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Abstract: A technique for identification and quantification of chaotic dynamics
in experimental time series is presented. It is based on evaluation of information-
theoretic functionals - redundancies which, estimated from data generated by a low-
dimensional chaotic dynamical system, have specific properties reflecting a positive
information production rate. This rate, measured by metric (Kolmogorov-Sinai)
entropy, can be directly estimated from the redundancies.

Key words: Kolmogorov-Sinai (metric) entropy, time series analysis, dynamical
systems, ergodic theory, information theory

Received: December 17, 1996
Revised and accepted: May 23, 1997

1. Introduction

Recent results in the theory of nonlinear dynamical systems and deterministic
chaos, which are applicable to the analysis of experimental time series (see e.g. [1],
[2]), have brought a new alternative to generally used linear stochastic methods and
significantly changed theoretical paradigms in interpretation of obtained results.
Purely phenomenological parameters used in stochastic methods have been replaced
in this new approach by invariants characterizing dynamical properties of systems
under study. Extraction of these invariants may be regarded as the first step to
building a model of system dynamics. Applications of this approach in the analysis
of experimental time series have been reported in many fields of natural and social
sciences.

A significant portion of work devoted to classification of chaotic behaviour is
oriented to estimations of geometric or static invariants such as dimensions or the
number of degrees of freedom. Even some algorithms proposed for the estimation
of dynamical entropies are derived from dimensional algorithms [3], [4], [5] and
are related to the concept of Rényi entropies [6]. A. N. Kolmogorov, who intro-
duced the theoretical concept of classification of dynamical system by information
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rates [7], was inspired by information theory and generalized the notion of the

entropy of an information source [7], [8]. A possibility to use ideas and methods

from the information theory in the field of nonlinear dynamics applied to analysis
of experimental data was demonstrated by Shaw [9], [10] and Fraser [11], [12], [13].

This paper considers a method for estimating the metric (Kolmogorov-Sinai)

entropy from experimental time series by using information-theoretic functionals,

as proposed by Fraser [11], [12], [13]. The method itself represents an “interface”

between the ergodic theory of dynamical systems and the information theory. While

in his original work [11], Fraser analyses information aspects of chaotic dynamics

in detail, here we concentrate on attributes of dynamical systems studied in the

ergodic theory, such as mixing and generating partitions, and we demonstrate how
they are reflected in behaviour of information-theoretic functionals estimated from

chaotic data. Necessary elements of the ergodic theory are introduced in Section 2.
It is based on books [14], [15], [16], [17], in which further details and proofs of
theorems can be found. Basic concepts of the information theory are presented in

Section 3. For more details we refer to the books [18], [19], [20], [21], [22]. The
relation between the entropy of dynamical systems and information functionals is

explained in Section 4. The technique for estimating the metric entropy, based on

this relation, is described in Section 5 and its application to well-known chaotic sys-

tems is presented in Section 6. In Section 7, further applications of this approach
are presented. Influence of additive noise on quantification and identification of
chaotic dynamics by the proposed information theoretic method is studied in Sec-

tion 8. The conclusion is given in Section 9.

2. Elements of Ergodic Theory

We will study long-term average behaviour of systems. Let a collection of all states
of a system form a space S. Time evolution of the system is represented by a
transformation T: & — S, where Tz is taken as the state at time 1 of the system
which at time O is in state z. In the case of continuous time one can consider a
one-parameter family {7};t € R} (R is the set of real numbers) of maps of S into
itself. Suppose that Tiyys = T3T, so that {T3;t € R} is a flow on S. We will
restrict on such cases when § is a measure space and T is a measure preserving
transformation.

Let B be a o-algebra of measurable subsets of S and let 1 be a countably
additive non-negative set function (measure) on B such that u(S) = 1 and such
that B contains all subsets of measure 0. Then S, B and g form a complete
probability space (S, B, i).

Let T: S — S be a measurable map, i.e., T8 = B; and VE € B: w(T7'E) =
#(E) holds. Then the system (S, B, u, T) is called the measure preserving trans-
formation (abbreviated m.p.t.).

This is the typical “set-up” used in the ergodic theory. A reader more famil-
iar with the theory of dynamical systems, or “differentiable dynamics” is used to
begin with a diffeomorphism 7" on a differentiable manifold §. Then the question
of existence of an invariant measure p, i.e., of the measure for which T is a m.p.t.,
arises. This problem is discussed, e.g., in [17], [23]; here we simply suppose that
such a measure exists.
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The following properties of m.p.t.’s are important for further considerations
here:

Definition 2.1. A m.p.t. (S,B,pu, T) is called ergodic if VB € B with u(B) > 0:

w(JT7"B)=1.

n=1
Theorem 2.1. A m.p.t. (S,B,u, T) is ergodic iff VA, B € B:
1 n—1
Jim — ; w(T~*AN B) = p(A)u(B).
Definition 2.2. Let (S,B,u, T) be a m.p.t. of a probability space (S, B, u).
(i) T is weakly mixing if VA, B € B:

n—1
1 —i -
Jim .E_O lW(T*ANB) — p(A)u(B)| = 0.
(ii) T is strongly mixing if VA, B € B:

lim u(T7"ANB) = p(A)u(B).

n—o0

Clearly, every strongly mixing transformation is weakly mixing and every weakly
mixing transformation is ergodic.

Theorem 2.2. Let (S,B,u) be a measure space and let A be a semi-algebra that
generates B. Let T: S —+ S be a m.p.t. Then:

(i) T is ergodic iff VA, B € A:

‘ 1 n—1 »
Jim ZO w(T~*AN B) = p(A)u(B),
i=

(ii) T is weakly mixing iff VA, B € A:

1 n—1

I i . _
Jim -~ ZO |W(T~*AN B) — p(A)p(B)| = 0, and
i=

(iii) T is strongly mixing iff VA, B € A:

lim w(T™"ANB) = p(A)u(B).

n—oo
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Theorem 2.3. Let T be a m.p.t. of a probability space (S, B, u) and Zt be the set
of positive whole numbers. Then T is weakly mixing iff for every pair of elements
A, B € B there is a subset J(A, B) C Z% of density zero such that

lim u(T™"ANB) = pu(A)u(B), for n ¢ J(A,B).

n—o0o

Intuitively we can say that T is strongly mixing if for any set A the sequence
of sets T~™A is asymptotically independent of any set B. Ergodicity means T "A
is independent of B on average, for each pair of sets A, B € B. Considering The-
orem 2.3. we can say that for weakly mixing 7" and for any A € B, the sequence
T~™A becomes asymptotically independent of any other set B € B provided we
neglect a few instants of time. Theorem 2.2. gives us the possibility to apply these
considerations also to elements of finite partitions of S.

Definition 2.3. A partition of (S,B,u) is a disjoint collection of elements of B
which union is S.

Definition 2.4. Let a = {A4,...,Ax} be a finite partition of (S, B, u). Then the
entropy of the partition « is

H(a) = =) p(As)log p(As).

i=1

We will be interested in finite partitions, however, all the following considerations
can be extended to countable partitions with finite entropy.

Definition 2.5. Let a = {A1,...,A,} and 8 = {B1,...,Bn} be partitions of
(S,B, pn). Then

(i) T 'a is the partition {T~1A4,,...,T714,}.

(i) B 1is a refinement of «, written 3 > a, if each B; is, up to a set of measure 0,
a subset of some A; .

(iii) oV B (the least common refinement of @ and f) is the partition {A; N B;,i =
1,...,m;5=1,...,m}.

(iv) The least common refinement \/;_, a; of the partitions au,.. ., a, is:

n

Vai =a1 VasV...Va,.

i=1
(v) The conditional entropy H(«|8) of a given 3 is

A;N B;j
H(o]8) = = 3 (4 1 B;)log XA N B
> 1(B;)

omitting the j-terms with p(B;) = 0.
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Definition 2.6. Let « be a finite partition of (S, B, 1) and T be am.p.t. on (S, B, ).
The entropy of the transformation 7' with respect to the partition ¢ is

(T, ) _kll)Holo kH \/T @)

Definition 2.7. Let T be a m.p.t. on (S, B, u). The entropy of the transformation
T is
h(T') = sup h(T', ),
[}

where the supremum is taken over all finite partitions of (S, B, ). The entropy h(T")
is called metric entropy or measure-theoretic entropy or Kolmogorov-Sinai entropy.

Theorem 2.4. Let (S,B,u,T) be a m.p.t. and o = {Ay,...,Ar} be a finite
partition of (S, B, ). Then

hMT,a) < H(a) < logk.
Theorem 2.5. Let a and (3 be partitions of (S, B, u) and let (S, B, u, T) be a m.p.t.
If o < B then h(T,a) < h(T,B).

Theorem 2.6. Let (S,B,u, T) be a m.p.t. and £ be a finite partition of (S, B, u).
Then

WT,€) = lim H(&Ii_\/lT"ﬁ)-
Theorem 2.7. Let (S,B,u, T) be a m.p.t. Then
h(T*) = |k|h(T), Vk € Z.
For continuous flow T} on (S, B, u) the equality
h(Ty) = |t|h(T1), YVt € R
holds.

Definition 2.8. A finite partition « of (S,B,u) is called a generating partition
(generator) with respect to a m.p.t. (S,B,u, T) if

00
\/ T a=B
i=—0

up to sets of measure 0.

Theorem 2.8. (Kolmogorov-Sinai theorem) If o is a generator with respect to
(S,B,u, T), then h(T) = h(T, a).

There are several important theorems about the existence of generating parti-
tions, e.g.:

Theorem 2.9. (Krieger generator theorem) If T is an ergodic m.p.t. on a Lebesgue
space with h(T) < oo, then T has a finite generator.
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3. Elements of Information Theory

Definition 3.1. Let X, Y be (continuous) random variables with probability distri-
bution densities px(z) and py (y).

(i) The entropy of distribution of a single variable, say X, is
H(X) = - [ px(s)logpx(a)da.
(ii) For the joint distribution px,y(z,y) of X and Y the joint entropy is
H(X,Y) //pxy (z,y)log px,y (2, y)dzdy.

(iii) The conditional entropy H(X|Y) of X given Y is

H(X|Y)= //pr z,y longYE ) )dazdy

(iv) The entropy of a distribution of a discrete random variable Z with values z;
and probability distribution p(z;),i=1,...,k, is

k
H(Z)=— Z p(zi) log p(2:).

Definitions (ii) and (iii) for discrete variables can be derived straightforwardly.

Definition 3.2. The mutual information I(X;Y") quantifying the average amount
of information which the variable X bears about the variable Y is

I(X;Y)=H(X)+H(Y) - HX,Y).

Theorem 3.1. I(X;Y) = 0iff px y(z,y) = px(2)py (y), i.e., iff X and Y are sta-
tistically independent.

Generalization of the definition of the joint entropy for n variables Xi,..., X,
is straightforward:

Definition 3.3. The joint entropy of distribution px, .. x,(z1,...,2,) of the n
variables X1,..., X, is

H(Xy,...,Xn) = —/.../pxl,m,xn(ml,...,mn)logpxl,,,,,xn(ml,...,mn)dml...dz‘n.

The mutual information will be generalized in two ways:
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Definition 3.4. The redundancy R(Xi;...;X,) of the variables X, ..., X, quan-
tifying the average amount of common information contained in the variables
Xi,...,Xp, is defined as

R(X1;...; X)) = HX)) + ...+ H(X,) — H(X1, ..., Xp).

Definition 3.5. The marginal redundancy o(X,...,X,—1;X,) quantifying the
average amount of information about the variable X,, contained in the variables
Xi1,....,X,_1, is defined as

Q(Xlg---;Xn—l;Xn) = H(Xl,...,Xn_l) +H(Xn) —H(Xl,...,Xn).

The following relations between redundancies and entropies can be obtained by
a simple manipulation:

R(Xy;...; X)) — R(X1;.. .5 Xn-1)

Theorem 3.2. o(X1,...,Xn—1;Xy) ..
X,) = H(Xp) — H(Xn| X1, ..., Xn_1)

Theorem 3.3. o(X1,...,Xn—1;Xn)

4. Numerical Set-up and Relation between i(7) and p

In practical applications one deals with a time series {y(t)} considered as a re-
alization of a stochastic process {Y(¢)}, which is stationary and ergodic. Then,
due to ergodicity, all the subsequent information-theoretic functionals can be esti-
mated by using time averages instead of ensemble averages, and the variables X;
are substituted as

Xi = y(t+ (i — D7), (1)

where 7 is a time lag. Due to stationarity, the redundancies

R"(r) = R(y(t);y(t + 7); .. .59(t + (n = 1)7)) (2)

and

0"(r) = o(y(@®),y(t +7), .., y(t + (n = 2)7);y(t + (n — 1)7)) (3)

are functions of the number n of variables and the time lag 7, and are independent
of t.

A measure preserving system (S, B, u, T) can correspond to a stochastic process
{Y(8)}:
IfT: S —» Sis am.p.t., the orbit {T™s; n € Z} of a point s € S represents a
single evolution of the system. The o-algebra B is thought of as a family of ob-
servable events with the T-invariant measure p specifying the (time-independent)
probabilities of their occurrence. A measurable function f: & — R represents a
measurement made on the system: f(s), f(T's), f(T?s), ... are values of a physi-
cally observable variable measured in successive instants of time — the experimental
time series.

Conversely, any stationary stochastic process corresponds to a measure preserv-
ing system in a standard way: One can construct a map ® mapping variables of
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a stochastic process to a sequence of points {g,} of a measure space Q and define
shift transformation o on the sequence {g,} as ¢, = ¢n+1. Due to stationarity of
the original process, such a system is a m.p.t. (For more details see Ref. [14].)

Thus we can identify entropies of distributions of stochastic variables with par-
tition entropies of the corresponding measure space and especially the conditional
entropies from Theorems 2.6. and 3.3. Then, for n — co we have:

o"(1) = A¢ — h(T7, ), (4)

where A¢ is a parameter independent of n and 7 (and, clearly, dependent on the
partition &), and h(T,,€) is the entropy of (continuous) transformation T, with
respect to the partition &, corresponding to the probability distribution p(z;).

Let £ be a generating partition with respect to T' (more precisely with respect to
T for a large enough range of 7’s — see Sec. 5.2), then, considering Theorems 2.7, 2.8
we have

lim ¢"(1) = A —|7|h(T1). (5)
n—oo
This assertion was originally conjectured by Fraser [11], [12], [13]. The mutual
information was used for the estimation of metric entropy of one-dimensional maps
firstly by Shaw [10]. Here we present a detailed study of this estimation technique
and bring further numerical support for this conjecture.

Remark: There is an exact equality relation between the partition entropy and
the entropy of the related distribution [24], provided they are defined on the same
measure space. Here we want to estimate metric entropy of a dynamical system
evolving in an n-dimensional state space S from a sequence of one-dimensional
stochastic variables, providing they are images (projections) of a single trajectory
of the dynamical system (see considerations above) mapped by a map f: S — R.

5. Estimation Technique

We will study the behaviour of ¢™(7) as a function of 7 and n for low-dimensional
chaotic processes. Let us consider that the studied time series has been generated
by an m-dimensional dynamical system, i.e., there is a m.p.t. (S, B, u, T-) and T
is a continuous-time dynamical system fulfilling the conditions of the existence and
uniqueness theorem [25, 26] and a particular trajectory of T, is mapped from S
to R. There is a unique trajectory passing through each point s € S so that the
evolution on the particular trajectory is fully determined by one m-dimensional
point s € S. On the other hand, according to the theorem of Takens [27], m-tuples
of m successive samples y(t),...,y(t + (m — 1)7) form a mapping of the process
{Y(t)} to a space Q, so that the sequence {g;} of the images of the m-tuples
y(t),...,y(t + (m — 1)7) is topologically equivalent to the original trajectory {s;}
in S. Hence a particular m-tuple y(¢),...,y(t + (m — 1)7) is equivalent to a point
from S and thus it determines the rest of the series {y(¢)}. This means that only
the redundancies ¢"(7) for n < m should be finite and for n > m the redundancy
0"(7) should diverge. This is, however, theoretic consideration providing infinite
precision. In experimental and numerical practice, measurement noise and finite
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precision cause that all estimated redundancies ¢"(7) are finite and increasing with
n. We can only suppose that the increase with n of ¢™(7) for n > m is lower than
for n < m and it is independent of 7.

Intuitively we can explain this supposition by the fact that adding another vari-
able to n variables, n < m, the common information measured by ¢"(7) is increased
by specific dynamical information, i.e., the increase ¢"*1(7) — ¢™(7) depends on n
and 7. The addition of another variable when n > m is, considering the increase
0"t (1) — 0"(7) of the common information, (approximately) equivalent to the ad-
dition of a “noise term” contributing only non-specific information related to noise
and finite precision. (All these considerations can be “biased” by an actual amount
of noise in the studied data, see Figs. 5 and 10.) Therefore for n > m we expect
that the curves ¢"(7) as functions of 7 have the same shape, they are just shifted.
(Le., 0"*1(7) ~ 0™(7)+ const.) Thus the limit behaviour of ¢"(7) for n — oo in the
case of an m-dimensional dynamical system is attained for very small n, actually
forn=m+1m+2,...

Let us consider that the probability distribution p(z1,...,z,) used in the esti-
mation of p"(7) corresponds to a generating partition of the studied m-dimensional
dynamical system for a certain range of 7, then the limit behaviour (5) of ¢"(7),
ie., 0"(7) ® A—Th(T1) is attained for n =m + 1,m + 2,.... And this is actually
the behaviour of ¢"(7) for low-dimensional dynamical systems. The range of 7 for
which marginal redundancies approach the linearly decreasing function is usually
bounded by some 71 and 7, i.e., the equality o"(7) = A — 7h(T1) holds for 7:
71 < T < T5. Before considering what determines these bounds we need to explain
the technique for estimating the redundancies.

5.1 Redundancy algorithm

Practical computation of mutual information and redundancies of continuous vari-
ables is always connected with the problem of quantization. By the quantization
we understand a definition of finite-size boxes covering the state space. The prob-
ability distribution is then estimated as relative frequencies of the occurrence of
data samples in particular boxes. A naive approach to estimate the redundancies
of continuous variables would be the use of the finest possible quantization given,
e.g., by a computer memory or measurement precision. We must remember, how-
ever, that we usually have a finite number N of data samples. Hence, using a
quantization that is too fine, the estimation of entropies and redundancies can be
heavily biased: Estimating the joint entropy of n variables using ¢ marginal bins
one obtains ¢™ boxes covering the state space. If ¢" approaches the number N
of data samples, or even ¢" > N, the estimate of H(X4,...,X,) can be equal to
log(N), or, in any case, it can be determined more by a number of data samples
and/or by a number of distinct data values than by a structure in the data, i.e.,
by properties of the system under study. We say, in such a case, that the data are
overquantizied. (We will see that even a “natural” quantization of experimental
data given by an A/D converter is usually too fine for reliable estimation of the
redundancies.)

Emergence of overquantization is given by the number of boxes covering the
state space, i.e., the higher the space dimension (the number of variables), the lower
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the number of marginal quantization levels that can cause the overquantization.
Recalling Def. 3.4. of the redundancy of n variables, one can see that while the
estimate of the joint entropy can be overquantizied, i.e., saturated on a value given
by the number of the data samples and/or by the number of distinct data values,
the estimates of the individual entropies are not and they increase with fining the
quantization. Thus the overquantization causes an overestimation of redundancy
R"(7) and obscures its dependence on 7.

Recalling ¢"(7) = R"(7) — R™ (1), one can see that the overquantization
causes an overestimation of the marginal redundancy and, moreover, attenuation
of its decrease with increasing 7. Further the overquantization can lead to a para-
doxical unreal result of ¢"(7) increasing with 7, which formally implies negative
metric entropy (Figs. 1, 2, 3).

Therefore one must be very careful in defining the quantization. Fraser & Swin-
ney [28] have proposed an algorithm for constructing locally data-dependent quan-
tization (for details see [28]). In our computations we use a simple box-counting
method with marginal equiquantization. It means that the marginal boxes are
not defined equidistantly but so that there is approximately the same number of
data points in each marginal bin. The choice of the number of bins is, however,
crucial. In [29] we have proposed that computing R™ of n variables, the number
of marginal bins should not exceed the n + 1-st root of the number of the data
samples. By extensive numerical experimentation we have found that this was the
strongest rule necessary for preventing the overquantization and there are special
cases when finer quantizations give unbiased results. Actually, it depends on the
“level of chaoticity” (measured, e.g., by the metric entropy) or the level of mixing
of the system under study. The weaker the mixing (the lower “chaoticity”) the
finer the quantization can be. (Cf. the results for the Lorenz and Réssler systems
— see Sec. 6 and Figs. 1, 2, 4). Probably no general rule exists for determining ideal
quantization for arbitrary data. Therefore we propose to compute redundancies
for several numbers ¢ of (equi)quantization levels around the recommended value
g= ""N.

Defining the quantization boxes, we construct a partition of the experimental
state space for which we estimate the probability distribution. Above we conjec-
tured that this partition corresponds to a partition in the original state space S of
the m.p.t. which generated the data. For simplicity, in the following considerations
we will not distinguish these partitions.

5.2 A region of linear ¢"(7) decrease

Now we can return to the problem of the bounds 71, 7 determining the region
71 < T < Ty in which ¢"(7) =® A — 7h(T1). Let us consider there are two m.p.t.’s R
and L on a measure space (S, B, ) and let p and X be the “most coarse” generators
of R and L, respectively. (Clearly, each refinement of a generator is a generator.)
Let L be “more chaotic” than R, i.e. we mean h(L) > h(R). Then we can
intuitively say that the sequence

Uz

i=1
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is changing (refining) less, or more slowly than the sequence

G L7\
=1

and that L is able to generate B, i.e.,

o0
U L™\ =B up to sets of zero measure,
i=1

from more coarse partitions than R, i.e., A < p, or even ) is not a generator
with respect to R. Hence in computation of ¢™(7) from series generated by R, for
attaining the limit behaviour (5) we need a finer partition (quantization) than for
series generated by L. (On the other hand, as we stated above, there is a greater
“tolerance” to overquantization for R than for L.)

As an example for these considerations there are the Lorenz and Réssler sys-
tems, where A(L) = 1.31 bits/time unit, A(R) = 0.13 bit/time unit, and generating
partition for L emerge from ¢ = 16, and for R from ¢ = 48 (marginal quantization
bins), see Sec. 6, Figs. 1, 2 and 4.

Futhermore, consider a time-continuous transformation (dynamical system) 7.
Let 7 > 0, according to Theorem 2.7. the equality h(T;) = 7h(T1) holds. For any
7 < 71 we have

WT) < W),

and, in analogy with the above transformations R and L, if £ is a generating
partition for 7', , it need not be generating for T°-, 7 < 71. Hence the limit behaviour
(5) of o™ (7) for a chosen partition £ can start from some 71 > 0, which decreases
with refining the partition &.

For the first approach to the right boundary 7o let us recall Theorem 2.2. It
states that for an ergodic m.p.t. 7', the sequence of sets T %a, a € £, becomes
asymptotically and “on average” independent of any set from £&. We can go fur-
ther: For an ergodic transformation, weak mixing is a generic property [15] and
considering Theorem 2.3. we can say, providing we neglect a few instants of time,
that strong mixing is a generic property of ergodic systems. Then according to
Theorems 2.2., 2.3., the sequence T'%a, for i — 00, is independent of any set from
&. This means that ¢"(7) = 0 for 7 large enough and for any partition used. In
practice, however, the right boundary 7> of the region of the linear decrease of
0" () is smaller than the lags for which ¢"(7) vanishes.

Let us recall that h(T,£) < H(§) and for a generating partition £ also h(T") <
H(¢). Hence if ¢ is generating for T,,, it can be generating only for a bounded
interval of 7’s for which the inequality 7h(T1) < H () holds. In the case h(T7,) =
H(¢), T., behaves, with respect to the partition £, like a Bernoulli (IID) process
[14], [15] and @"(72) should vanish. In fact, however, when 7 is approaching
(h(T:,) = H(E)), the partition £ looses its generating property and the linear
decrease of p™(7) stops for 7 < 7. Then p"(7) either decreases slowly to or stops
on some “numerical zero” value. Clearly, for partition n, n > £, there is a right
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bound 73, 73 > T2, because H(n) > H(&) and the region of linear ¢"(7) decrease
extends.

This phenomenon is illustrated in Fig. 3. There are the redundancies °(7) of
the Lorenz system data for increasing number ¢ of the marginal quantization levels
(g =4, 6, 8, 10, 16, 20, 32, reading from the bottom to the top), i.e., for fining the
partition. The increasing straight line is the graph of h(L.) = 7h(L1) = 1.317, i.e.,
it gives the value of the metric entropy of L, against 7. Clearly, ¢"(7 = 0) = H(§)
(or H(q), i.e., the entropy of the partition). We can see that the linear region
0°(1) ® A —7h(L1) extends with fining the partition, slightly to the left and more
apparently to the right, but it always ends before 7o, h(L,,) = H(E). For ¢ = 32
overquantization effects emerge.

The above phenomenon can be interpreted in terms of uncertainty of prediction
of states of a system with metric entropy h(71). Suppose we know the state of the
system at time 7 = 0 with a precision given by a partition £ (i.e., we know in
which a, a € £, the system state lies). The prediction uncertainty of a system state
increases with time as h(T;) = 7h(T1). The maximum uncertainty which can be
reached is given by H (), i.e., the entropy of the partition £. This is the prediction
uncertainty of a system state without knowledge of previous system states. Thus
the time 75 for which h(T},) = H(€) is the time of the total loss of system memory
as observed with precision given by the partition &.

6. Numerical Results

Figure 1 illustrates the typical time-lag dependence of marginal redundancies o™ (7)
computed from time series generated by the z-component of the Lorenz system (in
the Appendix referred to as “Lorenz a”), for four different quantization levels:
a) ¢ = 4 is the quantization insufficient for the limit behaviour (5) to appear,
b) the quantization ¢ = 16 defines the partition which is generating for the range
of 7: 0.3 < 7 < 1.4, which is sufficient for reliable estimation of the metric entropy.
In the case ¢) ¢ = 40 the linear region (5) for ¢*(7) is extended to 7 = 1.9, but
the results for °(7) are biased due to overquantization. With ¢ = 64 (d) the
overquantization distorted both ¢*(7) and 0°(7).

Figure 2 depicts ¢"(7) computed in the same conditions as those in Fig. 1, but
from the data generated by the Réssler system. One can see that for this “less
chaotic” system both the quantizations ¢ = 4 (a) and ¢ = 16 (b) are not fine
enough for ¢"(7) to approach the behaviour (5). Using quantizations ¢ = 40 (c)
and ¢ = 64 (d) the correct value of the metric entropy (0.13 bit/time unit) can
be estimated from ¢*(7), while o°(7) suffers from the overquantization, esp. for
g =64 (d).

Figure 3 illustrates dependence of the region of the linear p"(7) decrease for
0°(7) of the Lorenz system on the number of the marginal quantization levels. This
figure was discussed above (Sec. 5.2).

As one can see, the objective assessment of the region of linear (1) decrease
(5) for a particular quantization (and a particular data) is not simple and straight-
forward. Therefore we use the following strategy: Looking at the redundancies
0" (7) computed with various numbers of quantization levels we define a reasonable
range of 7 and using this range for all the quantizations we estimate the metric
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Fig. 1 Time lag 7 plots of marginal redundancies ¢"(t) for the Lorenz sys-

tem (“Lorenz a” - see Appendiz) computed with different numbers q of marginal

(equi)quantization levels: a) ¢ =4, b) g = 16, ¢) ¢ = 40, d) ¢ = 64. Four different

curves in each figure represent different numbers n of lagged series, n = 2, 3, 4

and 5, reading from the bottom to the top. Redundancies are in bits and time lags
in units of the system “time” variable (“time units”).
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Fig. 2 The same T-plots of marginal redundancies as in Fig. 1 but for the Réssler
system.
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MARGINAL REDUNDANCY

0 0.5 1 15 2
TIME LAG

Fig. 3 Time lag plots of the marginal redundancy o°(7) for the Lorenz system,
computed with various numbers q of marginal quantization levels, g = 4, 6, 8, 10,
16, 20 and 32, reading from the bottom to the top. The increasing straight line
represents dependence of values of the metric entropy of the Lorenz system sampled
with the lag T against this lag. The thick lines with arrows indicate how to find the
lag T for which the metric entropy of the system (sampled with this lag) is equal to
the partition entropy for particular partition (quantization). Note that the region
of the linear decrease of ¢"(7) always finishes before this point.

entropy by a robust linear regression [30]. These estimates are typically underesti-
mated for lower numbers ¢ of the quantization levels and increase with increasing
g, and then, when a partition given by a particular ¢ becomes generating for a suffi-
cient range of 7, the estimates of the metric entropy approximately saturate on the
correct value. By further increasing ¢, the overquantization can occur leading to
the decrease of the entropy estimates. (See discussion in Sec. 5.1.) Clearly, with an
insufficient amount of data, the overquantization can occur before the partition is
generating for a sufficient range of 7 (or for a studied system in general), i.e., fining
the partition, the estimates of the metric entropy increase to a maximum which is
lower than the correct value of the system metric entropy, and after emerging of
the overquantization they begin to decrease. Examples of these types of behaviour
are given in Fig. 4. Figure 4 a) illustrates the estimation of the metric entropy
of the Lorenz (a) system. Estimates obtained from 1,024,000 data samples (the
upper line, the particular values denoted by the asterisks) saturate from ¢ = 16 on
the value of about 1.32 bits per time unit. For ¢ > 40 the estimates decrease due
to overquantization. The estimates obtained from 102,400 data samples (the lower
line, the particular values denoted by the crosses) reach the maximum value 1.15
at ¢ = 12 and then decrease, again due to overquantization. These results were
obtained from g¢*(7), for n = 5 the overquantization occurred earlier.
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Figure 4 b) presents the same estimation results as Fig. 4 a), but for the Rossler
system. Recalling the above discussion (Sec. 5.2) considering “less” and “more”
chaotic systems, one can compare the numbers ¢ of the quantization levels, i.e.,
the “fineness” of the “most coarse” partitions which are generating with respect to
the Lorenz (¢ = 16) and the Rossler (¢ = 48) systems and how these systems are
vulnerable to overquantization — the Lorenz data are overquantizied from g = 40,
while the Rossler data from g = 80, considering the same number 1,024,000 of data
samples.

METRIC ENTROPY ESTIMATE a) METRIC ENTROPY ESTIMATE b)

0.08

0.9

05 . . . . . .
0 20 40 60 0 20 40 60 80 100
QUANTIZATION QUANTIZATION

Fig. 4 Dependence of the estimate of the metric entropy of a) the Lorenz system

(“Lorenz a”) and b) the Rdssler system on the number of marginal quantization lev-

els. The number of the data samples used in the estimation was 1,024,000 (the up-

per line with the asterisks for the estimated values) and 102,400 (the lower line with

the crosses for the estimated values). Note that the scales are different. The metric
entropy is in bits per time unit.

Using the well-known theorem of Pesin [31], which states that the metric en-
tropy of a dynamical system is equal to the sum of its positive Lyapunov exponents,
we can assess the validity of this method for estimating the metric entropy by com-
paring our values (obtained using 1,024,000 samples) with the values of the positive
Lyapunov exponent published for the systems examined here. (See Appendix for
definition of the systems.) The results follow (the first number is our estimate of
the metric entropy with its standard deviation, the second number is the positive
Lyapunov exponent (both in bits per time unit) with related reference):

Lorenz a: 1.32 £+ 0.04; 1.31 [32],
Lorenz b: 2.20 £+ 0.07; 2.16 [33],
Rossler: 0.129 + 0.002; 0.13 [33].
These results support the assertion (5).

It was found above that a large amount of data was necessary to obtain a
reliable estimate of the metric entropy from ¢"(7). In experimental practice such
data amounts cannot usually be recorded. Also in such cases, however, estimations
of the redundancies ¢"(7) can be useful in two important tasks:
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¢ “Relative quantification” of studied system(s) by using so called coarse-grained
entropy rates [51], which are not suitable for estimating the metric entropy,
but provide a classification of different systems (system states) equivalent to
the classification based on the metric entropy.

e Qualitative characterization of data (systems) under study, namely appli-
cations in nonlinearity tests [49], [48], and in the assessment of the possible
existence of low-dimensional chaos by searching for a region of linear decrease
of " (1) — see Refs. [47, 52] and the next section.

7. Qualitative Characterization of Experimental Time Series

Analyzing experimental data, before their quantification the question of their qual-
itative character should be solved, i.e., one should ask “Is it reasonable to hypothe-
size that the data were generated by a low-dimensional chaotic dynamical system?”
A number of papers of the type “Evidence of the existence of chaos by obtaining
a finite value of the correlation dimension” have been published during the last
decade. As far as we know any strict evidence of chaos which can be obtained from
experimental data is not possible. All the typical properties of chaotic systems
reflected in time series, generated by these systems, are necessary, not sufficient
conditions for chaos. Hence we cannot speak about the evidence of chaos, but only
about signatures of chaos which are detectable in experimental data.

The correlation (or other type of) dimension represents a geometrical signature
of chaos, i.e., it characterizes the geometry (of the system attractor) but not the
dynamics. Therefore extracting from the data only the geometric signature, one can
erroneously consider some special type of stochastic dynamics, formally exhibiting
finite correlation dimension [36], to be chaotic. To prevent this mistake dynamical
signatures like the metric entropy and/or Lyapunov exponents should be applied.

We have done a number of extensive numerical studies of the possibility to
correctly detect chaotic dynamics from time series. Except for the redundancy
method, discussed here, we used the Cohen-Procaccia algorithm for estimating
the metric entropy [4], and for estimating the Lyapunov exponents we applied an
algorithm based on the higher-order fitting of the Jacobian matrices [39], [40]. It
was reported that these and similar methods [4], [5], [41], [42] were able to estimate
the correct values of the metric entropy/Lyapunov exponents from significantly
smaller amounts of data than necessary for the above redundancy method. We have
found, however, that without any a priori knowledge about a system underlying
data, these methods can give even qualitatively incorrect results, i.e., positive value
of the metric entropy or Lyapunov exponent for non-chaotic data. This cannot
happen estimating the redundancies ¢"(7) even from limited amounts of data.
The qualitative character of an underlying system can be assessed by a simple look
at the time-lag traces of the marginal redundancies ¢"(7). For the illustration we
present results obtained from the following data (in addition to the above Lorenz
and Rossler systems):

1. Torus (two-periodic) time series without and with additive uniformly dis-
tributed noise (Figs. 5 a and 5 b, respectively).
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Fig. 5 Marginal redundancy o™(7), n = 2-5, for a) torus (2-periodic) time

series and b) the same torus series jammed by 50% of additive uniformly

distributed noise. Time lag is in number of samples and redundancies are in
bits. Note that the scales on the ordinates are different.

2. Time series generated by the double-Monod system [43] in periodic (Fig. 6 a),
quasiperiodic (Fig. 6 b) and chaotic (Fig. 7) states (for details see Appendix).

3. Time series generated by dynamics on a “strange nonchaotic attractor” (Fig. 8),
introduced by Grebogi et al. [44]. (By “strange” the authors describe fractal
geometry of the attractor, “nonchaotic” means that this system has one zero
and two negative Lyapunov exponents, i.e., zero metric entropy.)

4. Gaussian random processes with the same spectra as the Lorenz and Rossler
systems investigated above, obtained by forward FFT (fast Fourier trans-
form [30]) of the original data, followed by randomization of phases and
backward FFT into the time domain (Fig. 9).

Time-lag plots of the marginal redundancies p"(7) for these time series are
presented in Figs. 5-9. We can see that for all the non-chaotic systems there is no
tendency to the linearly decreasing trend of ¢"(7), i.e., no specific “production of
information” such as in chaotic systems. It means that the estimate of the metric
entropy is clearly zero and there is no dynamical signature of chaos. This holds
also for a random process with the same spectrum as the Rossler system (Fig. 9 b),
representing highly correlated “coloured” noise. In the case of the random process
with the same spectrum as the Lorenz system (Fig. 9 a) the redundancies decrease
quickly to zero by an exponential or power-law way. On the other hand, in the
chaotic state of the double-Monod system the region of linear decrease of ¢"(7)
for n = 4,5 is apparent, i.e., the metric entropy of this system is clearly positive
(Fig. 7). We can see that this “redundancy analysis” is useful for qualitative
characterization of experimental time series. (See also [29], [47].)
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MARGINAL REDUNDANCY a) MARGINAL REDUNDANCY b)

0 4 8 12 0 4 8 12
TIME LAG TIME LAG

Fig. 6 Marginal redundancy o™ (1), n = 2-5, for a) periodic and b) quasiperiodic
state of the double Monod system. Time lag is in the system “time” variable and
the redundancies are in bits.

MARGINAL REDUNDANCY
15r

| \/\/\/\\/\

0.5+ d

TIME LAG

Fig. 7 Marginal redundancy o™ (1), n = 2 — 5, for the chaotic state of the double
Monod system. The time lag is in the system “time” and the redundancies
are in bits.
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O 1 1
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Fig. 8 Marginal redundancy o™(7), n = 2—5, for the “strange non-chaotic attrac-
tor” (see Appendiz). The time lag is in the number of samples and the redundancies
are in bits.

MARGINAL REDUNDANCY a) MARGINAL REDUNDANCY b)

0 05 1 15 2
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Fig. 9 Marginal redundancy o"(7), n = 2 — 5 for the stochastic processes with the
same spectra as a) the Lorenz system and b) the Rdéssler system. The time lag is
in the system “time” and the redundancies are in bits.
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8. Influence of Noise

The influence of additive noise contaminating chaotic time series on the estimation
of the metric entropy from ¢™(7) and on the character of the time-lag dependence
of the marginal redundancy in general, has been studied by adding various portions
of uniformly distributed noise to chaotic time series. Two typical examples of the
marginal redundancies ¢"(7) for the noisy Lorenz data are presented in Fig. 10. In
general, additive noise induces a decrease of magnitudes of the redundancies. (See
also Fig. 5, note that the scales are different.) The noise also induces a decrease
of the estimates of the metric entropy. At the first sight, this is a paradoxical
result, but it can be explained again in terms of prediction uncertainty of system
states. As we have stated above, in any experimental /numerical situation there is
a maximum uncertainty (given by the partition entropy) which can be reached by
the “production of information” during the evolution of a chaotic system. In noisy
data there is some basic uncertainty level which is higher than in noise-free data
(i.e., the redundancies are lower). And this causes a decrease of the effective rate
of the dynamical increase of the uncertainty. This holds, however, only with some
moderate amount of noise, when the behaviour (5) of ¢™(7) can be found (Fig. 10 a,
10% of noise). Starting from some critical amount of noise (which is individual for
different chaotic systems) no “typically chaotic” behaviour (5) of ¢"(7) can be
detected. The marginal redundancy o"(7) decreases by an exponential or power-
law way (Fig. 10 b, 25% of noise), as in the case of an ergodic stochastic process.
The metric entropy cannot be estimated in this case, neither such noisy chaotic
data can be recognized from stochastic data. (At least by using this redundancy
method.) Hence we can conclude that the production of information, the typical
property of chaotic dynamical systems, can be detected from noisy data only up to
a certain level of noisiness of the data. Over this level of noise the chaotic properties
of the system are obscured by noise and the system cannot be recognized from a
stochastic process.

MARGINAL REDUNDANCY a) 09 MARGINAL REDUNDANCY b)

0.5

0 05 1 15 2 0 0.5 1 15 2
TIME LAG TIME LAG

Fig. 10 Marginal redundancy 0"™(7), n = 2-5, for the Lorenz time series contam-

inated by a) 10% and b) 25% of additive uniformly distributed noise. The time

lag is in the system “time” and the redundancies are in bits. Note that scales on
ordinates are different.
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9. Conclusion

A method for analysis of experimental time series suitable for identification and
quantification of underlying chaotic dynamics has been presented. It is based
on examination of time-lag dependence of marginal redundancy, the information-
theoretic functional computed from studied time series and its lagged versions.
The theoretic approach, consisting of a translation of properties of chaotic dynam-
ical systems from the language of ergodic theory to that of information theory, is
followed by an extensive numerical study supporting the assertions derived theoret-
ically. It has been demonstrated that this method is able to discern chaotic dynam-
ics from (noisy) (quasi-)periodic or stochastic processes and provides a quantitative
characterization of chaotic systems by measuring their information production rates
in terms of the metric (Komogorov-Sinai) entropy.

The technique presented above, unlike the entropy algorithms proposed in [3],
[4], [5], is not related to any dimensional algorithm and is also independent of any
method for extracting the Lyapunov exponents. Moreover, it is based on the quan-
tification of a macroscopic property — the information production rate, while the
other mentioned methods are related to microscopic properties of systems under
study and can be heavily biased by finite precision and measurement noise. There-
fore we believe that this “redundancy analysis” can play an important role in the
analysis of dynamical data.
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Appendix

The time series related to the systems of ordinary differential equations were gener-
ated by the numerical integration based on the Bulirsch-Stoer method [30], p.563,
of the Rossler system [45]:

(dz/dt,dy/dt,dz/dt) = (—z — y,z + 0.15y,0.2 + z(z — 10)),

with the integration step 0.314 and accuracy 0.0001;
the Lorenz system [46] — “Lorenz a:”

(dz/dt,dy/dt,dz/dt) = (10(y — z), (28 — 2) — y,zy — 82/3),

with the integration step 0.04 and accuracy 0.0001;
“Lorenz b:”
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(dz/dt,dy/dt,dz/dt) = (16(y — z),2(45.92 — z) — y, zy — 42),

with the integration step 0.02 and accuracy 0.0001;
the double Monod system [43]:

(dz/dt,dy/dt,dz/dt) = (1 + esin(wt) —z — A,A—y — B,B — z2),

where A = 5zy/((8/115) + z), B = 2yz/((9/46) + y) and
€ = 0 in the periodic state,
€ = 3/5, w = 47 in the quasiperiodic state, and
e = 3/5, w =57/6 in the chaotic state,
always with the integration step 0.2 and accuracy 0.0001. In all cases, the compo-
nent x was recorded.
The time series from the “strange nonchaotic attractor” [44] was obtained by
iterating the system:

Ont1 = (0, + 27w)mod(27)

Unt+1 = AUy cos(O) + vy, sin(O))
Unt1 = —0.5A(uy, cos(©) — vy, cos(O))

where w = (v/5 —1)/2 and A = 2/(1 + u2 + v2). Component © was recorded.
Two-periodic noisy data were generated according to the following formula:

Y (t) = (R1 + Resin(wet + ¢)) sin(wit) + &,

where Ry : Ro = 5 : 4, w1 : wy = 10 : 9, ¢ = 1.3m, £ are random numbers
uniformly distributed between —= and Z. The term ”50% of noise” means that
Ri: Ry : =2 =5:4:9. For the torus series without noise the same formula with
& = 0 holds.
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