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Abstract. Direct estimation of the largest Lyapunov exponent as a measure of
exponential divergence of nearby trajectories is well established in the case of de-
terministic dynamical systems. Questions are naturally raised about applicability
of Lyapunov exponents and other “chaotic measures” when analyzing data from
real-world systems, which are either stochastic or affected by numerous external
influences, which cannot be described in any other way than a stochastic compo-
nent in system dynamics. In a series of numerical experiments, Gaussian random
deviates were added to a set of chaotic time series with different Lyapunov expo-
nents. It is demonstrated that the estimated Lyapunov exponents fail to distinguish
different noisy chaotic time series when relatively small scales are used. The dis-
tinction can be reestablished by using larger scales. Using larger scales, however,
the estimated Lyapunov exponent is determined by macroscopic statistical proper-
ties of the series and provides the same information as the autocorrelation function
and/or coarse-grained mutual information.

1 Introductory Remark

This paper is meant as an informal but, it is hoped, informative con-
tribution to a discussion of problems related to nonlinear techniques used in
analysis of physiological or other experimental real-world time series. It is ad-
dressed to a broad audience of readers with different educational backgrounds,
to both theorists and practitioners, therefore I limit the use of mathemati-
cal formulae to the necessary minimum, and try to explain discussed facts
verbally and by presenting graphical material. Nevertheless, I suppose that
a reader is familiar with basic notions related to time series analysis, both
linear theory (spectrum, autocorrelation) and chaos approach (dimensions,
Kolmogorov-Sinai entropy, Lyapunov exponents).

2 Introduction

Distinction and classification of different dynamical phenomena or systems,
or, distinction and classification of different dynamical states of a system is a
common problem in many areas of natural and social sciences. In many cases
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this problem can be translated into a task of quantitative characterization
of observable signals, i.e., into an estimation of a quantitative measure from
registered time series.

In physiology and medicine time series are recorded which are related
to different physiological and/or pathological states of an organism or its
parts. Classification of such data is a challenging task with significance for
understanding underlying physiological processes and for medical diagnos-
tics. Traditional — linear techniques for time-series analysis have been ap-
plied successfully in various areas of physiology and medicine, however, they
may have serious limitations due to the fact that physiological processes are
usually nonlinear. Therefore it is not surprising that recently developed meth-
ods for nonlinear time series analysis have immediately found their way into
physiology and biomedical research.

Many of the current methods in nonlinear signal processing have not
arisen as an extension of linear analysis, but have been conceived due to the
entirely new idea of deterministic chaos. These innovative techniques have
provided experimentalists with new ways of understanding the implications
of their data, though the limitations of these new techniques have not always
been understood and necessary precautions fully appreciated.

Estimation from time series of descriptive measures such as dimensions,
Lyapunov exponents or Kolmogorov entropy, derived from theory of deter-
ministic chaos (“chaotic measures”) is well established in the case of data
generated by low-dimensional deterministic dynamical systems in numerical
and laboratory experiments. Questions are naturally raised about applica-
bility of the chaotic measures when analyzing data from real-world systems,
which are either stochastic or affected by numerous external influences, which
cannot be described in any other way than a stochastic component in sys-
tem dynamics. Analyzing time series from physiological systems, many au-
thors have realized that low-dimensional chaos in such systems is improbable,
however, they have demonstrated that formal estimates of the chaotic mea-
sures may possess some discriminating power with respect to data recorded
in different experimental conditions (Layne et al., 1986), (Mayer-Kress and
Layne, 1987), (Koukkou et al., 1993), (Wackermann et al., 1993). This “rel-
ative characterization” of different datasets may surely have its importance
in diagnostics, however, the question should be asked: What do the quanti-
ties for measuring chaos actually measure, when in processed data there is
no chaos, or a chaotic phenomenon is obscured by noise? The term “measur-
ing chaos” should be deciphered considering a particular chaos-based method
used: What do the small numbers, obtained from dimensional algorithms, ac-
tually mean, when the underlying system is high-dimensional or stochastic?
What do the estimates of Lyapunov exponents, designed to measure expo-
nential divergence of nearby trajectories, actually characterize, when there
is no exponential divergence of trajectories, or even there are no trajecto-
ries in the data, or the trajectories are obscured by noise? These questions
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are important from both practical and theoretical points of view. When the
chaotic measures, designed for characterization of low-dimensional dynamics,
are applied to analysis of high-dimensional or stochastic systems, precision
of their estimates, their robustness with respect to noise, or their sensitivity
to changes in underlying dynamics can hardly be established. In theoretical
aspect, correct interpretation of obtained results is unclear, while using the
original meaning and interpretations of the chaotic measures, i.e., using a
“low-dimensional language” for high-dimensional or stochastic systems can
be misleading.

This paper does not have the ambition to answer generally these impor-
tant questions. It is just a demonstration of a particular situation of applying
the direct method for estimating the largest Lyapunov exponent (LLE) (Wolf
et al., 1985) to noisy chaotic and linear stochastic data. A set of chaotic time
series with different positive Lyapunov exponents was generated. It is shown
that the LLE algorithm correctly distinguishes and orders the series according
to their positive LE’s. Then Gaussian noises with zero means and different
standard deviations (SD’s) are added to the series. The distinction of the
series is lost when the LLE algorithm uses scales comparable to, or smaller
than the SD of the noise. The noisy chaotic series can be correctly distin-
guished and ordered, when the scales used in the LLE estimation are larger
than the noise’s SD.

The requirement to use relatively large scales in practical estimation of
the chaotic measures is very typical due to finite precision measurements,
limited amounts of data and/or noise in the data, as in this case. Using large
scales, however, do the chaotic measures indeed “measure chaos”, i.e., does
the LLE algorithm measure the exponential divergence of nearby trajecto-
ries, or something else? Using isospectral surrogate data approach we show
that the LLE in fact distinguishes time series with different autocorrelation
functions. This property is probably typical also for dimensional estimates
and other measures which explore distributions of distances between points.
Thus the chaotic measures, estimations of which usually possess high compu-
tational cost and vulnerability to various experimental and numerical factors,
in many cases provide the same information as the results obtained by stan-
dard linear time series tools such as the spectral or autocovariance analysis. In
highly nonlinear systems, when the linear analysis is inadequate, the autoco-
variance/autocorrelation function should be substituted by (coarse-grained)
mutual information and related measures, which can provide reliable relative
classification of different dynamical states of nonlinear systems.

3 The Largest Lyapunov Exponent and the Baker Map

Given a scalar time series z(t), an m-dimensional trajectory is recon-
structed using the time-delay method (Takens, 1981) as x(t) = {z(t),z(t +
T),...,z(t + [m — 1]7)}, where 7 is the delay time and m is the embedding
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dimension. A neighbour point x(¢') is located so that the initial distance dy,
or = ||x(&) — x|, i Smin <01 < Smaz- ||-|| means the Euclidean distance.
The minimum aend maezimum scales Smin and $pyq., respectively, are chosen
so that the points x(¢) and x(¢') are considered to be in a common “infinites-
imal” neighborhood. After an ewolution time T' € {1,2,3,...}, the resulting
final distance d is calculated: dp = ||x(¢t + T) — x(¢' + T)||. Then the local
exponential growth rate per time unit is:

1
areel = log(dr /or). (1)

To estimate the overall growth rate, in the case of deterministic dynamical
systems the largest Lyapunov exponent (LLE) A;, the local growth rates are
averaged along the trajectory:

1
A= < Apeeal 5 = F< log(dr) > — < log(dr) >], (2)

where < . > denotes averaging over all initial point pairs fulfilling the condi-
tion smin < 01 < Smaa-

These ideas are applied in the fixed evolution time program for estimating
LLE as proposed by Wolf et al. (1985). More details, as well as the code of
the program FET1, used in this study, can be found in (Wolf et al., 1985).

The set P of numerical parameters:

P = {maTaTaSminJSmam} (3)

is chosen by a user.

The data for this study were generated using the well-known chaotic baker
transformation:

1
(xn+17yn+1) = (ﬂxna E'yn)

for v, < a, or:

(Fns154nt1) = (05 + B, T (o — @) (4)

for y, > o

0< zp,yn <1,0< a,8 <1, B was set to 8 = 0.25. For this system the
positive Lyapunov exponent A; can be expressed analytically as the function
of the parameter a (Hentschel and Procaccia, 1983), (Farmer et al., 1983):

1 1
Al(a):aloga+(1—a)log1 (5)

The second LE of this system is negative and is given as (Schuster, 1988):

AQ = log /3’ (6)
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in this case Ay = —2log2.

Varying the parameter o from 0.01 to 0.49 with step 0.005, ninety-seven
time series with different positive Lyapunov exponents A; were generated.
The component y was recorded!, the series length N = 1024 samples in each
case of this study was used. In addition to the original strictly deterministic
series, also noisy data were prepared. The noise considered in this study is
the additive “measurement” noise, i.e., the strictly deterministic series y,,
n =1,..., N, were generated according to Eq. (4). Then a noisy series &,,
n =1,..., N, of Gaussian random deviates with zero mean and unit variance,
generated using the GASDEV procedure from Ref. (Press et al., 1986), were
added to the deterministic series:

Zn = Yn + cn, (7)

and the noisy series z,, were analyzed. The coefficients ¢ were defined so that
the standard deviation (SD) of the noise was equal to a defined portion of the
SD of the original noise-free data. That is, the term “10% of noise” means
that the SD of the added noise is equal to 0.1SD of the original data.

The set of 97 baker series with different A;(c) is an ideal material for
simulating the task of relative characterization, i.e., the task of distinguish-
ing and ordering the series according to their “chaoticity”, i.e., according to
their A;. The exact dependence of A1 () on the parameter «, based on the
analytic formula (5), is displayed in Fig. la. Figure 1b presents estimates of
A1 from noise-free data using the following numerical parameters: m = 2,
7=2,T =1, spmin =0.01SD, i.e., 1% of SD of a particular series, S,;q4 iS
always defined as $,,4; = 108,45, in this study. The \; estimates in Fig. 1b
agree with the correct A;(a) values only for small «, while the majority of
the results in Fig. 1b are overestimated. It is possible to “tune” the results by
changing some parameters from P (Eq. 3), e.g., the estimates would decrease
using larger evolution time 7". Trying to simulate a real problem of classifying
experimental time series, where the correct values of A; are unknown (or, in
strict mathematical sense they do not exist), it may be dangerous to tune
the parameters P for each estimate individually?. As the methodologically
correct approach we consider using the same parameters P for the whole set
of time series, i.e., in each plot of the type of Fig. 1b the estimated LLE’s
were obtained using the same numerical parameters. The only varying pa-
rameter is the parameter « from Eq. (4), used in generating the series. Then,
we are not interested in absolute values of estimated LLE’s, but in relative
quantification of different series. In this case, the results can be considered as

! Thus we concentrate to the chaotic dynamics in the y-direction, which is equiv-
alent to a one-dimensional system known as the tilted tent map (Hilborn, 1994).

2 This may lead to a subjective bias and false positive results. Even from white-
noise data any positive value of the A; estimate may be obtained by tuning the
parameters P (Dammig and Mitschke, 1993).
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successful, if a similar curve as that in Fig. 1a was obtained, irrespectively of
a scale on the ordinate. The principal shape of the theoretical curve \;(«) is
reproduced by the A; estimates in Fig. 1b, however, the curve is not smooth
due to numerical instability® of the estimates. Fluctuations of the estimates
occur due to a relatively short time series length (1k=1024 samples) used.
For a significant decrease of the fluctuations and obtaining smooth curves re-
sembling the theoretical one (Fig. 1a) the series length must be increased by
one or two orders of magnitude. We will, however, continue the study using
1k series and consider the results in Fig. 1b as a “good” classification con-
sidering “available” amount of data. It should also be noted that the results
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Fig. 1. Positive Lyapunov exponents of the baker system as functions of the param-
eter a. (a) Theoretical dependence A1(c), (b) estimates from noise-free data, (c)
estimates from noise-free gaussianized data, (d) estimates from noised data (10%
of noise). The parameters, used in estimations (b, ¢, d) are: m=2, 1 =2, T =1,
Smin =0.018D, Smaz 1S always Smaz = 108min .-

presented below were obtained from (noisy) baker series which underwent
3 To decrease fluctuations of the A; estimates due to local properties of time series,

as a final estimate we used the mean value from the last third of all iterates —
see Fig. 5.
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so called gaussianization (Palus, 1995) — a nonlinear transformation which
transformed the marginal distribution of the data into a normal distribu-
tion. The reason for this transformation is comparison of the results from the
“experimental” data with the results from surrogate data, described below.
Although the gaussianization has some influence on the estimated A; values,
principal dynamical properties and related classification of the series were
not changed — cf. Figs. 1b and 1c, the former was obtained from the original
baker series, the latter from the same series after the gaussianization, using
the same parameters P.

The situation dramatically changed when 10% of noise was added to the
baker series and A\ estimations were repeated using the same parameters P
as in the case of Figs. 1b,c. In this case the LLE algorithm failed to distin-
guish the series, it yielded random values irrelevant to the actual dynamical
properties of the data (Fig. 1d).
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Fig. 2. Estimates of the positive Lyapunov exponent from noise-free baker series (a,
b, ¢) and their surrogate data (d, e, f), plotted as functions of the parameter . In
plots d-e-f solid lines and dashed lines depict mean A1 and mean+SD, respectively,
of 15 realizations of the surrogates for each value of a. The scales $min =0.01SD (a,
d), sSmin =0.1SD (b, e), and smin =1.0SD (c, f) were used. The parameters m=2,
7 =2, T =1 were used in all estimations.
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In the following we compare the A; estimates obtained from the baker
series with different portions of noise, using different scales spin (Smae =
108.min)- The values of the parameters m,7,T are the same as above. The
results for the noise-free data are presented in Fig. 2, the minimum scales are
Smin=0.01SD (Fig. 2a), 0.1SD (Fig. 2b) and 1.0SD (Fig. 2c¢). The largest Lya-
punov exponents A, estimated from the noise-free low-dimensional chaotic
series, are stable with respect to different scales (cf. Figs. 2a and 2b), only in
the case of the largest scales (Fig. 2¢) the estimates have lower values and the
curve A1(e) is partially distorted, but still able to classify the series in the
relative sense. With 5% of noise in the data the classification is practically
impossible for $,,i,=0.01SD (Fig. 3a), possible, though with a higher error
rate for $,,;,=0.1SD (Fig. 3b), while for s,,;,=1.0SD (Fig. 3c) the results
are almost as good as for the noise-free data. For the data with 10% of noise

—
= 0.8 ]
L - _
=
o |
& ] o6 f 9
L
3 L ]
e 1 04af ]
]
o
<C
> 0.2
= e (a) SC: 0.01 (b) SC: 0.1 (c) SC: 1.0
0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
= 11 (d) Sc: 0.01
Z 24
=
o
o
>
L
>
[®)
=
-
o
<
>
- (e) SC: 0.1

0.1 0.2 0.3 04
PARAMETER a

Fig. 3. Estimates of the positive Lyapunov exponent from noisy (5% of noise)
baker series (a, b, c¢) and their surrogate data (d, e, f), plotted as functions of
the parameter «. In plots d-e-f solid lines and dashed lines depict mean A1 and
mean=+SD, respectively, of 15 realizations of the surrogates for each value of a. The
scales smin =0.01SD (a, d), $min =0.1SD (b, e), and Smin =1.0SD (c, f) were used.
The parameters m=2, 7 = 2, T = 1 were used in all estimations.

(Fig. 4), the classification is impossible for both $;:,=0.01SD (Fig. 4a) and
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$min=0.1SD (Fig. 4b), while the classification ability of the algorithm is re-
stored using $,,in=1.0SD (Fig. 4¢). Using $,,:,,=1.0SD we obtained the same
results as in Fig. 4c also for 30% of noise in the data. (Data with higher
portions of noise were not tested.) Thus, the generally known advice that the
scales, used in estimating the chaotic measures, should be above the noise
level, seems to be valid. Considering, however, that the chaotic measures are
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Fig. 4. Estimates of the positive Lyapunov exponent from noisy (10% of noise)
baker series (a, b, c) and their surrogate data (d, e, f), plotted as functions of
the parameter «. In plots d-e-f solid lines and dashed lines depict mean A1 and
mean+SD, respectively, of 15 realizations of the surrogates for each value of o. The
scales $min =0.01SD (a, d), Smin =0.1SD (b, €), and Smin =1.0SD (c, f) were used.
The parameters m=2, T = 2, T = 1 were used in all estimations.

defined in terms of vanishing distances between points, one could doubt what
is actually measured using the large, macroscopic scales. In this study, is it
really the exponential divergence of nearby trajectories, which is reflected
in the results in plots b) and c) of Figs. 2-47? Searching for an answer, the
technique of surrogate data (Theiler et al., 1992), (Palus, 1995) was used.
The surrogate data to an “observed” series are, in this case, realizations of a
Gaussian linear stochastic process with the same spectrum as the “observed”
series.
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For each time series analyzed above, a set of 15 realizations of the surro-
gates were constructed and the largest Lyapunov exponents \; were estimated
using the same parameters P as for the A; of the relevant “observed” series.
The results from surrogates are presented in plots d, e, f of Figs. 2—4. Solid
lines are used for mean A, dashed lines depict mean+SD of A; estimated
from the set of 15 realizations of the surrogates.

Estimating LLE A\ from linear stochastic data one could ask whether
such estimates converge. The positive answer is illustrated in Fig. 5, where
the convergence of A; estimates is presented for a noise-free baker series, gen-
erated with & = 0.3 (upper panel in Fig. 5) and a realization of its surrogates
(lower panel in Fig. 5).
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Fig. 5. Convergence of estimates of the positive Lyapunov exponent in the course
of averaging along the trajectory (“iteration”) for a baker series generated with
a = 0.3 (a) and a realization of its surrogate data (b). Estimation parameters:
Smin =0.1SD, m=2, 7 = 2, T = 1. The horizontal line presents the final estimate,
defined as the average value of the last third of all iterations.

Exploring relatively small scales ($pin=0.01SD, plots d in Figs. 2-4),
LLE’s A; estimated from the surrogates do not reflect the “chaoticity”, i.e.,
the dependence A () of the original data. Such a result could be expected
as far as the chaotic dynamics and nonlinear properties of the original data
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were destroyed by phase randomization in the surrogates. Using larger scales
$min=0.1SD and 1.0SD (plots e and f in Figs. 2-4), however, a relative clas-
sification, similar to the ordering of the baker series according to their Ay, is
again observed, though, in the surrogate data, there is no exponential diver-
gence of trajectories, or even no trajectories in the deterministic sense! These
time series are realizations of Gaussian linear stochastic processes, thus their
dynamics are fully characterized by their power spectra or, equivalently, by
their autocovariance functions. In this situation one can infer that the al-
gorithm for the largest Lyapunov exponent distinguishes time series with
different autocorrelation functions.

4 Discussion: From Chaotic to Stochastic Measures
and Back

For understanding the results from the previous section we will briefly
review relations between two kinds of dynamical measures of chaos — Lya-
punov exponents and Kolmogorov-Sinai entropy (KSE), between KSE and
mutual information (MI) and between MI and a standard linear statistical
measure — the autocorrelation function.

Consider that a time series z(t) started at time to with an initial value
x(to). If the process underlying the series is not regular, but either stochas-
tic, or chaotic and our knowledge about z(t) is limited by finite precision
measurement, after an evolution time 7 = t; — to it is impossible to find an
exact relation between x(tg) and z(¢1). That is, knowing x(¢9) one cannot
exactly? predict 2(¢;), or, knowing z(¢;) one cannot exactly compute back-
ward the value of z(to). In its evolution the underlying system is forgetting
the information about its initial condition or, in other words, the system is
creating new information, which has to be obtained by new measurement to
know the state z(t) of the system. The rate, how quickly the new information
is created, is characterized by the entropy rate h of the system. When the
underlying process is described by a dynamical system, the special case of
the entropy rate h can be defined, known as the Kolmogorov-Sinai entropy
(KSE). The famous theorem of Pesin (1977) says that the KSE h of a dy-
namical system is equal to the sum of its positive Lyapunov exponents. In
the case of the baker map there is only one positive A\; and thus

he) = Mi(e). (8)

The mutual information I(r) = I[z(t); z(t + 7)] (Shannon and Weaver,
1964), (Cover and Thomas, 1991), (Palus, 1995), (Palus, 1996a), (Pompe,
this volume) quantifies the average amount of information about z(t + 7)
that is contained in z(t), and vice-versa. The rate of decrease of I(7) with

4 “Exactly” should be understood as “with precision comparable to the precision
of measurement”.
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increasing 7 should be related to the rate of the information creation of
the underlying system, thus to the system’s entropy rate h®. In the case of
the baker system, where h = \; increases with the parameter « according
to Fig. 1a, the larger « is used for generating the series, the faster should
be the decrease of the mutual information I(7), estimated from that series.
This behaviour is demonstrated in Fig. 6, where I(7) is presented, extracted
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Fig. 6. Mutual information I(7) as a function of the lag T for baker series and their
surrogates, generated with « = 0.1 (a, d), a = 0.2 (b, e), and o = 0.3 (c, f). In the
plots a-b-c I(7) from the baker data is plotted using thick lines, thin lines are used
for I(t) from the surrogates, which are plotted once more in the plots d-e-f, using
the appropriate scale.

from the baker series generated using o = 0.1 (Fig. 6a), o = 0.2 (Fig. 6b),
and a = 0.3 (Fig. 6¢). The chaoticity of different baker series is reflected in
the character of the 7-dependence of the mutual information I(7) estimated
from the baker series (thick lines in Figs. 6a-c), but surprisingly also in I(7)
estimated from related surrogate data (thinner, lower curves in Figs. 6a-c

% More details about the relation between higher-order mutual information (called
marginal redundancy) and the entropy rates can be found in Refs. (Fraser, 1989),
(Palug, 1993), (Palus, 1996b) and references therein.
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illustrate mean values for the sets of 15 realizations of the surrogates). Thus
the chaoticity of the baker series is not only encoded into their “non-linear
properties”, characterized by their I(7), but also reflected into their “linear
properties”, which are preserved in the surrogates. I(7) from the surrogates
are once more displayed using an appropriate scale in Figs. 6d,e,f.

The surrogates are realizations of Gaussian linear stochastic processes,
thus their mutual information I(7) can be expressed as a function of their
autocorrelation functions C(7) (Morgera, 1985), (Palug, 1995) as

1 2
I = —ilog(l—C ). (9)

Then also the autocorrelation functions C'(7) (and spectra) of the baker series
and their surrogates contain the information about the baker series’ chaoticity
(dependence A;(a)). This explains why the Gaussian linear stochastic surro-
gates, related to different baker series, can be distinguished and ordered in
the same way (in the relative sense) as the original baker series are classified
according to their positive Lyapunov exponents. The question is, however,
why this classification was possible to perform by using the Lyapunov ex-
ponent algorithm, designed to quantify the exponential divergence of nearby
trajectories of chaotic systems.

The LLE algorithm explores changes of initial distances dr of pairs of
points into final distances dp after an evolution time T. Consider a time
series generated by white noise (independent identically distributed — IID
process). For any initial distance d7, the final distance dp is a random number
independent of d;. The averaged < 6 > is then equal to the overall average
distance of the data points. The averaged initial distance < d; > is influenced
by the choice of the scales Spin, Smaz- Then, choosing the scales so that
< 07 > is smaller than < §F >, a positive estimate of \; is obtained. When
considered noise is not white but “coloured”, i.e., there is some correlation
C(T) between z(t) and z(t + T'), the increase of distance after the time T is
smaller for series with stronger correlations, i.e., the larger C(T'), the smaller
is the estimated A, and vice versa.

Dammig and Mitschke (1993) have derived analytic formulae for the A
estimates when applying the considered LLE algorithm to white noise and
a very special kind of coloured noise (white noise filtered by a “brickwall
filter”, the filter function is equal to one for a defined spectral bandwidth,
and to zero otherwise). As one could expect, A; estimated from white noise
depends exclusively on the parameters P, in the case of the coloured noises \;
depends on P and on the spectral bandwidth. Thus for fixed P the estimated
Lyapunov exponent \; classifies the series according to their spectra, or,
equivalently, according to their autocorrelation functions.

In the case studied here, where the coloured (autocorrelated) noises —
the surrogate data — were generated according to given nontrivial spectra,
derivation of an analytic formula is probably impossible, but the dependence
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of A; on autocorrelations has been demonstrated in the presented numerical
study.

Consider next the results in Figs. 2b and 2e, where \; was estimated
from the baker series and their surrogates using the same scale $,;, =0.1SD.
We can see that the stronger is the dependence between z(t) and z(t +
T), the smaller is the estimate of A;. The differences between the strength
of the dependence between z(t) and z(t + T'), measured by I(T), in the
original baker series and their surrogates can be observed in Figs. 6a-c. The
estimates of A\; for the baker series reach values between 0.1 and 1.1 (Fig.
2b), while in the case of surrogates they are between 2.1 and 3.2 (Fig. 2e).
Above it has been found that in linear stochastic series the estimates of
A1 are determined by the series’ autocorrelation function, here it can be
inferred that in general nonlinear series the estimates of A; are determined
by general (linear + nonlinear) temporal dependences in the series, which
can be measured, e.g., by the mutual information I(7).

Using the largest scales sp,;, = 1.05D, however, the A; estimates ob-
tained from the baker data and the surrogates are not significantly different
(plots ¢ and f in Figs. 2-4). In these scales dynamical properties of the series
and the \; estimates are dominated by linear properties of the series. Con-
sidering this result as a formal surrogate-based test for nonlinearity (Theiler
et al., 1992), (Palug, 1995), the Lyapunov exponent as a statistic fails to
distinguish the nonlinear chaotic baker series from their isospectral linear
stochastic surrogates. Using smaller scales (smin = 0.15D, Figs. 2b and 2e),
however, the differences between the baker series and their surrogates are
statistically significant, though in both cases (the data and the surrogates),
equivalent relative classifications of the series were observed.

The direct comparison of the values of \; estimated from the baker series
and from the surrogates was possible due to using the methodology of the
surrogate-based tests for nonlinearity. The surrogate data had the same linear
properties (spectra, autocorrelations) as the original baker series, and also
the same marginal histograms, which also influence the estimates of chaotic
and other measures. The latter was achieved by the “gaussianization” — a
histogram transformation which transformed the marginal distributions of
the baker series into the Gaussian distribution. The surrogates were Gaussian
by the construction.

An equivalent approach is using the original baker data without transfor-
mation, but transforming the surrogates from Gaussian into the distribution
of the original data. Using this approach a shift in scales was observed: For
Smin =1.0SD, the estimates of A; were negative and irrelevant to the actual
chaoticity of the baker series (i.e., the average initial distance, given by Smin,
was already larger than the overall average distance). Then, the results of this
approach for scales s,,;;, =0.1SD and 0.01SD were equivalent to the results
from the former approach using s,,;, =1.0SD and 0.1SD, respectively, while
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the scale $,,;, = 0.001SD was the first “non-macroscopic” scale, in which
the surrogates were not classified according to the A;(«) scheme, i.e., this
result is equivalent to the result from the scale $,,;, = 0.01SD in the former
approach. Using the first or the other approach, the differences in the results
are of a technical level, but the main messages of this study, formulated in
the Conclusion (items 1 and 2), are not changed.

5 Conclusion: From Stochastic to Chaotic Measures
and Back

The findings of this study can be summarized as follows:

1. The surrogates of the baker series can be relatively classified according
to the Ai(a) scheme (Fig. 1a). Because of the linear stochastic nature of
these processes, this classification must be accessible using linear techniques
and, consequently, the original chaotic baker series can be distinguished and
ordered equivalently to the A;(a) ordering also by using linear statistical
techniques. This result may hold also for other chaotic systems, but NOT
generally for all nonlinear systems.

2. The classification of the linear stochastic surrogates was performed by using
the algorithm for estimating the largest Lyapunov exponent. This finding
may probably be generalized:® The chaotic measures may provide meaningful
classification (relative characterization) even for linear stochastic data.

The relation between existence of chaos in a system underlying data
and the ability of chaotic measures to classify different systems states is
not straightforward. Linear techniques may be used successfully for some
chaotic systems, while chaotic measures may give meaningful results for lin-
ear stochastic data. A successful application of a chaotic measure in relative
characterization of system states does not necessarily imply chaos in the sys-
tem.

About a decade ago the chaotic measures became frequently used in
analysis of complex time series as an alternative to stochastic, mostly lin-
ear techniques. Deterministic chaos has been usually considered as an op-
posite alternative to random effects in attempts to explain complicated dy-
namics. Recent results indicate, however, that low-dimensional chaos may be

6 Esp. for those chaotic measures which explore distributions of distances between
points like the correlation dimension (Grassberger and Procaccia, 1983a), (Grass-
berger and Procaccia, 1983b). For example, in an EEG study it was observed that
classification of EEG signals, obtained by using the correlation dimension, had
been possible to reproduce by linear measures (Palu$ et al., 1992).
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rather a rare than ubiquitous phenomenon?, or, the strict separation between
deterministic-chaotic and stochastic dynamics may be impossible (Ellner and
Turchin, 1995). And even in data generated by a low-dimensional chaotic sys-
tem, microscopic properties, which are characterized by the chaotic measures,
may be unaccessible due to finite precision and measurement noise, as demon-
strated in this study. A more comprehensive approach to study real-world
systems is emerging, based on mathematical theory of nonlinear stochastic
systems. This approach offers data analysis methods that explicitly consider
randomness and have a firm basis in statistical theory.

The entropy rate (Cover and Thomas, 1991), (Palus, 1996b), i.e., the rate
of information creation by a system, was the property which made possible
to classify the above studied time series. The entropy rate can be defined for
both chaotic and stochastic systems. Although the exact entropy rate of a
continuous system may be unaccessible from data, there is always a possibility
to estimate its “coarse-grained” versions, suitable for classification of system
states. An example of such measures, applied to the same baker series, as
considered here, is presented in Ref. (Palug, 1996b). A comprehensive review
of “complexity” measures, related to entropies and entropy rates, can be
found in Ref. (Wackerbauer et al., 1994).

Creation of information by a system, characterized by its entropy rate,
may be caused either by intrinsic dynamical noise, or by a system’s “chaotic-
ity” — sensitivity to initial conditions; or by a combination of the two. De-
tection and characterization of the “stochastic chaos”, i.e., of the initial-
condition sensitivity of nonlinear stochastic systems, is a task of immense
importance in nonlinear time-series analysis. The sources of positive entropy
rates can be distinguished neither by the measures of entropy rate, nor by
the chaotic measures such as the Lyapunov exponents. Specific techniques,
designed for nonlinear stochastic systems, should be used, such as the con-
ditional mean /variance or conditional probability approaches, advocated by
Yao & Tong (1994). An interesting overview of nonlinear time series analysis
from a chaos perspective has been recently published by Tong (1995).
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