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Abstract. Several definitions of static entropies and coarse-grained entropy rates
CER’s were used to analyze 24-hour RR interval sequences of three sex, age and dis-
ease matched control pairs. The matching was done with the assessment of the risk
of cardiac arrest in mind. Details of estimating probability densities (histograms),
used to compute the static entropies, have been found crucial to obtain the proper
discrimination between the members of control pairs. The effect of signal variance
on the entropy estimation is discussed. In a preliminary result, CER’s have been
found to yield additional information which may be helpful in discriminating health
and pathology.

1 Introduction

This study was inspired by the basic question, which is often asked by all
time-series analysts dealing with physiological data, namely, which property
of the data discriminates health from pathology and how this property can
be described and measured, so that a reliable diagnostic tool is obtained.
The data investigated were RR interval series, forming 3 sex, age and dis-
ease matched control pairs. These data pairs were chosen to test whether any
given technique of nonlinear dynamical analysis is able to correctly distin-
guish between a person at risk of a cardiac arrest (CA) and his/her control.
Below the term “health, healthy” will mean control, while the term “pathol-
ogy” will signify a person with a high risk of the cardiac arrest. Note, that a
sex, age and disease matched control medically resembles the target person
in as many respects as possible, except for the single feature investigated —
in this case the risk of the cardiac arrest.

It has been questioned, whether the health-pathology differences are en-
coded in the dynamics of the RR interval series, characterized by their entropy
rates, or in the geometry of “phase portraits”, obtained by time-lagging the
series and characterized by 2- and 3-dimensional Shannon entropies, or even
in the static marginal distributions (histograms) of the series, characterized
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by 1-dimensional Shannon entropies, and eventually in the higher-order prop-
erties of the latter. The higher-order properties of the probability distribu-
tions are characterized by Rényi entropies and apparently also by complexity
measures called pattern entropies as introduced by Zebrowski et al. (1994).
Considering the amount of processed recordings and the short time of the
investigation, it is not surprising, that we are not able to give the final an-
swer to the question asked here. However, we present a report on the work
in progress, which was initiated at the NTPTSA workshop and which con-
tains some interesting findings related to practical estimations of entropies
and entropy-related quantities from experimental data. It was found that
the results were much more influenced by a particular method of estimat-
ing the entropies (more precisely — by a particular method of computing the
histograms as estimates of probability distributions used to calculate the en-
tropies themselves) than by the choice of a particular entropy measure. All the
static entropies considered below brought consistent results when the same
histogram estimation method was used. The number of data series processed
was unfortunately not sufficient to decide which of the estimation methods is
the best one for the medical problem from which the data studied here were
taken.

Dynamic entropies — the entropy rates, estimated by yet another ap-
proach, showed to be consistent in some features related to the discrimina-
tion between health and pathology. Their actual diagnostic efficacy, however,
should be established by a more extended study.

2 Data

Holter ECG 24-hour tapes of both healthy individuals and of cases of heart
disease with the highest risk of sudden death were analyzed by commercial
software (Del Mar Avionics 563 Strata Scan) at the National Institute of
Cardiology in Warszawa, Poland. The data were sampled at 128 Hz and the
time distance between consecutive R peaks (the RR intervals) were extracted.
No special filtering was used, but RR intervals larger than 2500 ms were
treated as artifacts and ignored. Each of the studied 24-hour sequences of
RR intervals was 80000 to 125000 data points long and began at about 8
o’clock in the morning. The data were used to create medically matched
control pairs.

At the time of the conference there were 3 sex, age and disease matched
control pairs available: all target members of the pairs had had at least a sin-
gle event of cardiac arrest (CA) in their history. No arrhythmia filters were
used. It should be stressed here that the method used to find the appropriate
control pair to a given target patient was based on time honoured medical
procedures alone. This means that the choice was based only on general med-
ical (clinical) knowledge. Neither nonlinear methods were used to form the
sex, age and disease matched pairs, nor time domain and frequency domain
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Fig. 1. Plot of 24-hour RR-interval series dpla (a) — the 27 year old male CA
patient and b) his control dplb.

measures of ECG were applied, and the RR intervals as functions of the time
were not inspected. The members of pair 1 and pair 3 who had undergone
CA were labeled “a”, their controls were labeled “b”, while the labels of pair
2 were reversed. This was done in order to make the comparison of nonlinear
techniques resembling a blind test.

In pair 1, the RR interval series labelled dpla (Fig. 1a) was taken from a
27 year old male who had had CA twice and now wears an implanted defib-
rillator (which, however, did not activate itself during the Holter recording
analysed). All known methods of the ECG analysis in the time and frequency
domains, as well as the biopsy of the heart muscle and biochemical analy-
sis, all pronounced him to be in exemplary health. However, pattern entropy
(Zebrowski et al., 1994) was found to be at an elevated level which distin-
guished him well from his control pair dplb (Fig. 1b).

In pair 2, the RR interval series labelled dp2b (Fig. 2b) was taken from a
55 year old male who had undergone a myocardial infarction some time ago,
complicated by a postinfarction anneurism. He died several months after
having been included in the 15 control pairs analysed by pattern entropy and
was pronounced at a high risk of CA on the basis of the behavior of this
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Fig. 2. Plot of 24-hour RR-interval series dp2a (a) — the control for dp2b; b) dp2b
— 55-year old male CA patient.

complexity measure. The control for this CA patient is depicted in Fig. 2a.

Pair 3 is composed of two recordings of the same person - a 67 year old
male also some time after a myocardial infarction. The recording of dp3a (Fig.
3a) contains data taken prior and during a CA (when a ventricular fibrilla-
tion occurred), subsequent reanimation and ends 1 hour after the CA event.
The series dp3b (Fig. 3b) was recorded 9 months afterwards and shows the
results of medication. Thus, this person became his own sex, age and disease
matched control pair.

3 Entropies and Entropy Rates

In this section basic definitions of entropies and entropy rates are briefly
reviewed. More details can be found in Refs. (Cover and Thomas, 1991),
(Fraser, 1989), (Sinai, 1976), (Petersen, 1983), (Palug, 1993) and references
therein.

Let X be a discrete random variable with a set of values = and probability
mass function p(z) = Pr{X = z}, £ € Z. We denote the probability mass
function by p(z), rather than px(x), for convenience.
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Fig. 3. Plot of 24-hour RR-interval series dp3a (a) — the 67 year old male CA
patient and b) his control dp3b — the same person after 9 months of medication.

The Shannon entropy H(X) of a discrete random variable X is defined
by

H(X)=-_ p(x)logp(x). (1)

reE

For n variables Xj,..., X,, with the joint distribution p(z1,...,z,) the
joint (n-dimensional) Shannon entropy is defined as

H(Xla"'JXn):_ Z Z p(mla"'amn)logp(a:l;'"5mn)' (2)

r1€EEL Tn€EER

The marginal redundancy o(X1,. .., Xn—1; X,) is an information-theoretic
measure which quantifies average amount of information about the variable
X,, contained in the variables Xq,..., X,_1, and is defined as

Q(Xla---;Xn—l;Xn) = H(Xl,...,Xn_l) +H(Xn) —H(Xl,,Xn) (3)

In the case of two variables X, X», the redundancy g(X;; X2) is also known
as mutual information I(X1; X5).
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Now, let {X;} be a stochastic process, i.e., an indexed sequence of random
variables, characterized by the joint probability mass function p(z1, ..., z,) =
Pr{(Xy,..., Xn) = (z1,--,zn)}, (#1,-..,2,) € E1 X ... X Z,. The entropy
rate of {X;} is defined as

. 1
and can be expressed using the marginal redundancy o(Xy, ..., Xp—1; X,) as
h=lim [H(X,) —o(X1,..., Xn-1;Xn)]. (5)
n—oo

In practical applications a time series {y(t)} is considered as a realization
of a stationary and ergodic stochastic process {Y(¢)}. Due to ergodicity the
entropies and redundancies can be estimated using time averages instead of
ensemble averages, and, the variables X; are substituted as

Xi=ylt+@G—1)7). (6)
Due to stationarity, entropies
H™(m) = H(y(t),y(t +7),...,yt + (n — 1)7)) (7)

and marginal redundancies

o"(1) = o(y(),y(t +7),...,y(t + (n = 2)7);9(t + (n — 1)7)) (8)

are functions of n and 7, independent of ¢.
Then, the entropy rate of {y(¢)} can be written as

he = 0"(0) = lim o™(r). 9)

For the entropy rate h; per a time unit the following equation holds (Sinai,
1976)
h-,— = |T|h1. (10)

The possibility to compute the entropy rates from data is limited to a few
exceptional cases: for stochastic processes it is possible, e.g., for finite-state
Markov chains (Cover and Thomas, 1991). If a time series was generated by
a dynamical system, its entropy rate, known as Kolmogorov-Sinai entropy
(KSE), can, in principle, be estimated from the asymptotic dependence of
the marginal redundancy on time delay (Fraser, 1989):

lim o"(7) = H' — |7]h. (11)
n—o0
It was shown (Fraser, 1989), (Palus, 1993), (Palus, 1996b) that the asymptotic
behavior ¢"(7) =~ H' — |7|h could be observed in g"(7) estimated from time
series, however, the data requirements (series length, precision, negligible
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noise) are not realistic for usual experimental situations such as those in the
analysis of physiological time series.

Instead of unsuccessful attempts to estimate the exact entropy rates
from real data, Palus (1996b) has proposed “coarse-grained entropy rates”
(CER’s), computed from the (coarse-grained) marginal redundancy or mu-
tual information. The simplest CER A(®) is defined as

h(ﬂ) — Qn(TO) B Qn(Tl) , (12)
T1—To
where 79 and 77 are parameters of the method to be chosen by a user.

For an alternative CER h("), which has better numerical properties than
h(®), one should compute the marginal redundancies o"(7) for all analyzed
datasets and find such 7Tpa, that for 7/ > Tee: 0™(7') = 0 for all the
datasets. Then a norm of the marginal redundancy is defined

P <)

e[| =
Tmaz — T0

(13)
Here the lag 7,42 is derived from the data, the lag 7 is usually set to zero.

Having defined the norm ||g"||, the difference p™(7) — ||0"|| can be con-
sidered as the alternative definition of the CER. It was found, however, that
the definition of the CER, which does not depend on the absolute values of
0" (1), has better numerical properties, namely the estimates are more stable
and less influenced by noise. Thus, the CER h(") is defined as

")~ lle"] )
7=l (14)

Some aspects of the estimation of the CER’s will be discussed in the next
section, for more details and description of properties of the CER’s see Ref.
(Palus, 1996b).

The Shannon entropy H(X) = H! evaluates properties of the probability
function p(z). Higher-order properties of p(x) can be characterized by Rényi
entropies. The Rényi entropy H,(X) of order g for a discrete random variable

X is defined as 1

H,(X) = 1 log 3" pla)". (15)
4 TEE
Zebrowski et al. (1994) have defined “pattern entropy” as
Zy(t) = =Y Py(r)log Py(7), (16)
TEE
where
Py(7) = p(z1)p(22) - - - p2g). (17)

The variables X; are given as in Eq. (6). The quantity Z,(7) is not an entropy
in the strict mathematical sense. We will, however, use the term pattern
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entropy, as it has been introduced by Zebrowski et al. (1994). The product
P,(7) can be considered as a joint probability distribution p(zy,...,z,) only
if the variables Xj,..., X, are independent. Then Z,(7) = H(Xq,...,X,) =
H(X1)+ ...+ H(X,) and for a stationary series Z, = ¢H(X;) = ¢H". For
general stationary series P, = p(z)? and

Z, ==Y p(z)'logp(z)",

TEE

which does not have usual properties of the entropy: Z, is the larger the
more ordered the analyzed signal is and the additivity properties of the usual
entropy are lost. In spite of these peculiarities it has been shown that Z,
is able to distinguish between a high risk and a low risk of cardiac arrest
CA (Zebrowski et al., 1994), (Zebrowski et al., 1995a), (Zebrowski et al.,
1995b). Z, is also a quantity very well correlated with the level of the hor-
mone noreprephanine as measured early in the morning once a day: the corre-
lation coefficient is -0.74 (Poplawska et al., 1994). Recent, as yet unpublished
results also show a good relation of the pattern entropy to classical quan-
titative measures of heart rate variability like SDNN, RMSSD and PNN50
showing that it may be possible to use the pattern entropy to monitor both
the sympathetic and the parasympathetic nervous system and avoid the well
known problems of the sensitivity of the classical measures to extrasystoles
and artifacts.

4 Estimating Entropies from Experimental Data

Estimating entropies and other functionals of probability functions from con-
tinuous variables is always problematic and none of various approaches is
generally accepted as the best one. Here we will consider the simplest “box-

counting” approach, when the probability distribution functions p(z1,...,z.)
are estimated as time-averaged histograms. A state-space partition = X...x
Z, must be defined and the probability distribution function p(z1,...,2,) is

estimated as the relative frequencies of occurrence of time-series samples in
particular bins. Consider first the one-dimensional case and probability mass
function p(z) = Pr{X = z}, z € =. The elements of =, called bins, must
be defined on a part of a straight line of length R, given by the extent of
the data studied, R =maximum — minimum, found in the data. The simplest
way to define = is using bins of the same width, called equidistant partition.
The equidistant partitions were used here for estimations of all of the static
entropies. There are still two ways how to define an equidistant partition:
Given a number @ of bins, the bin width W is defined as W = R/Q); or,
given the bin width W, the number of bins is defined as @ = R/W. These
approaches are not equivalent, if several time series with different extents R
are evaluated. In multidimensional cases, i.e., when estimating entropies or
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redundancies of n variables (which may be defined by time-lagging one vari-
able), the n-dimensional partition =7 x ... x =, will be defined by defining
each marginal partition =;. Here we will consider using the same @ (W) for
each Zj.

Estimating entropies and redundancies so that the number @) of bins is
given and the bin width W is derived according to the range R of the data
(henceforth referred to as “fixed-Q” approach) is desirable, considering the
critical effect of @ on the entropy/redundancy estimates. The naive approach
to estimate entropies/ redundancies of continuous variables should be the use
of the finest possible partition given, e.g., by an available space in computer
memory or by measurement precision. We must remember, however, that we
usually have a finite number N of data samples. Hence when using a too
fine partition the estimation of entropies and redundancies can be heavily
biased: Estimating the joint entropy of n variables using () marginal bins
one obtains Q" boxes covering the state space. If Q™ approaches the number
N of data samples, or even () > N, the estimate of H(X1,...,X,) can be
equal to log(N), or, in any case, it can be determined mainly by the number
of the data samples and/or by the number of the distinct data values and
not by the data structure, i.e. by the dynamical properties of the system
under study. Thus even “natural” partitions of experimental data given by
an A/D converter is usually too fine for a reliable estimation of entropies and
redundancies.

Having a large number N of data samples, the estimated entropy increases
with @ as log@®. Thus, classifying time series according to their entropies, us-
ing fixed @ is necessary to obtain consistent results. In some cases, however,
the fixed-Q approach can have some disadvantages. For instance, consider a
set of time series having their basic ranges more or less constant, however,
some of the series contain a few outliers, i.e., values far outside the basic
range. Then using W = R/Q with a fixed @) can lead to an underestimation
of the actual entropy of the series, considering 0log0=0.

Having defined the bin width W and deriving the number of bins as
@ = R/W (henceforth referred to as “fixed-W” approach) can help in the
above case with the outliers. Ranges of the time series studied, however,
should be approximately constant or an increased variance should be equiv-
alent to “richer dynamics”, i.e., to an actual increase of entropy. Otherwise,
two series would be classified as having different entropies, though one of
them is just the other series multiplied by a constant. In their original work,
Zebrowski et al. (1994) have applied the fixed-W approach, considering the
argument that in some cases such a linear rescaling of the data series may
be of importance (i.e., we would have then RR interval series with a different
variance) and the fact that entropy is larger for one of them may be used as
an indication of the increase of the variance. This is why — in the case of the
pattern entropy where the fixed-W approach is used — the physical interpre-
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tation of the changes of the value of this complexity measure are somewhat
ambiguous. They may be caused both by an increase of the ordering of the
series analyzed (e.g. a drop of the number of frequencies present in the signal)
and by a change in variance. So in spite of the fact that the pattern entropy
appears to be good at yielding a statistical differentiation between high risk
and low risk CA cases, other complexity measures are sought (Zebrowski et
al., 1995c¢).

An approach, different from the above two, was used to estimate the
coarse-grained entropy rates CER’s. The CER’s were computed from mu-
tual information, which was estimated by a fixed-Q box-counting algorithm,
however, marginal partitions were not equidistant, but “equiquantal”. This
means that the marginal bins were defined in such a way that they con-
tained approximately the same number of samples, while their widths were
not constant. Le., effectively the data were transformed into a uniform dis-
tribution with marginal entropy H' = log@ and all dynamical information
was obtained from the joint probability functions/histograms. This approach
eliminates the effects of outliers. For more details see Ref. (Palus, this vol-
ume) and references therein.

5 Numerical Details

The 24-hour time series of RR intervals are nonstationary, while the entropy
measures are defined for stationary processes. Therefore in practical process-
ing we do not estimate the entropy measures from the whole records, but
from a short window, which “slids” through the time series in an overlapping
way. It is believed, that the violation of the stationarity condition inside a
window is not so critical as compared to the whole recording. Thus, in choos-
ing the window length, one needs to compromise between the basic need to
use a long enough part of the data series to obtain mathematically meaning-
ful results and the necessity to make this series as short as possible to be able
to analyze nonstationary states. Initially, the approach adopted for pattern
entropy calculations by Zebrowski et al. (1994,1995a) was to use stretches of
time such as a doctor analyzing an ECG would use. It turned out that usu-
ally 5 min. epochs of ECG are used for power spectral density analysis and
that a doctor analyzes an ECG visually from recordings of lengths from 30
s to 5 min. However, using real time creates ambiguities as heart variability
changes within a single recording greatly so that the number of data points in
a time epoch of predefined length is far from constant. Instead of a real time
window, a window with a fixed number of evolutions was adopted. In the ini-
tial study a window of 400 beats was used (the equivalent of 3-7 min. of real
time) and found to give good statistical predictions on the risk of CA. It has
also been shown (Zebrowski et al., 1995b) that a statistically reliable result
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in distinguishing between low risk and high risk groups of CA is obtained for
Z, when an apparently too short time window is used (e.g. 50 heart beats
or about 30-50 s). For the fixed bin width approach this means that some
of the bins of the histogram for a given window may be empty or contain
only very few data points. For an estimate of a probability distribution this
seems to be inadequate. However, when the window was slid along the data
series with a step of every single beat (Zebrowski et al., 1994), it was found
that the pattern entropy as a function of time is a reasonably smooth curve.
This result indicates that, although some of the information is lost when
static entropies are calculated within a single window, sliding the window
every single evolution of the system helps alleviate this problem. The mean,
maximum and minimum of pattern entropy calculated in such a way allows
to distinguish between a low and a high risk of CA both for 24-hour Holter
ECG (Zebrowski et al., 1994), (Zebrowski et al., 1995b) and for short Holter
(14 min.) ECG recordings (Baranowski et al., 1994). 24-hour histograms of
pattern entropy of RR intervals together with the above mentioned statisti-
cal data are currently under extensive study but already have been shown to
carry medically interesting information (Zebrowski et al., 1995b).

In this paper, in order to obtain more stable results when different com-
plexity measures were calculated, a relatively long time window of 512 beats
(6-9 min. of real time) was used throughout. To make the calculations some-
what faster the window was slid every 200 beats and the 24-hour histograms
made from the resultant entropy values.

For the fixed-Q approach the number of bins Q=16 was used, while for
the fixed-W the bin width W=25 was applied. Wherever applicable the time
lag was 2 beats. Note that for a 512 window the time lag of 2 beats is almost
negligible. However, this may not necessarily be the case when a short win-
dow of 50 or even 100 beats is used, especially when the heart rate variability
is extremely low as in deep pathology or using animal data (Hoyer et al., this
volume).

The coarse-grained entropy rates CER’s were computed from n-dimensio-
nal probability distributions (histograms), n = 2,.... Therefore the problem
of the number of data samples and the number @) of marginal bins is more
critical than in estimations of the static 1-dimensional entropies. As a pre-
liminary result we present here the CER’s obtained using the window length
equal to 4096 beats (an equivalent of 35 min. to 70 min. of real time) and
Q =4, n = 2. The CER h(®) was computed using 7o = 0 7, = 1, for the CER
(1) the lags 79 = 0 and 7,4, = 35 beats were applied. The window step was
also 200 beats and the obtained values were processed into histograms of the
CER’s values in the same way as the static entropies.
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Fig. 4. Histograms of the fixed-Q static entropies: the Shannon entropy H?>(2)
(a,d,g), the Shannon entropy H' (b,e,h) and the Rényi entropy Hs (c,f,i); for the
pairs dpl (a,b,c), dp2 (d,e,f) and dp3 (g,h,i). The histograms of the “a”-files and
the “b”-files are plotted using the thick and thin lines, respectively.

6 Results

The results for the Shannon and Rényi entropies using fixed-Q partitions are
presented in Fig. 4, the first row displays the histograms for the pair dpl,
the second for dp2, the third for dp3. The histograms for a-files are plotted
using thick lines, thin lines are used for b-files. The first column in Fig. 4
contains histograms of 3-dimensional Shannon entropies H3(2), the second
column contains histograms of 1-dimensional Shannon entropies H', while
the histograms of the third-order Rényi entropies Hj are displayed in the
third column. Also the second-order Rényi entropies Hs were computed, but
their histograms were the same as related histograms of Hs. The results of
all entropies in Fig. 4 are consistent — histograms of a-files (thick lines) are
located on the left-sides of the histograms of the b-files. Thus the Shannon
and Rényi entropies estimated using the fixed-Q approach sort all the a-files
into one group and all the b-files into the other group. The same sorting is
obtained from the 3rd order pattern entropy Z3(2), if it was also estimated
using fixed-Q partitions (first column in Fig. 5).

When the 3-rd order pattern entropy Zs(2) is estimated using the fixed-W
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Fig. 5. Histograms of the static entropies: the fixed-Q pattern entropy Z3(2) (a,d,g),
the fixed-W pattern entropy Z3(2) (b,e,h), and the fixed-W Shannon entropy H?>(2)
(c,£,1); for the pairs dpl (a,b,c), dp2 (d,e,f) and dp3 (g,h,i). The histograms of the
“a”-files and the “b”-files are plotted using the thick and thin lines, respectively.

partition (the second column in Fig. 5), the results for dpl and dp3 are more
or less consistent with the fixed-Q approach, however, this is not the case for
dp2. It seems that now the sorting is a-b-a and b-a-b, unlike the a-a-a and
b-b-b sorting found above. This result is not typical for the pattern entropy,
but can be obtained from other static entropies, when fixed-W partitions are
used. An example for the fixed-W Shannon entropy H*(2) is presented in the
third column of Fig. 5.

Considering the original health-pathology (patient-control) coding, does
this mean, that the fixed-W partition is appropriate for detection of pathology
in this case? We will see, that this example is not appropriate to decide this
problem. First, however, we report results from dynamical entropies - coarse
grained entropy rates CER. CER h(!) — the first column in Fig. 6, CER h(®)
— the second column in Fig. 6. At the first sight it seems, that the sorting
given by CER’s is even worse than that given by the static entropies, and
giving a fixed-Q-like (i.e. incorrect) sorting. There is one feature, however,
in the CER’s histograms, which in this case provide the correct a-b-a/b-a-b
sorting. It is the existence of small values (0.6 — 0.8 in CER h("), and 0.4 —
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Fig. 6. Histograms of the dynamic entropies — the coarse-grained entropy rates
CER h™) (a,c,e) and CER h'® (b,d,f); for the pairs dpl (a,b), dp2 (c,d) and dp3
(e,f). The histograms of the “a”-files and the “b”-files are plotted using the thick
and thin lines, respectively.

0.6 in CER h(®), which occurs only in the case of the controls.

Let us concentrate on the dp2 pair and results which discriminate the
a-file here correctly as the control. In the case of the fixed-W static entropies,
the results can be influenced just by different variance of the data. And this
is the case of dp2a (Fig. 2a), where the last third of the data has much larger
variance than the rest of the record. Let us rerun the computations for the
dp2 pair, but now only for the first 50,000 samples, for the Shannon and
pattern entropies (fixed-W) and for the CER’s. The results are presented in
Fig. 7. The static entropies (a — Shannon, ¢ — pattern) lost the part that
distinguished a from b, while the low-CER part of the histogram is still
present in the histograms of the CERs.

From the point of view of characterizing “complexity of dynamics” it
seems that the dp2a—dp2b distinction by the static entropies was obtained
due to an artifact — the larger variance seen in the last third of Fig. 2a. From
the point of view of practical medical diagnostics, however, the variance itself
can be an important factor. The fixed-W static entropies are sensitive both
to a larger variance and to a possibly accompanying change in the level of
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Fig. 7. Histograms of entropies and entropy rates for the pair dp2, computed from
the first 50,000 samples (i.e., excluding the high variance part of dpla, see Fig. 2),
the fixed-W Shannon entropy H?®(2) (a), the fixed-W pattern entropy Z3(2) (c),
CER bW (b) and CER h®) (d). The histograms of the “a”-files and the “b”-files
are plotted using the thick and thin lines, respectively.

ordering in the signal. The first 50,000 points in the series represent heart
rate variability during the day. It is well known that there are people whose
heart rate variability during the day may be very different from that during
the night. Often dangerous symptoms occur only during the night and not
during the activity periods (or vice versa). In the case of the patient dp2b,
the relatively uniform variance throughout the 24 hours was a danger signal
for his doctors. On the other hand, the large increase of variance in the con-
trol dp2a in the night hours was considered normal. In general, however, the
value of the variance of the RR intervals itself is not a sufficient indicator of
a risk of impending cardiac arrest. The fixed-W pattern entropy successfully
classified the target member dp2b to be in the high risk class — he died due
to CA several months afterwards. The question of discriminating power of
dynamics versus variance, however, still needs further investigation.

The interesting finding here is that the difference between the members
of the pair 2, as detected by the CER'’s, persists in the data in general, not
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only in the visibly high variance part of the data. Thus it is possible, that
the distinction between health and pathology may be better detectable in
the complexity of dynamics as measured by (coarse-grained) entropy rates.
In other words, there are features of the RR series detected by the CER’s,
which cannot be found in the static complexity of the marginal distributions.
This result, however, is very preliminary, and a much larger database of RR
recordings need to be processed to confirm/refuse validity of this finding.
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