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Abstract

A quantitative method for automatic detection of phase synchronization in noisy experimental bi-
variate time series is proposed, based on the fact that instantaneous phases of phase-synchronized
(sub)systems are mutually dependent in a specific way irrespectively of a relation between the origi-
nal time series. The level of dependence between the instantaneous phases is quantified by a statistical
dependence parameter, which also reflects the strength of the systems’ phase synchronization. Ranges
of the parameter values, for which the detection of the phase synchronization can be considered reliable,
are estimated by using the technique of surrogate data. Possible applications of the proposed method
are demonstrated by using both numerically generated and real experimental data, namely solutions of
two coupled Rossler systems, mammalian cardio-respiratory data, and long-term recordings of surface
atmospheric temperature and sunspot numbers.

1 Introduction

Synchronization of oscillatory systems is a phenomenon intensively studied in various areas of science and
technology. The strongest definition of synchronization requires that the difference between states of syn-
chronized systems asymptotically vanishes. This definition is called identical synchronization [1], while the
notion of generalized synchronization requires that states of coupled systems are (asymptotically) related
by some (possibly complex) function [2, 3]. In the classical case of periodic self-sustained oscillators, phase
synchronization is usually defined as locking of phases ¢y »:

n¢; — mes = const., (1)

for integer n and m, while the amplitudes can be different. Recently, Rosenblum et al. [4] have discovered
the phase synchronization in a case of coupled chaotic systems, where the phase entrainment (locking) is
described as

|ng1 — mea| < const., (2)

while the amplitudes of the two systems may be completely uncorrelated, i.e., linearly independent.

The phase of a signal s(¢) can be determined® by using the analytic signal concept of Gabor [5], introduced
into the context of chaotic synchronization by Rosenblum et al. [4]. The analytic signal 1(t) is a complex
function of time defined as

() = 5(t) + j3(t) = A(£)eIO, (3)

where the function §(¢) is the Hilbert transform of s(#
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1For a detailed discussion of this problem and alternative methods see Refs. [4, 6].



(P.V. means that the integral is taken in the sense of the Cauchy principal value.) The instantaneous phase
@(t) of the signal s(t) is then
5(t)

¢(t) = arctan 50" (5)

Let us consider the same example of the phase synchronization as described in Rosenblum et al. [4] —
two coupled Rdssler systems [7]

12 =—wiaY12 — 21,2 + €(T21 — 21,2),

1,2 = w1 ,221,2 + 0.15y1 2, (6)
2.1,2 =0.2 + 21’2(1'1,2 - 10)

The frequencies wy 2 are defined as wy » = 1+ Aw, where the frequency mismatch Aw = 0.015 is used in this
article. For this system m = n =1 and the instantaneous phase difference for the components z; 5 is

.i'l (t)l‘z (t) — 1 (t)i‘z (t)

21 (t)22(t) + £1(t)22(t)
With the coupling strength € = 0.035, a phase-synchronized regime occurs, in which the phase difference
A¢ is confined inside a limited interval around 1 (approximately (0.6, 1.4), Fig. 1la). For ¢ = 0.001 the

subsystems are not synchronized and the phase difference A¢ varies in the whole range? (—7,7) allowed by
Eq. (7). (Fig. 1b.)

Ag(t) = ¢1(t) — ¢2(t) = arctan (7)

By computing and plotting the phase difference A¢ = m¢p; —n¢s, the phase synchronization was observed
in chaotic systems modelled on digital [4] or analog [1] computers,® as well as in bivariate experimental
data such as those registered from a mammalian cardio-respiratory system [8]. In general, however, the
evaluation of the instantaneous phase difference A¢(t) alone can be insufficient for answering the question
about existence of the phase synchronization between (sub)systems under study.

Consider, for instance, that the time series generated in the phase-synchronous regime of the above
coupled Rossler systems (e = 0.035) are mixed with additive “measurement” Gaussian white noise.* The
condition (2) is broken since the phase differences attain any value from the full range (—7,w) (Fig. 1lc).
In Fig. 1d we illustrate the phase differences between two independent linear stochastic processes, asyn-
chronously oscillating with the same frequencies as the phase-synchronized Rossler series.

In an experimental situation it could be hard if not impossible, even for an expert, to decide from plots
of A¢, whether analyzed systems are phase-synchronized but noisy, or no synchronization is present. And
in many practical analyses an expert’s eye cannot participate, e.g., when a large amount of data is being
processed automatically and segments of phase-synchronous regimes should be detected.

In this Letter we propose a simple quantitative method for detecting the phase synchronization in exper-
imental bivariate time series.

2 The method

Let us rewrite the condition (2) for the phase entrainment as
ng1 — mes = C. (8)

2Here we do not use the definition of monotonically increasing phase/phase difference like Rosenblum et al. [4] (cf. Fig. 1
in [4]), since the latter is not suitable for the method presented below. The range of the standard function arctan(X) (e.g.,
in FORTRAN implemented as ATAN(X)) is (—n/2,7/2). If the argument X can be written as X = X1/X>, such as in the
case presented here, the FORTRAN function ATAN2(X1, X5) can be used, the range of which covers the whole circle (—, 7).
The latter representation of the phases as functions in (—, 7) is used below. The results of the statistical procedure presented
below, however, do not depend on the particular implementation used, i.e., one can work in the range (—7/2,7/2) using ATAN,
or in the range (—m, 7) using ATAN2.

3The authors of [1] investigated oscillators with unidirectional coupling, while in [4] and here (Eq. 6) bidirectionally coupled
systems were studied.

4T.e., the noise has been added to the already generated data. A dynamical noise affecting evolution of systems is not
considered in this case. The term “30% of noise” means that the standard deviation (SD) of the noise is equal to 30% of SD
of the original noise-free data.




Then, one of the instantaneous phases, say ¢s, can be written as a linear function of the other instantaneous

phase ¢,
¢2 =~ A+ B¢, (9)

for A= —C/m and B = n/m, i.e., if the two (sub)systems are phase-synchronized, their instantaneous
phases are approximately related by the simple linear function (9), although their amplitudes can be linearly
independent [4].

Formally, a relation such as (9) holds also in cases when no phase synchronization is present. Then,
however, the intercept A is not constant, but contains a time-dependent term of the type at. (E.g., @ = 2Aw
in the case of the above coupled Réssler systems (6).) Using the representation of the phases as monotonically
increasing functions (as used in [4]) a graph of ¢, plotted against ¢; will always be a straight line with the
slope B + «. Distinction of phase synchronized regimes (o = 0) from asynchronous states (a # 0) would
require knowledge about particular value of B = n/m and can be statistically unreliable, especially for small
a. Moreover, the representation of the phases as monotonically increasing functions requires an addition of
27 to the phase value obtained from Eq. (5) after each cycle, due to the fact that Eq. (5) always gives the
phase values in the range —m,7.> This operation can be very problematic when processing experimental
data with noise and/or fluctuating periods.

On the other hand, using directly the phase values obtained from Eq. (5), the proposed method does
not require any additional information and/or data preprocessing and, as we will see below, provides a
very clear and statistically robust distinction between phase synchronous and asynchronous states. The
temporal evolution of instantaneous phases in this representation remains a sawtooth shape — the phase
linearly increases from —7 to 7, then jumps down to —7 and continues to increase to m, jumps down to —,
etc.

Let us study the phase relation of the coupled Rossler systems (6) in the phase synchronized state
(e = 0.035) by plotting ¢ against ¢; (Fig. 2a). Inside a particular cycle, the relation ¢o &~ A + B¢; holds,
with A = 1 and B = 1. When the phase of the phase-advanced system starts a new cycle and jumps to —,
the intercept A changes to A = 1 — 27. Then the phase of the phase-delayed system jumps to —7 and the
intercept A returns to A =~ 1. As a result of this behaviour, the phase pairs (¢1, ¢2) are confined inside two
strips ¢o &~ A + B¢, with the same slope B but with two intercepts, which differ by 27.

In asynchronous states such as that for e = 0.01 (Fig. 2b), the phase relation ¢ = A + B¢ + at holds.
Between the phase jumps, the pairs (¢1, @) draw lines increasing with the slope B + a. After each phase
jump, however, a new line starts with an “effective” instantaneous intercept A + at (or A + at — 27, with
its absolute value taken to mod 7). After a sufficient number of cycles, the phase pairs (¢1, ¢2) fill almost
homogeneously the whole planar interval (—m,7) x (—m,7) (Fig. 2b) and thus effectively make the phases
¢1 and ¢, statistically independent.

In Figure 2c the phase pairs (¢1,¢2) are plotted, obtained from the noisy phase-synchronous Rossler
series (e = 0.035, 30% of noise), the phase differences of which were plotted in Fig. 1lc. Figure 2d presents
the phase pairs (¢1, ¢2) for the asynchronous linear stochastic oscillators, which phase differences were drawn
in Fig. 1d. The distinction of synchronous (a,c) and asynchronous (b,d) states in Fig. 2 is much clearer than
in Fig. 1. Moreover, the level of dependence between the phases ¢;, @2 can be quantitatively measured by
a statistical or information-theoretic functional of probability distributions, which can be used for objective
distinction between synchronous and asynchronous states even in more complicated® and/or more noisy
situations than those presented above, and in automatic detection of phase synchronization.

Let p1(¢1) and pa(¢2) be probability distributions of the phases ¢; and ¢, respectively, and p1 2(¢1, P2)

5Providing we use the FORTRAN function ATAN2. When the standard function ATAN is used, an addition of 7 is necessary
after each half-cycle.

6In the cases when n # m > 1, the phase pairs can be confined into more then two (and less or equal to m +n) strips in the
planar interval (—m, ) X (—7,m).



be their joint distribution. The mutual information”

p1 2(‘151;(252)
(61, bo) /_ /_Wplz 1,60) g DAL g g, (10)

is one of suitable statistics for testing the dependence between the phases ¢;(t), ¢2(t). Theoretically, inde-
pendence of the phases, i.e., the absence of the phase synchronization means I(¢;,¢2) = 0; while for the
phase synchronization, i.e., a mutual dependence of the phases, I(#1, ) > 0 holds.

Processing experimental data, when the existence of the phase synchronization is investigated, it is ques-
tionable whether any positive value of I(¢1, ¢2) can be considered as evidence for the phase synchronization.
In order to prevent “spurious” detections of the phase synchronization, we propose to use the technique of
surrogate data [10, 11] for establishing the range of I(¢1, ¢2) values, which can be obtained from bivariate
processes having some properties similar to the studied data, however, not possessing the searched phase syn-
chronization. A number of realizations of the surrogate data are numerically generated according to a given
prescription (a null hypothesis) and their I(¢1, ¢2) are evaluated. Then the mutual information I(¢1, ¢2)
obtained from the studied data is compared with a set of I(¢#1, ¢2) values obtained from the surrogates, and,
if there is a significant difference, the null hypothesis is rejected. One can use several types of surrogate data
according to properties and quality of the data under study.

1. IID1 surrogates are realizations of mutually independent IID (independent identically distributed) stochas-
tic processes (white noises) with the same mean, variance and histogram as the series under study. The IID1
surrogates are constructed by “scrambling” the original series, i.e., the elements of the original series are
randomly permutated in temporal order, in each realization different random permutations are used for the
two components of the bivariate series. This randomization destroys any temporal structure, if present in
the original series. The IID1 surrogates present the null hypothesis of independent white noises, i.e., nor
synchronization neither oscillations are considered.

2. IID2 surrogates are realizations of IID stochastic processes (white noises), which count for possible
cross-dependence between the two components of the bivariate series. In each realization, the same ran-
dom permutation is used for both components of the bivariate series.® The IID2 surrogates present the
null hypothesis of mutually dependent white noises, i.e., the two series are “synchronized” in a sense of
mutual dependence given, e.g., by crosscorrelations (for instance, spatial correlations of series sampled in
different locations from the same spatially extended process), however, the specific phenomenon of the phase
synchronization of oscillatory processes, as well as other temporal structures are absent.

The IID surrogates are suitable in the case of very noisy data, when a narrow band-pass filtering is
applied before detecting the phase synchronization. It is important to generate the IID surrogates before
the filtering® and then to evaluate I(¢;, ¢») from both filtered data and filtered IID surrogates.

3. FT1 surrogates are independently generated for each of the two components of the studied bivariate series
as realizations of linear stochastic processes with the same sample power spectra as the series under study.
The FT1 surrogates are obtained by computing the Fourier transform (FT) of the series, keeping unchanged
the magnitudes of the Fourier coefficients (the spectrum), but the phases of the Fourier coefficients are
randomized and the inverse FT into the time domain is performed [10, 11]. The FT1 surrogates realize the
null hypothesis of two linear stochastic processes which asynchronously oscillate with the same frequencies
(power spectra) as the original series under study.

4. FT2 surrogates are realizations of a bivariate linear stochastic process which mimics individual spectra
of the two components of the original bivariate series as well as their cross-spectrum. Constructing the FT2

7A simple box-counting method for estimating the mutual information is described in [11, 14], correlation integrals are used
n [15].

8Consider a “toy” example — two three-sample series {a,b,c} and {A, B,C}. A realization of the ITD1 surrogates can be,
e.g., {b,a,c} and {C, B, A}, while a realization of the IID2 surrogates should look like, e.g., {b,a,c} and {B, A,C}.

9Especially, before the filtering which enhances or “uncovers” the studied oscillations. Some kinds of preprocessing, such
as removing slow phenomena or trends (nonstationarities) could be, and in some cases, should be done before generating the
surrogates.



surrogates not only the spectra but also differences between phases of the Fourier coefficients of the two series
for particular frequency bins must be kept unchanged. Thus the phase randomization is performed by adding
the same random number to the phases of both coefficients of the same frequency bin. (For more details see
[12].) The FT2 surrogates preserve (a part of) synchronization, if present in the original data, which can be
explained by a bivariate linear stochastic process. This “linear stochastic phase synchronization” is usually
weaker than the phase synchronization in the original data from nonlinear (chaotic) systems.

3 A numerical example

Let us return to the two coupled Rossler systems (6) with the frequency mismatch Aw = 0.015 and evaluate
the mutual information I(¢1, ¢2) for the coupling strength € increasing from € = 0 to e = 0.1 (Fig. 3). In
the asynchronous regime (0 < € < 0.03) I(¢1,¢2) is close to zero. For € > 0.03 the phase synchronization
emerges and I(¢;, @) rises to the values!? between 1.4 and 1.9 in the case of the noise-free data (Figs. 3a,b,
thick solid line), and about 0.8 in the case of the data with 30% of additive “measurement” noise (Fig. 3c,d,
thick solid line). The FT1 surrogates (Fig. 3a,c, thin solid line and thin dashed lines illustrate mean and
mean + SD, respectively, of a set of fifteen realizations of the surrogates for each value of €) give I(¢1, $2)
mostly coinciding with I(¢1, ¢2) from the Rdssler data in the asynchronous regime (i.e. I(¢1, ¢2) ~ 0), while
in the phase-synchronous regime the mutual information I(¢1, @2) from the FT1 surrogates does not reach
over 0.7, i.e., I(¢1, ¢2) of the phase-synchronized Rossler series is clearly different from I(¢q, ¢2) of the FT1
surrogates. Thus the phase-synchronized Rossler series are discernible, with a very high level of statistical
significance, from the asynchronous isospectral oscillations, even in the noisy case (Fig. 3c).

In the phase-synchronous regime, the mutual information I(@1, @#2) obtained from the FT2 surrogates
reaches higher values than that of the FT1 surrogates, however, it is still clearly smaller than I(¢;, @) of
the phase-synchronized Rossler series (Fig. 3b,d). The bivariate linear stochastic process can only partially
reproduce the phase synchronization of the chaotic oscillators, and the two phenomena are still discernible
with a high statistical significance.

Let us assign the values of the mutual information I(¢;,¢2) for the examples of the phase differences
in Fig. 1 and the phase plots in Fig. 2: The mutual information for the phase-synchronous regime in
Fig. 1la/2a can be found in Fig. 3a for e = 0.035 as I(¢1,¢2) = 1.5, for the asynchronous regime (Fig.
1b/2b) I(¢1,¢2) ~ 0 (Fig. 3a, e = 0.01), for the synchronous (¢ = 0.035) series with noise (Fig. 1lc/2c)
I(¢1,¢2) = 0.8 (Fig. 3c), and the mutual information of asynchronous linear stochastic oscillations (Fig.
1d/2d) can be found in the range 0 — 0.7 (Fig. 3a). (The latter were generated as a realization of the FT1
surrogates of the noise-free phase-synchronized Rossler series. Note that I(¢1, ¢2) obtained from the FT1
surrogates of the noisy phase-synchronized Rossler series does not reach over 0.4.)

4 Two examples of experimental data

Synchronization between respiratory movements (breathing) and heart rate (instantaneous heartbeat fre-
quency) is a phenomenon intensively studied by physiologists (see [8] and references therein). Here we
demonstrate a possible application of the proposed methodology in detecting segments of phase-synchronous
regimes in long-term recordings from the cardio-respiratory system of a sleeping piglet. The time series of
respiratory movements (RM) and heart rate (HR) are described in detail and analyzed by different methods
in [8]. In the example of the analysis presented here (Fig. 4), we do not estimate the mutual information
between the phases of the whole record of RM and HR, but inside a 400-sample window, which is moved
along the series, in order to detect short segments of a possible phase synchronization. The surrogates were
constructed from the whole record and processed by using the same “moving mutual information” approach.
Therefore we do not average I(¢1,¢2) obtained from the surrogates, but we plot the results from all real-
izations of the surrogates'! in order to compare local maxima of I(¢;, ¢) obtained from the data and from
the surrogates.

10The mutual information is in nats, since the natural logarithm log, was used in (10). These values can be converted into
bits by multiplying them by log, 2.

1 ¥or better readability only I(¢1,p2) from five surrogate realizations are plotted in Fig. 4 and 5 using various dashed and
dotted lines.



In the presented example (Fig. 4), the mutual information I(¢1, ¢2) provide a strong statistical evidence
for the presence of the phase synchronization in most parts of the studied series. These results are physiolog-
ically meaningful — the phase synchronous regime corresponds to the intervals of the NON-REM sleep (see
the sleep stages classification in the top panel of Fig. 4), while the asynchronous (or weakly synchronous)
segments correspond to the intervals of the REM sleep or of the undetermined sleep stages. (See [8] for
detailed discussion.) A visual inspection of the phase difference plot, obtained from the data (Fig. 4, the
second panel from the top), cannot provide such a clear distinction between the states, although some dif-
ferences from the phase difference plot, obtained from a realization of the surrogates (Fig. 4, the third panel
from the top) are visible.

In the bottom panel of Fig. 4, we can see that in the synchronous segments even the FT2 surrogates are
rejected with a high statistical significance. This result agrees with the positive identification of nonlinear-
ity in the cardio-respiratory synchronization [8], obtained using the method for detection of nonlinearity in
multivariate time series [13].

There was no need to apply the IID surrogates in the above cases of the Rossler data and the cardio-
respiratory data with oscillations clearly visible without any preprocessing, unlike in the following example
from a study of low-frequency components of atmospheric dynamics.'? After an appropriate band-pass
filtering of surface atmospheric temperature series of length of almost 200 years, recorded at several European
locations, oscillatory phenomena with a period close to a decade can be observed. Are these cycles related
to the sunspot cycles [16], which have a similar (11-year) periodicity ?

Monthly sampled differences from the long-term monthly average temperatures were used. The subtrac-
tion of the long-term monthly averages removed the yearly periodicity (seasonality). Then these temperature
data, as well as monthly sunspot numbers and related surrogate data were band-pass filtered using a phase-
neutral moving-average (MA) filter. First, moving averages from a 137-point window were subtracted from
the data in order to remove slower phenomena. Finally, a 35-point window MA was used to obtain the
filtered series, examples of which are illustrated in Fig. 5: Reading from the top to the bottom, there are
band-pass filtered sunspot numbers, surface atmospheric temperatures recorded at the Prague-Klementinum
station, and examples of band-pass filtered realizations of the FT1 and IID1 surrogates, obtained from the
temperature series.

The same approach of the moving window for the detection of the segments of a possible phase synchro-
nization as above has been applied, i.e., the surrogates were constructed from the whole records (actually
from a subset of 2048 monthly samples), then both the data and the surrogates were band-pass filtered
and the mutual information I(¢;, ¢») was estimated inside a moving 240-sample window. The IID1 null'®
has been reliably rejected in one segment only (1940 — 1960, Fig. 5, the second panel from the bottom), a
similar result has been obtained using the IID2 surrogates (not presented). The FT1 surrogates, however,
produce local I(¢;,¢2) maxima comparable with the maximum I(¢;,¢2) obtained from the data, i.e., the
asynchronous FT1 null hypothesis has not been rejected (Fig. 5, the bottom panel). Therefore we con-
clude that using this approach no evidence for phase synchronization between the sunspot cycles and the
studied surface atmospheric temperature series has been found. (Similar results have been obtained using
temperature records from several other European locations.)

5 Conclusion

A quantitative method for detection of phase synchronization in experimental bivariate time series has been
proposed. The method is based on the fact that the instantaneous phases of phase-synchronized systems
are mutually dependent, while the instantaneous phases of phase-asynchronous systems are effectively sta-
tistically independent. The level of a dependence between the instantaneous phases is quantified by mutual
information, statistically measuring a general mutual dependence between the phases. This measure of the
phase dependence also reflects the strength of the systems’ phase synchronization. In order to avoid spurious

12 A detailed report on that study will be published elsewhere. Here we present only a small part of preliminary results in
order to demonstrate an application of the proposed method.

13Not-rejecting the TID1 null hypothesis in this test, however, is not equivalent to a proof of the ITD property and to the
rejection of the existence of the cycles. The existence of the near-decadal cycles in the processed surface atmospheric temperature
records can be proven by comparing periodograms of the temperature series and related IID surrogates.



detections of the phase synchronization, the value of the mutual information I(¢1, @) obtained from the
data under study is compared with a set of I(¢1, ¢2) values obtained from realizations of surrogate data, rep-
resenting appropriate null hypotheses. The IID1 surrogates present the null hypothesis of independent white
noises, i.e., neither synchronization, nor oscillations are considered; the IID2 surrogates allow for a mutual
dependence (cross-correlated white noises) but do not contain oscillations. The FT1 surrogates present the
null hypothesis of asynchronous oscillatory processes with the same spectra as the studied data. A rejection
of all IID1, IID2 and FT1 null hypotheses can be considered as the evidence for a phase synchronization in
the studied data/systems. The FT2 surrogates can possess some level of the phase synchronization which
is consistent with a bivariate linear stochastic process. A rejection of the FT2 null hypothesis means the
detection of phase-synchronized deterministic nonlinear' systems.

The proposed method, possible applications of which were demonstrated using both numerically generated
and real experimental data, is suitable for automatic detection of (segments of) phase-synchronized regimes
in noisy experimental bivariate time series.
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Figure 3: Mutual information I(¢;,¢$2) as the measure of the mutual dependence between the phases ¢1, ¢2,
plotted as the function of the coupling strength €, for the data from the coupled Réssler systems (thick solid
lines) and surrogates (thin solid lines and thin dashed lines illustrate mean and mean + SD, respectively,
of a set of fifteen realization of the surrogates), (a,c) the asynchronous FT1 surrogates, (b,d) the bivariate
FT2 surrogates; for (a,b) the numerically generated noise-free data, and (c,d) the data contaminated with
30% of Gaussian noise.
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Figure 4: From top to bottom: Classification of intervals of sleep stages (REM, undetermined, NON-
REM sleep); plot of phase differences between respiratory movements (RM, 8 Hz sampling) and heart rate
(HR, resampled to 8 Hz) of a sleeping piglet (both series high-pass filtered by subtracting a 45-sample
moving average); plot of phase differences obtained from a realization of FT1 surrogates (phase differences
obtained from FT2 surrogates look very similar); mutual information I(¢1,¢2) as the measure of the mutual
dependence between the phases ¢1, ¢2 obtained from a moving 400-sample window from the phases of the
RM and HR series (thick solid line) and from five realizations of the asynchronous FT1 surrogates (thin
dashed and dotted lines); mutual information I(¢;,¢$2) as the measure of the mutual dependence between
the phases ¢1, ¢, obtained from a moving 400-sample window from the phases of the RM and HR series
(thick solid line) and from five realizations of the bivariate FT2 surrogates (thin dashed and dotted lines).
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Figure 5: From top to bottom: Monthly sampled time series of sunspot numbers; differences from long-term
monthly means of surface atmospheric temperature, Prague-Klementinum station; FT1; and IID1 surrogate
realizations constructed from the temperature data. All the series were band-pass filtered. The second panel
from the bottom: The mutual information I(¢;,¢$s) as the measure of the mutual dependence between the
phases ¢y, ¢2 obtained from a moving 240-sample window from the phases of the band-pass filtered sunspot
and temperature series (thick solid line) and from five realizations of the band-pass filtered IID1 surrogates
(thin dashed and dotted lines). The bottom panel: The same as in the previous panel, but the asynchronous
isospectral F'T'1 surrogates were used.
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