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Synchronization as adjustment of information rates:
Detection from bivariate time series
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An information-theoretic approach for studying synchronization phenomena in experimental bivari-
ate time series is presented. “Coarse-grained” information rates are introduced and their ability to
indicate generalized synchronization as well as to establish a “direction of information flow” between
coupled systems, i.e., to discern the driving from the driven (response) system is demonstrated using

numerically generated time series from unidirectionally coupled chaotic systems.

The introduced

method is then applied in a case study of EEG recordings of an epileptic patient. Synchronization
events leading to seizures have been found on two levels of organization of brain tissues and “direc-
tions of information flow” among brain areas have been identified. The latter allows to localize the
primary epileptogenic areas, also confirmed by the MRI and PET scans.
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I. INTRODUCTION

During the last decade there has been a consider-
able interest in study of cooperative behavior of coupled
chaotic systems [1]. Synchronization phenomena have
been observed in many physical and biological systems,
even in cases where the chaotic nature of scrutinized pro-
cesses has not been proven or is being doubted, e.g., in
the cases of cardio-respiratory synchronization [2,3], or
synchronization of neural signals [4-7]. In such physio-
logical and neurophysiological systems it is not only im-
portant to detect synchronized states, but also to iden-
tify causal (driver-response) relationships between stud-
ied (sub)systems. Although several methods have been
proposed and successfully applied esp. in the field of neu-
rophysiology [4-7], this problem is far from being trivial
and some claims of successful detection of the causal re-
lationships are based on contradictory assumptions [4,5].
Also, measures of synchronization based on infinitesimal
properties and well performing on artificial systems can
fail when applied on noisy experimental data. We pro-
pose to start study of synchronization in such data with
statistical, coarse-grained measures with basis in infor-
mation theory which could provide an indication of syn-
chronization as well as of causal relationships if present
in the scrutinized systems.

In Section II definitions of entropy, information and
information rates are briefly reviewed. More details
can be found, e.g., in Ref. [8]. Then, the concept of
“coarse-grained entropy rates,” originally introduced in
Ref. [12] is summarized and extended by defining the
coarse-grained information rates (CIR’s) and their mu-
tual and conditional versions. In Sec. III the CIR’s are
applied to bivariate time series generated by unidirec-

tionally coupled chaotic systems (Henon maps, Rossler
and Lorenz systems) in order to demonstrate how the
CIR’s can detect synchronization and drive-response re-
lationships. An application of the introduced approach is
demonstrated in Sec. IV by a case study of EEG record-
ings of an epileptic patient. A conclusion is given in
Sec. V

II. COARSE-GRAINED INFORMATION RATES

Consider discrete random variables X and Y with sets
of values = and Y, respectively, and probability distribu-
tion functions (PDF) p(z), p(y) and joint PDF p(x,y).
The entropy H(X) of a single variable, say X, is defined

as
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and the joint entropy H(X,Y) of X and YV is
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The conditional entropy H(Y|X) of Y given X is
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The average amount of common information, contained
in the variables X and Y, is quantified by the mutual
information I(X;Y), defined as

I(X;Y)

=H(X)+HY)-H(X,Y). (4)



The conditional mutual information I(X;Y|Z) of the
variables X, Y given the variable Z is given as

I(X;Y|Z2)=H(X|Z)+ HY|Z) - HX,Y|Z). (5
For Z independent of X and Y we have
I(X;Y|2)=1(X;Y). (6)

The entropy and information are usually measured in
bits if the base of the logarithms in their definitions is 2,
here we use the natural logarithm and therefore the units
are called nats.

Now, let {X;} be a stochastic process, i.e., an indexed
sequence of random variables. Its entropy rate [8]
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where H(Xy,...,X,) is the joint entropy of the n vari-
ables Xj,..., X,, with the joint PDF p(z1,...,z,), is a
measure of “information creation” by the process {X;},
or a rate how quickly the process “forgets” its history.
The entropy rate, in the case of dynamical systems called
Kolmogorov-Sinai entropy (KSE) [9-11], is a suitable tool
for quantification of dynamics of systems or processes,
however, possibilities of its estimation from experimen-
tal data are limited to a few exceptional cases [8,11,12].
Instead, Palu$ [12] has proposed to compute “coarse-
grained entropy rates” (CER’s) as relative measures of
“information creation” and of regularity and predictabil-

ity of studied processes.

Let {z(t)} be a time series considered as a realization
of a stationary and ergodic stochastic process {X(¢)},
t =1,2,3,.... In the following we will mark z(t) as z
and z(t + 7) as z,. For defining the simplest form of
CER we compute the mutual information I(z; z,) for all
analyzed datasets and find such 7,4, that for 7 > 7,,44:
I(z;2,) = 0 for all the datasets. Then we define the
norm of the mutual information
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with 7,,;n = A7 = 1 sample as a usual choice. The CER
h! is then defined as

h' = I(z,27) = [[(z;2,)]]. (9)

It has been shown that the CER h' provides the same
classification of states of chaotic systems as the exact
KSE [12]. Since usually 7 = 0 and I(z;2z) = H(X)
which is given by the marginal probability distribution
p(z), the sole quantitative descriptor of the underlying
dynamics is the mutual information norm (8) which we
will call the coarse-grained information rate (CIR) of the
process {X (¢)} and mark by i(X).

Now, consider two time series {z(¢)} and {y(¢)} re-
garded as realizations of two processes {X (¢)} and {Y'(¢)}

which represent two possibly linked (sub)systems. These
two systems can be characterized by their respective
CIR’s i(X) and i(Y). In order to characterize an in-
teraction of the two systems, in analogy with the above
CIR we define their mutual coarse-grained information
rate (MCIR)

Tmaaz;TZ0
1 #

> Iy (10)

—Tmaz

i(X,Y) =

2Tmaz _
Due to the symmetry properties of I(x;y,) the mutual
CIR ¢(X,Y) is symmetric, i.e., i(X,Y) = i(Y, X).
Assessing the direction of coupling between the two
systems, we ask how is the dynamics of one of the pro-
cesses, say {X}, influenced by the other process, {Y}.
For the quantitative answer to this question we propose
to evaluate the conditional CIR io(X|Y) of {X} given

{Y}:

1 Tmaz
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considering the usual choice 7,,;,, = A7 = 1 sample. Re-
calling (6) we have 4(X|Y) = i(X) for {X} independent
of {Y'}, i.e., when the two systems are uncoupled. Since
we prefer a measure which vanishes for uncoupled system
(though then it can acquire both positive and negative
values), we define

W(X|Y) = io(X[Y) — i(X). (12)

For another approach to a directional information rate
let us consider the mutual information I(y;z,) measur-
ing the average amount of information contained in the
process {Y'} about the process {X} in its future 7 time
units ahead (r-future thereafter). This measure, how-
ever, could also contain an information about the 7-
future of the process {X} contained in this process itself
if the processes {X} and {Y'} are not independent, i.e.,
if I(z;y) > 0. In order to obtain the “net” information
about the 7-future of the process {X} contained in the
process {Y'} we need the conditional mutual information
I(y;z-|z). The latter measure can also be understood
as an information-theoretic formulation of the Granger
causality concept [13]. Also, recently Schreiber [14] has
proposed a “transfer entropy” which is in special cases
equivalent to I(y;z,|z).

Next, we sum I(y;z,|z) over T as above

1 Tmaz

> Iy, (13)
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and, in order to obtain the “net asymmetric” information
measure, we subtract the symmetric MCIR (10):

i2(X, Y1X) = (X, Y X) — (X, Y). (14)

Using a simple manipulation we find that i2(X,Y|X) is
equal to i(X|Y), defined in (12). By using two different
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FIG. 1. (a) The largest Lyapunov exponents of the drive
{X} (constant line) and the response {Y} (decreasing line),
(b) the CIR i(X) of the drive (dashed line) and i(Y) of
the response (dash-and-dotted line) and the mutual CIR
#(X,Y) (full line), (c) the coarse-grained transinformation
rates ¢(X|Y") (dashed line) and (Y| X) (full line) for the unidi-
rectionally coupled identical (b1 = b2 = 0.3) Henon systems.
The Lyapunov exponents are measured in nats per time unit,
the CIR’s in nats.

ways we have arrived to the same measure which we will
mark by ¢(X]Y) and call the coarse-grained transinfor-
mation rate (CTIR) of {X} given {Y'}. It is the average
rate of the net amount of information “transferred” from
the process {Y'} to the process {X}, or, in other words,
the average rate of the net information flow by which the
process {Y'} influences the process {X}.

IITI. ANALYSIS OF DATA FROM COUPLED
CHAOTIC SYSTEMS

Consider the unidirectionally coupled Henon maps,
similar as studied in [4,15], with equations

o =14—22 +b 2o
xh =31 (15)

for the driving system {X}, and

yi=14—(emyr +(L—e) yi) + b2y

for the response system {Y'}. As the first example we use
the identical systems b; = by = 0.3. For 101 values of the
coupling strength € we iterate the systems (15,16), com-
pute their Lyapunov exponents and all the coarse-grained
information rates defined above. The latter are computed
using the simple box-counting based on marginal equi-
quantization, i.e., a partition with equiprobable marginal
bins [11,12,16]. The results, obtained using 8 marginal
bins, Tmin = AT = 1 and Time: = 15 samples are il-
lustrated in Fig. 1. The positive Lyapunov exponent
(LE) of the drive is constant, while the largest LE of
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FIG. 2. The same as in Fig. 1 but for the unidirectionally
coupled nonidentical (b1 = 0.1 and b2 = 0.3) Henon systems.

the response (LLE(Y') thereafter) decreases (although
not monotonously) with increasing coupling strength e
(Fig. 1a), and for € > 0.7 it remains negative which is
the indicator of the synchronized state (identical synchro-
nization) [4]. The CIR i(X) of the drive (the dashed line
in Fig. 1b) is constant, the CIR i(Y") of the response (the
dash-and-dotted line in Fig. 1b) is changing and becom-
ing equal to 4(X) in the synchronized state. The mutual
CIR i(X,Y) (the full line in Fig. 1b) is zero for small val-
ues of €, then it starts to increase as LLE(Y") approaches
zero, and finally it rises sharply at the synchronization
threshold reaching the state of identical synchronization
characterized by

i(X,Y) =i(X) = i(Y). (17)

Note that before this triple equality is reached there is a
state with ¢(X,Y) = min(i(X),i(Y")).

The coarse-grained transinformation rates start at zero
for € = 0, then, with increasing € the CTIR (Y| X) (the
full line in Fig. 1c) also increases into distinctly positive
values while the CTIR #(X|Y) (the dashed line in Fig.
1c) remains zero. This result clearly indicates that the
system {X} drives the system {Y}, while {X} evolves
independently of {Y'}. This distinction, however, ends
shortly before the synchronization threshold, when both
the CTIR’s start to fall and reach the identical synchro-
nization state with

(X|Y) =i(Y]X) = —i(X) = —i(Y) = —i(X,Y).

With emerging synchronization we loose the possibility
to establish the “direction of information flow”, or the
causal relationship between the systems {X} and {Y}.
It is understandable: in the identical synchronization the
series {z(¢)} and {y(t)} are identical and there is no pos-
sibility to establish the causal relationship between {X}
and {Y} just from the data.

In the next example we consider the nonidentical
Henon systems with b, = 0.1 and by = 0.3. The posi-
tive LE (Fig. 2a) of the drive is again constant, while
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FIG. 3. (a) The two largest Lyapunov exponents of the
drive {X} (constant lines) and the response {Y'} (partially
decreasing lines), (b) the CIR #(X) of the drive (dashed line)
and i(Y) of the response (dash-and-dotted line) and the mu-
tual CIR ¢(X,Y) (full line), (c) the CTIR #(X|Y) (dashed
line) and ¢(Y|X) (full line) for the Lorenz system {Y} driven
by the Rossler system {X}, 8 = 1. The Lyapunov exponents
are measured in nats per time unit, the CIR’s in nats.

the largest LE of the response decreases with increasing
€ and becomes negative at e = 0.38. After e = 0.6 it rises
and touches zero around € = 0.62 and then it falls again
into negative values. Again, negative values of LLE(Y)
define the synchronized states. Now we have an example
of generalized synchronization [1,4,15] of two nonidentical
systems. The CIR i(X) (Fig. 2b) is constant, while i(Y")
reflects the development of LLE(Y). The mutual CIR
i(X,Y) is zero for € < 0.2, then it rises with LLE(Y") ap-
proaching zero and then i(X,Y") reflects the behavior of
i(Y). Since the CIR’s, similarly as their inspiration CER
[12] are not dynamical invariants, in the case of general-
ized synchronization we cannot expect the equality (17),
however, the generalized synchronization is accompanied
with (X, Y") rising into values

min(i(X),i(Y)) < i(X,Y) < max(i(X),i(Y)). (18)

The CTIR’s (Fig. 2c) indicate the correct causal rela-
tion of {X} being the drive of {Y'} by their relation

i(X|Y) <i(Y]X) (19)

again only before the synchronization threshold. The
above explanation of impossibility to infer a causal re-
lation from identical time series in the state of identical
synchronization can be generalized into time series re-
lated by a one-to-one nonlinear function as is the case of
the generalized synchronization.

In the following example, consider the unidirection-
ally coupled Rossler and Lorenz systems described by
the equations

1 = —af{zs + x3}
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FIG. 4. The same as in Fig. 3, but for g = 2.

To = Oé{il?l + 0.2 1’2} (20)
T3 = a{02 + 1’3(.1'1 — 57)}

for the autonomous Réssler system, and

i1 = 10(—y1 + y2)
y'2:28y1—y2—y1y3+ea7§ (21)

_ _8
Ys =UY1 Y2 3?/3

for the driven Lorenz system in which the equation for g5
is augmented by a driving term involving zs. First we an-
alyze the case with @ = 6 and 3 = 1, also studied in [17].
The two LLE of both systems are depicted in Fig. 3a (the
constant positive and zero LE of the drive and partially
decreasing LE of the response). After e = 2 the zero LE
of the response becomes negative (Fig. 3a, note the loga-
rithmic scale), which is accompanyed by a slight increase
from zero values of the mutual CIR #(X,Y) (Fig. 3b).
Then, between ¢ = 5 and € = 6 LLE(Y) falls to zero and
i(X,Y) increases sharply so that for negative LLE(Y)
the condition (18) for generalized synchronization is at-
tained. The TCIR’s start at zero values for small €, then
correctly reflect the causal relations by their inequality
(19) which holds, again, only until the synchronized state
is reached. The same behavior of the CIR’s, MCIR and
TCIR’s can be obtained for the case with « = 6 and
B = 2 (Fig. 4), also studied in [5,15].

In order to summarize the numerical study, we con-
clude that the above introduced CIR, MCIR and CTIR
can indicate synchronization (identical by the equality
(17) and generalized by the relation (18)) and causal re-
lations of drive and response (sub)systems (relation 19).
The latter is possible to establish only in states in which
the (sub)systems are coupled, but not yet fully synchro-
nized.
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FIG. 5. (a) An EEG segment with a short seizure,

recorded from leads T¢O2 (a) and F4Cs (b). (c): The
CIR’s i(TO2) (dashed line), i(F4C4) (dash-and-dotted line)
and the mutual CIR i(TeO2,F4+Cs) (full line). (d): The
coarse-grained transinformation rates ¢(T¢O2|F4C4) (dashed
line) and (F4C4|T6Oz) (full line). The EEG (brain poten-
tial), in practice measured in microvolts, is here presented in
arbitrary units (bins of A/D converter). The CIR’s are in
nats.

IV. SYNCHRONIZATION AND INFORMATION
FLOW IN EEG OF AN EPILEPTIC PATIENT

Synchronization on various levels of organization of
brain tissue, from individual pairs of neurons to much
larger scales — within one area of the brain or between
different parts of the brain — is one of the most impor-
tant topics in neurophysiology. Some level of synchrony
is usually necessary in order to attain normal neural ac-
tivity, while too much synchrony may be a pathological
phenomenon such as epilepsy. Detection of synchrony, or
transient changes leading to a high level of synchroniza-
tion, and identification of causal relations between driv-
ing (synchronizing) and response (synchronized) compo-
nents is a great challenge, facing neurophysiologists and
applied mathematicians and physicists, since it can help
in anticipating epileptic seizures and in localization of
epileptogenic foci. Standard linear statistical methods
have brought only a little success in this area. New hopes
appeared in the field due to a development of novel time
series analysis methods which originated in studies of
nonlinear dynamics, chaos and chaotic synchronization
[4,5,18,19,6]. Here we present a case study in which the
above introduced coarse-grained information rates have
been applied in analysis of EEG recordings of an epileptic
patient.

A 30 months old male patient has been suffering from
epileptic seizures since the age of 8 months. The Sturge-
Weber syndrome has been diagnosed because of congeni-
tal periorbital hemangioma, and leptomeningeal heman-
giomas in the left temporooccipital area revealed by the
MRI scan. His first EEG showed spiking in the left tem-
porooccipital area. In the beginning he had partial com-
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FIG. 6. The same as in Fig. 5, but for an interictal EEG
segment.

plex seizures, later myoclonic-astatic seizures appeared.
Recently two long-term video/EEG monitoring sessions
were performed, the first one showed ictal onset in the
left temporal lobe, the second monitoring by scalp elec-
trodes 1.5 years later revealed mostly generalized spiking
with a slight excess in the right temporooccipital lobe.
Interictal PET showed glucose hypometabolism in the
left temporooccipital lobe. A part of the most recent
EEG recordings underwent the synchronization analysis
using the above CIR’s, MCIR and TCIR’s. They were
estimated from a 1024-sample moving window (moving
step 128 samples, sampling frequency 256 Hz), using
4 marginal equiquantal bins and T,,;, = A7 = 1 and
Tmae = 90 samples. Signals from reference and longitu-
dinal (bipolar) montages have been analyzed. The latter
have brought more clear results in establishing “direc-
tions of information flow”, i.e. the drive-response rela-
tions using TCIR. From a segment with a short seizure,
signals from the leads TO2 (Fig. 5a) and F4C, (Fig.
5b) are illustrated here. Before the seizure both i(Ts02)
and i(F4C4) present occasional increases, however, de-
velop independently and the mutual CIR i(TgO2,F4Cy)
keeps on low values (Fig. 5c). At the edge of the seizure
(time 32 sec.) CIR’s and MCIR rise sharply, reflecting an
increase of both local synchrony (CIR) and synchroniza-
tion between different areas of the brain (MCIR). The
increased synchrony revealed by the increased informa-
tion rates could also be indicated by decreased entropy
rates or decreased “dimensional complexity” measures,
e.g., by the correlation dimension. The latter and related
dimensional and entropy measures (correlation integrals)
have recently been used for an anticipation of approach-
ing seizures [18,19]. For evaluating predictive properties
of CIR’s we do not have enough data yet, thus we pro-
ceed to the TCIR (Fig. 5d) to find that in the presented
segment ’i(F4C4|T602) > i(T602|F4C4), i.e., the infor-
mation flow from TgO2 to F4C, dominates over the op-
posite flow, or, the subsystem (brain area) represented
by the signal from the lead TO4 (signal TgO2 for short)
drives that from F4Cy.



For comparison we present the same analysis of the
same signals but from a segment of an interictal (i.e.,
far from seizures) recording (Fig. 6). Both the
CIR’s i(TgO2) and i(F4C4) fluctuate on the same level,
however, the dependence of the signals, measured by
i(T602,F4Cy) is low (Fig. 6c). The drive-response
relation cannot be unambiguously defined, since the
CTIR’s i(TeO02|F4C4) and i(F4C4|TO2) are either ap-
proximately the same or mutually exchange their domi-
nance (Fig. 6d).

An evaluation of these results suggests that transients
to seizures are characterized by increased levels of syn-
chronization (both local, i.e., among neurons of a particu-
lar brain area which causes the increased regularity of the
registered EEG signal measured by the individual CIR;
and between different brain areas which is reflected in in-
creased mutual MCIR) and an asymmetry in information
flow emerges or is amplified. Considering the latter we
have found that the signal TgOy drove all signals from
the right hemisphere and even some signals from the left
central and frontal areas. Symmetrically the same has
been found about the signal T50;, however, there was
no distinction of causality between T50O; and T5T3. In
fact, the latter drove all the signals as T50O; did. On the
other hand, there was no distinction of the information
flow direction (although there is a nonzero dependence
indicated by MCIR) between laterally symmetrical leads
such as C3P3 — C4P4, with the one exception — T501 has
been found to drive T¢O4. This analysis suggests that the
primary epileptogenic area is the left temporal and oc-
cipital region, which drives the rest of the left hemisphere
and the right temporal and occipital areas, which secon-
darily drive the rest of the right hemisphere. This is in
accordance with MRI and PET scan results. The driving
from left temporal/occipital to the right central/frontal
areas, and the symmetrical one, is probably a secondary
interaction due to common dynamical components in the
signals from the left and right temporal/occipital areas.

V. CONCLUSION

An information theoretic approach has been intro-
duced for study of synchronization phenomena in exper-
imental time series. Its ability to detect synchronization
as well as to establish drive-response relations has been
demonstrated in a numerical study using data generated
by unidirectionally coupled chaotic systems. Preliminary
but promising results from analysis of EEG recordings of
an epileptic patient have also been presented. Applica-
tions of the method have currently been extended to a
larger group of epileptic patients with aims of localization
of epileptic foci and anticipation of approaching seizures.
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