SIMuRG: System for Ionosphere Monitoring and Research from GNSS

Abstract

Currently, more than 6000 operating GNSS receivers deliver observations to multiple servers. Ionospheric data are derived from these measurements providing outstanding space coverage and time resolution. There are about 200 million independent measurements daily. Researchers need sophisticated software tools to deal with such a large amount of data. We present recent advances and products from the System for Ionosphere Monitoring and Research from GNSS (SIMuRG). Currently, SIMuRG provides the total electron content (TEC) variations filtered within 2–10 min, 10–20 min, and 20–60 min, the Rate of the TEC Index, the Along Arc TEC Rate index, and the vertical TEC. SIMuRG is an online service at http://simurg.iszf.irk.ru. The system can be used free of charge and allows calculating both maps and series for arbitrary time intervals and geographic regions. All the data products are available in the form of data or figures. We discuss the system and its geophysics applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Afraimovich EL (2000) The GPS global detection of the ionospheric response to solar flares. Radio Sci 35(6):1417–1424. https://doi.org/10.1029/2000RS002340

    Article  Google Scholar 

  2. Afraimovich EL, Palamartchouk KS, Perevalova NP, Chernukhov VV, Lukhnev AV, Zalutsky VT (1998) Ionospheric effects of the solar eclipse of March 9, 1997, as deduced from the GPS data. Geophys Res Lett 25(4):465–468. https://doi.org/10.1029/98GL00186

    Article  Google Scholar 

  3. Afraimovich EL, Kosogorov EA, Leonovich LA, Palamartchouk KS, Perevalova NP, Pirog OM (2000) Observation of large-scale traveling ionospheric disturbances of auroral origin by global GPS networks. Earth Planets Space 52:669–674. https://doi.org/10.1186/BF03352261

    Article  Google Scholar 

  4. Afraimovich EL, Perevalova NP, Plotnikov AV, Uralov AM (2001) The shock-acoustic waves generated by earthquakes. Ann Geophys 19(4):395–409. https://doi.org/10.5194/angeo-19-395-2001

    Article  Google Scholar 

  5. Afraimovich EL, Astafyeva EI, Oinats AV, Yasukevich YuV, Zhivetiev IV (2008) Global electron content: a new conception to track solar activity. Ann Geophys 26(2):335–344. https://doi.org/10.5194/angeo-26-335-2008

    Article  Google Scholar 

  6. Afraimovich EL, Edemskiy IK, Leonovich AS, Leonovich LA, Voeykov SV, Yasyukevich YuV (2009) The MHD nature of night-time MSTIDs excited by the solar terminator. Geophys Res Lett 36(15):L15106. https://doi.org/10.1029/2009GL039803

    Article  Google Scholar 

  7. Astafyeva E, Shalimov S, Olshanskaya E, Lognonné P (2013) Ionospheric response to earthquakes of different magnitudes: larger quakes perturb the ionosphere stronger and longer. Geophys Res Lett 40(9):1675–1681. https://doi.org/10.1002/grl.5039

    Article  Google Scholar 

  8. Astafyeva E, Zakharenkova I, Alken P (2016) Prompt penetration electric fields and the extreme topside ionospheric response to the June 22–23, 2015 geomagnetic storm as seen by the Swarm constellation. Earth Planets Space 68(152):1–12. https://doi.org/10.1186/s40623-016-0526-x

    Article  Google Scholar 

  9. Belakhovsky V, Pilipenko V, Murr D, Fedorov E, Kozlovsky A (2016) Modulation of the ionosphere by Pc5 waves observed simultaneously by GPS/TEC and EISCAT. Earth Planets Space 68(1):102. https://doi.org/10.1186/s40623-016-0480-7

    Article  Google Scholar 

  10. Blagoveshchensky DV, Maltseva OA, Sergeeva MA (2018) Impact of magnetic storms on the global TEC distribution. Ann Geophys 36(4):1057–1071. https://doi.org/10.5194/angeo-36-1057-2018

    Article  Google Scholar 

  11. Calais E, Minster JB (1995) GPS detection of an ionospheric perturbation following the January 17, 1994, Northridge earthquake. Geophys Res Lett 22(9):1045–1048. https://doi.org/10.1029/95GL00168

    Article  Google Scholar 

  12. Calais E, Minster JB (1996) GPS detection of ionospheric perturbations following a Space Shuttle ascent. Geophys Res Lett 23(15):1897–1900. https://doi.org/10.1029/96GL01256

    Article  Google Scholar 

  13. Cherniak I, Zakharenkova I (2018) Large-scale traveling ionospheric disturbances origin and propagation: case study of the December 2015 geomagnetic storm. Space Weather 16(9):1377–1395. https://doi.org/10.1029/2018SW001869

    Article  Google Scholar 

  14. Chou MY, Lin CH, Yue J, Chang LC, Tsai HF, Chen CH (2017) Medium-scale traveling ionospheric disturbances triggered by Super Typhoon Nepartak (2016). Geophys Res Lett 44:7569–7577. https://doi.org/10.1002/2017GL073961

    Article  Google Scholar 

  15. Coster AJ, Goncharenko L, Zhang S-R, Erickson PJ, Rideout W, Vierinen J (2017) GNSS observations of ionospheric variations during the 21 August 2017 solar eclipse. Geophys Res Lett 44(15):12041–12048. https://doi.org/10.1002/2017GL075774

    Article  Google Scholar 

  16. Demyanov VV, Yasyukevich YuV, Ishin AB, Astafyeva EI (2012) Ionospheric super-bubble effects on the GPS positioning relative to the orientation of signal path and geomagnetic field direction. GPS Solut 16(2):181–189. https://doi.org/10.1007/s10291-011-0217-9

    Article  Google Scholar 

  17. Dierckx P (1975) An algorithm for smoothing, differentiation and integration of experimental data using spline functions. J Comput Appl Maths 1(3):165–184. https://doi.org/10.1016/0771-050X(75)90034-0

    Article  Google Scholar 

  18. Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3–4):191–198. https://doi.org/10.1007/s00190-008-0300-3

    Article  Google Scholar 

  19. Edemskiy I, Lastovicka J, Buresova D, Habarulema JB, Nepomnyashchikh I (2018) Unexpected Southern Hemisphere ionospheric response to geomagnetic storm of 15 August 2015. Ann Geophys 36(1):71–79. https://doi.org/10.5194/angeo-36-71-2018

    Article  Google Scholar 

  20. Ephishov II, Baran LW, Shagimuratov II, Yakimova GA (2000) Comparison of total electron content obtained from GPS with IRI. Phys Chem Earth Part C 25(4):339–342. https://doi.org/10.1016/S1464-1917(00)00028-3

    Article  Google Scholar 

  21. Gulyaeva TL, Stanislawska I (2008) Derivation of a planetary ionospheric storm index. Ann Geophys 26(9):2645–2648. https://doi.org/10.5194/angeo-26-2645-2008

    Article  Google Scholar 

  22. Gurtner W, Estey L (2007) RINEX: The Receiver Independent Exchange Format Version 2.11, Bern, Astronomical Institute, University of Bern. https://epic.awi.de/35979/

  23. Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3–4):263–275. https://doi.org/10.1007/s00190-008-0266-1

    Article  Google Scholar 

  24. Hernández-Pajares M et al (2017) Direct MSTID mitigation in precise GPS processing. Radio Sci 52(3):321–337. https://doi.org/10.1002/2016RS006159

    Article  Google Scholar 

  25. Hernández-Pajares M, Roma-Dollase D, Garcia-Fernàndez M, Orus-Perez R, García-Rigo A (2018) Precise ionospheric electron content monitoring from single-frequency GPS receivers. GPS Solut 22:102. https://doi.org/10.1007/s10291-018-0767-1

    Article  Google Scholar 

  26. Jayachandran PT et al (2009) The Canadian high arctic ionospheric network (CHAIN). Radio Sci 44(1):RS0A03. https://doi.org/10.1029/2008RS004046

    Article  Google Scholar 

  27. Jin SG, Occhipinti G, Jin R (2015) GNSS ionospheric seismology: recent observation evidences and characteristics. Earth Sci Rev 147:54–64. https://doi.org/10.1016/j.earscirev.2015.05.003

    Article  Google Scholar 

  28. Juan JM, Sanz J, Rovira-Garcia A, González-Casado G, Ibáñez D, Orus Perez R (2018) AATR an ionospheric activity indicator specifically based on GNSS measurements. J. Space Weather Space Clim 8:A14. https://doi.org/10.1051/swsc/2017044

    Article  Google Scholar 

  29. Kunitsyn VE, Padokhin AM, Kurbatov GA, Yasyukevich YuV, Morozov YuV (2016) Ionospheric TEC estimation with the signals of various geostationary navigational satellites. GPS Solut 20(4):877–884. https://doi.org/10.1007/s10291-015-0500-2

    Article  Google Scholar 

  30. Le H, Liu L, Chen Y, Wan W (2013) Statistical analysis of ionospheric responses to solar flares in the solar cycle 23. J Geophys Res 118(1):576–582. https://doi.org/10.1029/2012JA017934

    Article  Google Scholar 

  31. Lin CCH, Shen M-H, Chou M-Y, Chen C-H, Yue J, Chen P-C, Matsumura M (2017) Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket. Geophys Res Lett 44(15):7578–7586. https://doi.org/10.1002/2017GL074192

    Article  Google Scholar 

  32. Liu L, Wan W, Chen Y, Le H (2011) Solar activity effects on the ionosphere: a brief review. Chin Sci Bull 56(12):1202–1211. https://doi.org/10.1007/s11434-010-4226-9

    Article  Google Scholar 

  33. Liu W, Xu L, Xiong C, Xu J (2017) The ionospheric storms in the American sector and their longitudinal dependence at the northern middle latitudes. Adv Space Res 59(2):603–613. https://doi.org/10.1016/j.asr.2016.10.032

    Article  Google Scholar 

  34. Mendillo M (2006) Storms in the ionosphere: patterns and processes for total electron content. Rev. Geophys. 44(4):RG4001. https://doi.org/10.1029/2005RG000193

    Article  Google Scholar 

  35. Nesterov IA, Andreeva ES, Padokhin AM, Tumanova YuS, Nazarenko MO (2017) Ionospheric perturbation indices based on the low- and high-orbiting satellite radio tomography data. GPS Solut 21(4):1679–1694. https://doi.org/10.1007/s10291-017-0646-1

    Article  Google Scholar 

  36. Perevalova NP, Afraimovich EL, Voeykov SV, Zhivetiev IV (2008) Parameters of large scale TEC disturbances during strong magnetic storm on October 29, 2003. J Geophys Res 113(A3):13. https://doi.org/10.1029/2008JA013137

    Article  Google Scholar 

  37. Perevalova NP, Shestakov NV, Voeykov SV, Takahashi H, Guojie M (2015) Ionospheric disturbances in the vicinity of the Chelyabinsk meteoroid explosive disruption as inferred from dense GPS observations. Geophys Res Lett 42(16):6535–6543. https://doi.org/10.1002/2015GL064792

    Article  Google Scholar 

  38. Pi X, Mannucci AJ, Lindqwister UJ, Ho CM (1997) Monitoring of global ionospheric irregularities using the Worldwide GPS Network. Geophys Res Lett 24(18):2283–2286. https://doi.org/10.1029/97GL02273

    Article  Google Scholar 

  39. Polyakova AS, Perevalova NP (2011) Investigation into impact of tropical cyclones on the ionosphere using GPS sounding and NCEP/NCAR reanalysis data. Adv Space Res 48(7):1196–1210. https://doi.org/10.1016/j.asr.2011.06.014

    Article  Google Scholar 

  40. Pulinets S, Davidenko D (2014) Ionospheric precursors of earthquakes and Global Electric Circuit. Adv Space Res 53(5):709–723. https://doi.org/10.1016/j.asr.2013.12.035

    Article  Google Scholar 

  41. Qian L, Burns AG, Chamberlin PC, Solomon SC (2011) Variability of thermosphere and ionosphere responses to solar flares. J Geophys Res 116(A10):A10309. https://doi.org/10.1029/2011JA016777

    Article  Google Scholar 

  42. Reiff PH et al (2016) Multispacecraft observations and modeling of the 22/23 June 2015 geomagnetic storm. Geophys Res Lett 43(14):7311–7318. https://doi.org/10.1002/2016GL069154

    Article  Google Scholar 

  43. Rideout W, Coster A (2006) Automated GPS processing for global total electron content data. GPS Solut 10(3):219–228. https://doi.org/10.1007/s10291-006-0029-5

    Article  Google Scholar 

  44. Roma-Dollase D, Hernández-Pajares M, Krankowski A, Kotulak K, Ghoddousi-Fard R, Yuan Yu et al (2018) Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle. J Geod 92:691–706. https://doi.org/10.1007/s00190-017-1088-9

    Article  Google Scholar 

  45. Savastano G, Komjathy A, Verkhoglyadova O, Mazzoni A, Crespi M, Wei Y, Mannucci AJ (2017) Real-time detection of tsunami ionospheric disturbances with a stand-alone GNSS receiver: a preliminary feasibility demonstration. Sci Rep 7:46607. https://doi.org/10.1038/srep46607

    Article  Google Scholar 

  46. Schaer S (1999) Mapping and predicting the Earth’s ionosphere using the global positioning system. Ph.D. Dissertation Astronomical Institute, University of Berne, Berne, Switzerland, 25 March

  47. Seemala GP (2017) GPS-TEC analysis application. Technical document. http://seemala.blogspot.com. Accessed 10 Jan 2020

  48. Sezen U, Arikan F, Arikan O, Ugurlu O, Sadeghimorad A (2013) Online, automatic, near-real time estimation of GPS-TEC: IONOLAB-TEC. Space Weather 11(5):297–305. https://doi.org/10.1002/swe.20054

    Article  Google Scholar 

  49. Singh R, Sripathi S (2017) Ionospheric response to 22–23 June 2015 storm as investigated using ground-based ionosondes and GPS receivers over India. J Geophys Res Space Phys 122(11):11645–11664. https://doi.org/10.1002/2017JA024460

    Article  Google Scholar 

  50. Suresh S, Dashora N (2016) Climatological response of Indian low-latitude ionosphere to geomagnetic storms. J Geophys Res Space Phys 121(5):4880–4897. https://doi.org/10.1002/2015JA022004

    Article  Google Scholar 

  51. Tsugawa T, Shiokawa K, Otsuka Y, Ogawa T, Saito A, Nishioka M (2006) Geomagnetic conjugate observations of large-scale traveling ionospheric disturbances using GPS networks in Japan and Australia. J Geophys Res 111(A2):A02302. https://doi.org/10.1029/2005JA011300

    Article  Google Scholar 

  52. Tsugawa T, Nishioka M, Ishii M, Hozumi K, Saito S, Shinbori A, Otsuka Y, Saito A, Buhari SM, Abdullah M, Supnithi P (2018) Total electron content observations by dense regional and worldwide international networks of GNSS. J Disaster Res 13(3):535–545. https://doi.org/10.20965/jdr.2018.p0535

    Article  Google Scholar 

  53. Yang H, Monte-Moreno E, Hernández-Pajares M (2017) Multi-TID detection and characterization in a dense Global Navigation Satellite System receiver network. J Geophys Res Space Phys 122(9):9554–9575. https://doi.org/10.1002/2017JA023988

    Article  Google Scholar 

  54. Yasyukevich YuV, Zhivetiev IV, Kiselev AV, Edemskiy IK, Syrovatsky SV, Shabalin AS, Vesnin AM (2018) Tool for creating maps of GNSS total electron content variations. In: Proceedings of 2018 progress in electromagnetics research symposium (PIERS—Toyama), Japan, August 1–4, 2018, pp 2417–2421. https://doi.org/10.23919/PIERS.2018.8597604

  55. Yasyukevich YuV, Mylnikova AA, Kunitsyn VE, Padokhin AM (2015) Influence of GPS/GLONASS differential code biases on the determination accuracy of the absolute total electron content in the ionosphere. Geomag Aeron 55(6):763–769. https://doi.org/10.1134/S001679321506016X

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank A.S. Shabalin for his help at the beginning of the research, A.A. Kustavinova for the Logo made for the system, and Dr. R.V. Zagretdinov for his help on GNSS networks in Russia. This work was performed under the Russian Science Foundation Grant No. 17-77-20005. In the research, we used GNSS data obtained and stored by Scripps Orbit and Permanent Array Center, UCSD, IGS (Dow et al. 2009), Bundesamt für Kartographie und Geodäsie (BKG) Data Center IGS, Wuhan University, Crustal Dynamics Data Information System (CDDIS), Korea Astronomy and Space Institute, National Geodetic Survey (Data from NOAA’s National Geodetic Survey, Continuously Operating Reference Station network of Global Navigation Satellite System reference stations that is referenced here is publicly available in multiple data protocols online at https://www.ngs.noaa.gov/CORS/data.shtml), the UNAVCO facility, the Geospatial Information Authority of Japan (GSI), Système d’Observation du Niveau des Eaux Littorales (SONEL), the EUREF Permanent Network Services, Geoscience Australia, the New Zealand GeoNet project, the State GPS network of the Republic of Bulgaria, Institut Geographique National, Instituto Geográfico Nacional, Instituto Tecnológico Agrario de Castilla y León, Geodetic Data Archiving Facility, Instituto Brasileiro de Geografia e Estatística, Canadian High Arctic Ionospheric Network, and Angara Common Use Center (http://ckp-rf.ru/ckp/3065) operating under budgetary funding of Basic Research program II.16.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yury V. Yasyukevich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material video 1 (AVI 21397 kb)

Supplementary material video 2 (AVI 19685 kb)

Supplementary material 3 (DOC 44 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yasyukevich, Y.V., Kiselev, A.V., Zhivetiev, I.V. et al. SIMuRG: System for Ionosphere Monitoring and Research from GNSS. GPS Solut 24, 69 (2020). https://doi.org/10.1007/s10291-020-00983-2

Download citation

Keywords

  • Total electron content
  • Ionosphere
  • GPS
  • GLONASS
  • GNSS
  • Ionospheric irregularities