeed,
by the celebrated Gleason-Yamabe’s solution to Hilbert’s fifth problem, for
every connected locally compact group G and an arbitrarily small neighbor-
hood U of the identity in G there exists a compact subgroup K ⊆ U such
that G/K is a connected Lie group, see [20, Theorem 1.1.17], which can be
equipped with the quotient metric of the left-invariant metric on G. There-
fore, if M is a homogeneous connected proper metric space whose metric
can be lifted to the left-invariant metric of its isometry group, then a lot of
information about F(M) can be derived just from the information about
the spaces F(G), where G is a (connected) Lie group.

Suggestion 5.2. Study Banach space properties that are inherited to (one-
)complemented subspaces on free spaces over connected Lie groups with
left-invariant metrics.

Quite many natural questions arise when wondering under which condi-

tions we have F(M/G)
C
↪→ F(M). Let us conclude this paper by mentioning

few of those.
From the point of view of Banach space theory, the following seems to be

an interesting problem.

Question 5.3. Let X be a Banach space and Y ⊂ X its closed subspace. Is

it true that Lip0(X/Y )
C
↪→ Lip0(X)?

Note that, since any separable Banach space is isomorphic to a quotient
of `1 a positive answer would imply that for any separable Banach space X

we have Lip0(X)
C
↪→ Lip0(`1) and in particular, by the Pe lcyzński decompo-

sition method and [14, Theorem 3.1], we would obtain Lip0(X) ' Lip0(`1)

whenever `1
C
↪→ X. This seems to be quite a strong consequence. In partic-

ular, since it is known that `1
C
↪→ U ' F(U) for the Pe lczyński’s universal

basis space U , see [12, Remark on p.139], we would have U∗ ' Lip0(`1).
Moreover, since by [13, Theorem 3] U∗ does not have AP, Lip0(`1) would
not have AP.
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Another interesting question from the point of view of Banach space the-
ory is the following. Recall that a net in a Banach space is a subset which
is a-dense and b-separated for some a, b > 0 and note that for any Banach
space X we may find a net NX ⊂ X which is also additive subgroup, see
[6, Theorem 5.5], so the question seems to be naturally connected to the
research handled in this paper.

Question 5.4. LetX be an infinite-dimensional Banach space. Does there ex-

ist a net NX ⊂ X which is also additive subgroup such that Lip0(X/NX)
C
↪→

Lip0(X)?

Note that it is even open whether for infinite-dimensional spaces we

have Lip0(NX)
C
↪→ Lip0(X), see [4, Question 3 and a comment below], so

the above more-or-less heads towards a natural question whether we have
Lip0(X) ' Lip0(NX)⊕ Lip0(X/NX) isomorphically.

Let us also note that if an additive subgroup NX ⊂ X is K-dense in X
and we equip X with the metric d(x, y) := min{‖x−y‖, 2K}, then X/NX is

isometric to (X, d)/NX , so using Theorem 4.5 we obtain Lip0((X, d)/NX)
C
↪→

Lip0(X, d). Thus, a possible way of providing a positive answer to Ques-

tion 5.4 would be to show that Lip0(X, d)
C
↪→ Lip0(X, ‖ · ‖).

In our proofs we were using the assumption that G has bounded orbits.
In this case one could ask e.g. the following which aims at pushing forward
what was initiated in Theorem 4.5.

Question 5.5. Let G be a metric group which is amenable and locally
compact or SIN. Let H ⊂ G be its bounded subgroup. Is it true that

F(G/H)
C
↪→ F(G)?

Note that using Theorem 4.5 it would be sufficient to prove that IG sep-
arates the points of LipG0 (M) and moreover IG ' RG[X] isomorphically
(where LipG0 (M), IG and RG are as in Theorem 4.5).

Finally, let us note that, as mentioned above, we do not know an answer
to the following.

Question 5.6. Let G be an amenable group acting on a proper purely 1-
unrectifiable metric space M by isometries with bounded orbits. Assume
that G is locally compact or SIN. Is then M/G purely 1-unrectifiable?

By Corollary 4.11, the answer is positive for compact groups.
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