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Abstract

Synchronization, a basic nonlinear phenomenon, is widely observed in diverse
complex systems studied in physical, biological and other natural sciences, as
well as in social sciences, economy and finance. While studying such complex
systems, it is important not only to detect synchronized states, but also to
identify causal relationships (i.e. who drives whom) between concerned (sub)
systems. The knowledge of information-theoretic measures (i.e. mutual infor-
mation, conditional entropy) is essential for the analysis of information flow
between two systems or between constituent subsystems of a complex system.
However, the estimation of these measures from a set of finite samples is not
trivial. The current extensive literatures on entropy and mutual information es-
timation provides a wide variety of approaches, from approximation-statistical,
studying rate of convergence or consistency of an estimator for a general distribu-
tion, over learning algorithms operating on partitioned data space to heuristical
approaches. The aim of this paper is to provide a detailed overview of infor-
mation theoretic approaches for measuring causal influence in multivariate time
series and to focus on diverse approaches to the entropy and mutual information
estimation.
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1 Introduction

1.1 Causality

Detection and clarification of cause-effect relationships among variables, events
or objects have been the fundamental questions of most natural and social
sciences over the history of human knowledge. Despite some philosophers of
mathematics like B. Russel [198](1872-1970) tried to deny the existence of the
phenomenon ”causality” in mathematics and physics, saying that causal rela-
tionships and physical equations are incompatible, calling causality to be ’a
word relic” (see i.e. [171]), the language of all sciences, including mathematics
and physics, has been using this term actively until now. Mathematical and
physical relations are not limited only to equations. To advocate the Russell’s
view, any exact and sufficiently comprehensive formulation of what is causality
is problematic. Causality can be understood in terms of a ”flow” among pro-
cesses and expressed in mathematical language and mathematically analysed.
Current statistics understands causal inference as one of its most important
problems.

The general philosophical definition of causality from the Wikipedia Encyclo-
pedia [253] states: ”The philosophical concept of causality or causation refers
to the set of all particular ”causal” or ’cause-and-effect’ relations. A neutral
definition is notoriously hard to provide, since every aspect of causation has re-
ceived substantial debate. Most generally, causation is a relationship that holds
between events, objects, variables, or states of affairs. It is usually presumed
that the cause chronologically precedes the effect.”

Causality expresses a kind of a ’law’ necessity, while probabilities express
uncertainty, a lack of regularity. Despite of these definitions, causal relation-
ships are often investigated in situations which are influenced by uncertainty.
Probability theory seems to be the most used ”mathematical language” of most
scientific disciplines using causal modeling, but it seems not to be able to grasp
all related questions. In most disciplines, adopting the above definition, the
aim is not only to detect a causal relationship but also to measure or quan-
tify the relative strengths of these relationships. Although there is an extensive
literature on causality modeling, applying and combining mathematical logic,
graph theory, Markov models, Bayesian probability, etc. (i.e. Pearl, [171]), the
aim of our review is to focus only on the information-theoretic approaches which
understand causality as a phenomenon which can be ”measured” and quantified.
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We want to provide a detailed overview of the information-theoretic ap-
proaches for measuring of a causal influence in multi-variate time series. Based
on the definition of causality in the information-theoretic framework, we focus
on approaches to the estimation of entropy and mutual information. The pre-
vious review papers on entropy estimation (Beirlant et al. [22] and Erdogmus
[70]) focused on non-parametric entropy estimation. In this paper we not only
update the state of art on non-parametric entropy estimation, but discuss also
parametrical estimation.

1.2 Causal measures

As mentioned earlier, there has been no universally accepted definition of causal-
ity (see Granger, 1980 [91] for a lively discussion on this issue), so it would be
futile to search for a unique causality measure. However, we mention here briefly
the salient features of this debate for convenience. Most of the earlier research
literature attempts to discuss unique causes in deterministic situations, and two
conditions are important for deterministic causation: (i) necessity: if X occurs,
then Y must occur, and (ii) sufficiency: if Y occurs, then X must have occurred.
However, deterministic formulation, albeit appealing and analytically tractable,
is not in accordance with reality, as no real-life system is strictly deterministic
(i.e. its outcomes cannot be predicted with complete certainty). So, it is more
realistic if one modifies the earlier formulation in terms of likelihood (i.e. if X
occurs, then the likelihood of Y occurring increases). This can be illustrated by
a simple statement such as if the oil price increases, the carbon emission does
not necessarily decrease, but there is a good likelihood that it will decrease.
The probabilistic notion of causality is nicely described by Suppes (1970) as
follows: An event X is a cause to the event Y if (i) X occurs before Y , (ii)
likelihood of X is non zero, and (iii) likelihood of occurring Y given X is more
than the likelihood of Y occurring alone. Although this formulation is logically
appealing (however, see [157] for a critique of Suppe’s causality), there are some
arbitrariness in practice in categorizing an event [91].

Till 1970, the causal modeling was mostly used in social sciences. This was
primarily due to a pioneering work by Selltiz et al (1959) [210] who specified
three conditions for the existence of causality:

1. There must be a concomitant covariation between X and Y.

2. There should be a temporal asymmetry or time ordering between the two
observed sequences.

3. The covariance between X and Y should not disappear when the effects
of any confounding variables (i.e. those variables which are causally prior
to both X and Y) are removed.

The first condition implies a correlation between a cause and its effect, though
one should explicitly remember that a perfect correlation between two observed
variables in no way implies a causal relationship. The second condition is in-
tuitively based on the arrow of time. The third condition is problematic since
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it requires that one should rule out all other possible causal factors. Theo-
retically, there are potentially an infinite number of unobserved confounding
variables available, yet the set of measured variables is finite, thus leading to
indeterminacy in the causal modeling approach. In order to avoid this, some
structure is imposed on the adopted modeling scheme which should help to de-
fine the considered model. The way in which the structure is imposed is crucial
in defining as well as in quantifying causality.
The first definition of causality which could be quantified and measured com-
putationally, yet very general, was given in 1956 by N. Wiener [252]: ”For two
simultaneously measured signals, if we can predict the first signal better by
using the past information from the second one than by using the information
without it, then we call the second signal causal to the first one.”

The introduction of the concept of causality into the experimental practice,
namely into analyses of data observed in consecutive time instants, time series,
is due to Clive W. J. Granger, the 2003 Nobel prize winner in economy. In his
Nobel lecture [92] he recalled the inspiration by the Wiener’s work and identified
two components of the statement about causality:

1. The cause occurs before the effect; and

2. The cause contains information about the effect that is unique, and is in
no other variable.

As Granger put it, a consequence of these statements is that the causal variable
can help to forecast the effect variable after other data has been first used
[92]. This restricted sense of causality, referred to as Granger causality, GC
thereafter, characterizes the extent to which a process Xt is leading another
process Yt, and builds upon the notion of incremental predictability. It is said
that the process Xt Granger causes another process Yt if future values of Yt can
be better predicted using the past values of Xt and Yt rather then only past
values of Yt. The standard test of GC developed by Granger [88] is based on a
linear regression model

Yt = ao +
L∑

k=1

b1kYt−k +
L∑

k=1

b2kXt−k + ξt, (1)

where ξt are uncorrelated random variables with zero mean and variance σ2, L
is the specified number of time lags, and t = L + 1, . . . , N . The null hypothesis
that Xt does not Granger cause Yt is supported when b2k = 0 for k = 1, . . . , L,
reducing Eq. (1) to

Yt = ao +
L∑

k=1

b1kYt−k + ξ̃t. (2)

This model leads to two well-known alternative test statistics, the Granger-
Sargent and the Granger-Wald test. The Granger-Sargent test is defined as

GS =
(R2 −R1)/L

R1/(N − 2L)
(3)
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where R1 is the residual sum of squares in (1) and R2 is the residual sum of
squares in (2). The GS test statistic has an F-distribution with L and N − 2L
degrees of freedom [2]. On the other hand, the Granger-Wald test is defined as

GW = N
σ̂2

ξ̃t
− σ̂2

ξt

σ̂2
ξt

(4)

where σ̂2
ξ̃t

is the estimate of the variance of ξ̃t from model (2) and σ̂2
ξt

is the
estimate of the variance of ξt from model (1). The GW statistic follows the χ2

L

distribution under the null hypothesis of no causality.
This linear framework for measuring and testing causality has been widely

applied not only in economy and finance (see Geweke [85] for a comprehensive
survey of the literature), but also in diverse fields of natural sciences such as
climatology (see [236] and references therein) or neurophysiology, where spe-
cific problems of multichannel electroencephalogram recordings were solved by
generalizing the Granger causality concept to multivariate case [126, 36]. Never-
theless, the limitation of the present concept to linear relations required further
generalizations.

Recent development in nonlinear dynamics [1] evoked lively interactions be-
tween statistics and economy (econometrics) on one side, and physics and other
natural sciences on the other side. In the field of economy, Baek and Brock [14]
and Hiemstra and Jones [110] proposed a nonlinear extension of the Granger
causality concept. Their non-parametric dependence estimator is based on so-
called correlation integral, a probability distribution and entropy estimator,
developed by physicists Grassberger and Procaccia in the field of nonlinear dy-
namics and deterministic chaos as a characterization tool of chaotic attractors
[94]. A non-parametric approach to non-linear causality testing, based on non-
parametric regression, was proposed by Bell et al. [23]. Following Hiemstra and
Jones [110], Aparicio and Escribano [10] succinctly suggested an information-
theoretic definition of causality which include both linear and nonlinear depen-
dence.

In physics and nonlinear dynamics, a considerable interest recently emerged
in studying cooperative behavior of coupled complex systems [177, 37]. Syn-
chronization and related phenomena were observed not only in physical, but
also in many biological systems. Examples include the cardio-respiratory inter-
action [199, 200, 166, 38, 220, 120] and the synchronization of neural signals
[201, 187, 228, 160, 159]. In such physiological systems it is not only important
to detect synchronized states, but also to identify drive-response relationships
and thus the causality in evolution of the interacting (sub)systems. Schiff et al.
[201] and Quyen et al. [187] used ideas similar to those of Granger, however,
their cross-prediction models utilize zero-order nonlinear predictors based on
mutual nearest neighbors. A careful comparison of these two papers [201, 187]
reveals how complex is the problem of inferring causality in nonlinear systems.
The authors of the two papers use contradictory assumptions for interpreting the
differences in prediction errors of mutual predictions, however, both the teams
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were able to present numerical examples in which their approaches apparently
worked.

While the latter two papers use the method of mutual nearest neighbors for
mutual prediction, Arnhold et al. [12] proposed asymmetric dependence mea-
sures based on averaged relative distances of the (mutual) nearest neighbors. As
pointed out by Quian Quiroga et al. and by Schmitz [188, 203], these measures,
however, might be influenced by different dynamics of individual signals and
different dimensionality of the underlying processes, rather than by asymmetry
in coupling.

Another nonlinear extension of the Granger causality approach was proposed
by Chen et al. [46] using local linear predictors. An important class of nonlinear
predictors are based on so-called radial basis functions [42] which were used
for nonlinear parametric extension of the Granger causality concept [7, 143].
Although they are not exactly based on information theory, they are connected
to methods reviewed here and will be discussed more in detail in Section 6.

A non-parametric method for measuring causal information transfer between
systems was proposed by Schreiber [206]. His transfer entropy is designed as a
Kullback-Leibler distance (Eq. (15) in Sec. 2.1) of transition probabilities. This
measure is in fact an information-theoretic functional of probability distribution
functions.

Paluš et al. [160] proposed to study synchronization phenomena in exper-
imental time series by using the tools of information theory. Mutual informa-
tion, an information-theoretic functional of probability distribution functions,
is a measure of general statistical dependence. For inferring causal relation,
conditional mutual information can be used. It will be shown that, with proper
conditioning, the Schreiber’s transfer entropy [206] is equivalent to the condi-
tional mutual information [160]. The latter, however, is a standard measure of
information theory [50].

Turning our attention back to econometrics, we can follow further devel-
opment due to Diks and DeGoede [62]. They again applied a nonparametric
approach to nonlinear Granger causality using the concept of correlation in-
tegrals [94] and pointed out the connection between the correlation integrals
and information theory. Diks and Panchenko [64] critically discussed the pre-
vious tests of Hiemstra and Jones [110]. As the most recent development in
economics, Baghli [15] proposes information-theoretic statistics for a model-free
characterization of causality, based on an evaluation of conditional entropy.

The nonlinear extension of the Granger causality based the information-
theoretic formulation has found numerous applications in various fields of nat-
ural and social sciences. Let us mention just a few examples. The Schreiber’s
transfer entropy was used in climatology [149, 245], in physiology [245, 130],
in neurophysiology [45] and also in analysis of financial data [144]. Paluš et
al. [159, 160] applied their conditional mutual information based measures in
analyses of electroencephalograms of patients suffering from epilepsy. Other
applications of the conditional mutual information in neurophysiology are due
to Hinrichs et al. [111] and Pflieger and Greenblatt [176]. Causality or cou-
pling directions in multimode laser dynamics is another diverse field where the
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conditional mutual information was applied [156]. Paluš and Stefanovska [158]
adapted the conditional mutual information approach [160] to analysis of instan-
taneous phases of interacting oscillators and demonstrated suitability of this ap-
proach for analyzing causality in cardio-respiratory interaction [160]. The later
approach has also been applied in neurophysiology [39].

Having reviewed the relevant literature and also after extensive practical ex-
perience, we can state that the information-theoretic approach to the Granger
causality plays an important, if not a dominant role in analyses of causal rela-
tionships in nonlinear systems. Therefore we focus in this review to the infor-
mation theory and its applications in inference of causality from experimental
time series, although we do not refrain mentioning other approaches.

The outline of the paper is the following. In Section 1 we explain the terms
causality and its measures. Basic notions of information theory and their ap-
proaches to causality detection are discussed in Section 2. Section 3 classifies
the methods which will be reviewed. The rest of the sections deals with the
concrete methods: the nonparametric methods are treated in Section 4, the
parametric methods in 5. Generalized Granger causality, although not being
explicitly an information-theoretic approach, deserves our attention, too. It is
discussed in Section 6. Section 7 is devoted to our conclusion.

2 Information theory as a tool for causality de-
tection

2.1 Definitions of basic information theoretic functionals

We begin with the definition of differential entropy for a continuous random
variable as it was introduced in 1948 by Shannon [211], the founder of the infor-
mation theory. Let X be a random vector taking values in Rd with probability
density function (pdf) p(x), then its differential entropy is defined by

H(x) = −
∫

p(x) log p(x)dx, (5)

where log is natural logarithm. We assume that H(x) is well-defined and fi-
nite. One can define the discrete version of differential entropy as follows. Let
S be a discrete random variable having possible values s1, . . . , sm, each with
corresponding probability pi = p(si), i = 1, . . .m. The average amount of in-
formation gained from a measurement that specifies one particular value si is
given by the entropy H(S):

H(S) = −
m∑

i=1

pi log pi. (6)

Entropy H(S) can be understood as the ”quantity of surprise one should feel
upon reading the result of a measurement” [78]. So entropy of S can be seen as
the uncertainty of S.
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More general term of entropy for which is Shannon differential entropy a
special case, is Rényi entropy. Rényi entropy is for a continuous case defined
as [191]

Hα(x) =
1

1− α

∫
logα p(x)dx, (7)

and for the discrete case

Hα(S) =
1

1− α
log

n∑

i=1

pα
i , (8)

where α > 0, α 6= 1. As α → 1, Hα(x) converges to H(x) (or Hα(S) converges
to H(S)), which is Shannon’s measure of entropy. Rényi’s measure satisfies
Hα(x) ≤ Hα′(x) for α > α′.

Besides Shannon and Rényi entropy, other entropy definitions (i.e. Tsallis,
Havrda -Charvát, etc.) are studied in the mathematical literature, but Shannon
entropy is the only one possessing all the desired properties of an information
measure. Therefore its efficient and accurate estimate is of prime importance.
Based on this, although Rényi entropy will be also discussed, we focus in our
review mainly on Shannon entropy estimators and their application to mutual
information. The definition of the latter follows, without lack of generality, only
for discrete distributions.

The joint entropy H(X, Y ) of two discrete random variables X and Y is
defined analogously

H(X, Y ) = −
mX∑

i=1

mY∑

j=1

p(xi, yj) log p(xi, yj) (9)

where p(xi, yj) denotes the joint probability that X is in state xi and Y in state
yj (the number of possible states mX and mY may differ). If the random vari-
ables X and Y are statistically independent, the joint entropy H(X, Y ) becomes
H(X,Y ) = H(X) + H(Y ). In general, the joint entropy may be expressed in
terms of conditional entropy H(X|Y ) as follows

H(X,Y ) = H(X|Y ) + H(Y ), (10)

where

H(X|Y ) = −
mX∑

i=1

mY∑

j=1

p(xi, yj) log p(xi|yj) (11)

and p(xi|yj) denotes the conditional probability. The joint entropy expresses
how much uncertainty remains in X when Y is known.

The mutual information I(X, Y ) between two random variables X and Y
is then defined as [211]

I(X; Y ) = H(X) + H(Y )−H(X,Y ). (12)

Mutual information of two variables reflects the mutual reduction in uncer-
tainty of one by knowing the other one. This measure is nonnegative since
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H(X,Y ) ≤ H(X) + H(Y ); The equality holds if and only if X and Y are
statistically independent. It is invariant under one-to-one measurable transfor-
mations. Mutual information (MI) measures the strength of dependence in the
sense that: 1) I(X,Y ) = 0 iff X is independent of Y ; 2) For the bivariate nor-
mal distributions, I(X, Y ) = 1

2 log(1 − ρ2(X,Y )), where ρ is the coefficient of
correlation between X and Y .

The conditional mutual information [211] between random variables X
and Y given Z is defined as

I(X, Y |Z) = H(X|Z) + H(Y |Z)−H(X,Y |Z). (13)

For Z independent of X and Y we have

I(X,Y |Z) = I(X, Y ). (14)

Beside mutual information, there are other measures of relationships among
variables. The most used measures like Pearson’s correlation or Euclidean dis-
tance can reflect the degree of linear relationship between two variables. Mu-
tual information is sensitive to other than linear functional relationships (i.e.
non-linear) and therefore provides a more general criterion to investigate rela-
tionships between variables.

In the following we mention some other useful entropies and their relation-
ship to mutual information.
The Kullback-Leibler divergence (KLD, also called relative entropy or cross-
entropy), introduced by Kullback and Leibler [137], is an alternative approach
to mutual information. The Kullback entropy K(p, p0) between two probability
distributions {p} and p0 is

K(p, p0) =
m∑

i=1

pi log(
pi

p0
i

). (15)

It can be interpreted as the information gain when an initial probability dis-
tribution p0 is replaced by a final distribution p. This entropy is however not
symmetric and therefore not a distance in the mathematical sense. The KLD is
always nonnegative and is zero iff the distributions p and p0 are identical (Cover
and Thomas, [50]).

The neg-entropy is defined as

K(p, φp) =
∑

i

pi log(
pi

φp
), (16)

(i.e. p0 = φp), where φp is multivariate Gaussian distribution having the same
mean vector and covariance matrix as p. Mutual information is the Kullback-
Leibler divergence of the product P (X)P (Y ) of two marginal probability dis-
tributions from the joint probability distribution P (X, Y ), see i.e. [84]. So we
can look at the results about Kullback-Leibler entropy as if they were applied
to mutual information (relationship of KLD to entropy and conditional entropy
can be also found in [84]).
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2.2 Information, entropy and dynamical systems

A considerable amount of approaches to inferring causality from experimental
time series have their roots in studies of synchronization of chaotic systems. It
is therefore useful to make a few remarks about the connection between the
theory of dynamical systems and information theory.

A. N. Kolmogorov, who introduced the theoretical concept of classification of
dynamical system by information rates [134], was inspired by information theory
and together with Y.G. Sinai generalized the notion of entropy of an information
source [134, 216]. A possibility to use ideas and methods from the information
theory in the field of nonlinear dynamics and related analyses of experimental
data was demonstrated by Shaw [212, 213]. Fraser [79] analyzed information
aspects of chaotic dynamics on strange attractors. Paluš [163] concentrated on
attributes of dynamical systems studied in the ergodic theory, such as mixing
and generating partitions, and demonstrated how they were reflected in the
behaviour of information-theoretic functionals estimated from chaotic data. Let
us review several important details.
Consider n discrete random variables X1, . . . , Xn with sets of values Ξ1, . . . , Ξn,
respectively. The probability distribution for an individual Xi is p(xi) = Pr{Xi =
xi}, xi ∈ Ξi. We denote the probability distribution function by p(xi), rather
than pXi(xi), for convenience. Analogously, the joint distribution for the n vari-
ables X1, . . . , Xn is
p(x1, . . . , xn) = Pr{(X1, . . . , Xn) = (x1, . . . , xn)}, (x1, . . . , xn) ∈ Ξ1 × · · · × Ξn.

The marginal redundancy %(X1, . . . , Xn−1;Xn), which in the case of two
variables reduces to the above defined mutual information I(X1; X2), quantifies
the average amount of information about the variable Xn contained in the n−1
variables X1, . . . , Xn−1, and is defined as:

%(X1, . . . , Xn−1; Xn) =
∑

x1∈Ξ1

· · ·
∑

xn∈Ξn

p(x1, . . . , xn) log
p(x1, . . . , xn)

p(x1, . . . , xn−1)p(xn)
.

(17)
Now, let {Xi} be a stochastic process, i.e. an indexed sequence of random

variables, characterized by the joint probability distribution function p(x1, . . . , xn).
The entropy rate of {Xi} is defined as

h = lim
n→∞

1
n

H(X1, . . . , Xn) (18)

where H(X1, . . . , Xn) is the joint entropy of the n variables X1,. . . , Xn with
the joint distribution p(x1, . . . , xn):

H(X1, . . . , Xn) = −
∑

x1∈Ξ1

· · ·
∑

xn∈Ξn

p(x1, . . . , xn) log p(x1, . . . , xn). (19)

Consider further two processes {Xi} and {Yi}, their mutual information rate
[118, 178] is

ı(X; Y ) = lim
n→∞

1
n

I
(
(X1, . . . , Xn); (Y1, . . . , Yn)

)
. (20)
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A way from the entropy rate of a stochastic process to the Kolmogorov-Sinai
entropy (KSE) of a dynamical system can be straightforward due to the fact
that any stationary stochastic process corresponds to a measure-preserving dy-
namical system, and vice versa [173]. Then for the definition of the KSE we
can consider the equation (18), however, the variables Xi should be understood
as m-dimensional variables, according to the dimensionality of a dynamical sys-
tem. If the dynamical system is evolving in continuous (probability) measure
space, then any entropy depends on a partition chosen to discretize the space
and the KSE is defined as supremum over all finite partitions [48, 173, 217].

Possibilities to compute the entropy rates from data are limited to a few
exceptional cases: for stochastic processes it is possible, e.g., for the finite-state
Markov chains [50]. In the case of a dynamical system in a continuous measure
space, the KSE can be in principle reliably estimated, if the system is low-
dimensional and a large amount of (practically noise-free) data is available. In
such a case, Fraser [79] proposed to estimate the KSE of a dynamical system
from the asymptotic behavior of the marginal redundancy, computed from a
time series generated by the dynamical system. In such an application one deals
with a time series {y(t)}, considered as a realization of a stationary and ergodic
stochastic process {Y (t)}. Then, due to ergodicity, the marginal redundancy
(17) can be estimated using time averages instead of ensemble averages, and,
the variables Xi are substituted as

Xi = y(t + (i− 1)τ). (21)

Due to stationarity, the marginal redundancy

%n(τ) ≡ %(y(t), y(t + τ), . . . , y(t + (n− 2)τ); y(t + (n− 1)τ)) (22)

is a function of n and τ , independent of t.
If the underlying dynamical system is m-dimensional and the marginal re-

dundancy %n(τ) is estimated using a partition fine enough (to attain the so-called
generating partition [79, 48, 217]) then the asymptotic behavior

%n(τ) ≈ H1 − |τ |h (23)

is attained for n = m + 1,m + 2, . . . , for some range of τ [79, 164, 163]. The
constant H1 is related to %n(0) and h is the estimate of the Kolmogorov-Sinai
entropy of the dynamical system underlying the analyzed time series {y(t)}.

2.3 Coarse-grained entropy and information rates

In order to obtain such estimates as those in equation (23), large amounts of
data are necessary [163]. Unfortunately, such data requirement are not realistic
in usual experiments. To avoid this, Paluš [162] proposed to compute “coarse-
grained entropy rates” (CER’s) as relative measures of “information creation”
and of regularity and predictability of studied processes.

Let {x(t)} be a time series considered as a realization of a stationary and
ergodic stochastic process {X(t)}, t = 1, 2, 3, . . . . In the following we denote
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x(t) as x and x(t + τ) as xτ for simplicity. To define the simplest form of CER,
we compute the mutual information I(x; xτ ) for all analyzed datasets and find
such τmax that for τ ′ ≥ τmax: I(x; xτ ′) ≈ 0 for all the data sets. Then we
define a norm of the mutual information

||I(x; xτ )|| = ∆τ

τmax − τmin + ∆τ

τmax∑
τ=τmin

I(x;xτ ) (24)

with τmin = ∆τ = 1 sample as a usual choice. The CER h1 is then defined as

h1 = I(x, xτ0)− ||I(x; xτ )||. (25)

It was shown that the CER h1 provides the same classification of states of chaotic
systems as the exact KSE [162]. Since usually τ0 = 0 and I(x;x) = H(X) which
is given by the marginal probability distribution p(x), the sole quantitative
descriptor of the underlying dynamics is the mutual information norm (24).
Paluš et al. [160] called this descriptor the coarse-grained information rate
(CIR) of the process {X(t)} and denoted by i(X).

Now, consider two time series {x(t)} and {y(t)} regarded as realizations
of two processes {X(t)} and {Y (t)} which represent two possibly linked (sub)
systems. These two systems can be characterized by their respective CIR’s i(X)
and i(Y ). In order to characterize an interaction of the two systems, in analogy
with the above CIR, Paluš et al. [160] defined their mutual coarse-grained
information rate (MCIR) by

i(X,Y ) =
1

2τmax

τmax;τ 6=0∑
τ=−τmax

I(x; yτ ). (26)

Due to the symmetry properties of I(x; yτ ) is the mutual CIR i(X, Y ) symmet-
ric, i.e., i(X, Y ) = i(Y, X).

Assessing the direction of coupling between the two systems, i.e., causality
in their evolution, we ask how is the dynamics of one of the processes, say
{X}, influenced by the other process, {Y }. For the quantitative answer to
this question, Paluš et al. [160] proposed to evaluate the conditional coarse-
grained information rate CCIR i0(X|Y ) of {X} given {Y }:

i0(X|Y ) =
1

τmax

τmax∑
τ=1

I(x;xτ |y), (27)

considering the usual choice τmin = ∆τ = 1 sample. Recalling (14), we have
i0(X|Y ) = i(X) for {X} independent of {Y }, i.e., when the two systems are un-
coupled. In order to have a measure which vanishes for an uncoupled system (al-
though then it can acquire both positive and negative values), Paluš et al. [160]
define

i(X|Y ) = i0(X|Y )− i(X). (28)
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For another approach to a directional information rate, let us consider the
mutual information I(y; xτ ) measuring the average amount of information con-
tained in the process {Y } about the process {X} in its future τ time units ahead
(τ -future thereafter). This measure, however, could also contain an information
about the τ -future of the process {X} contained in this process itself if the pro-
cesses {X} and {Y } are not independent, i.e., if I(x; y) > 0. In order to obtain
the “net” information about the τ -future of the process {X} contained in the
process {Y }, we need the conditional mutual information I(y; xτ |x).

Next, we sum I(y; xτ |x) over τ as above

i1(X, Y |X) =
1

τmax

τmax∑
τ=1

I(y; xτ |x); (29)

In order to obtain the “net asymmetric” information measure, we subtract the
symmetric MCIR (26):

i2(X, Y |X) = i1(X,Y |X)− i(X, Y ). (30)

Using a simple manipulation, we find that i2(X, Y |X) is equal to i(X|Y ) defined
in Eq. (28). By using two different ways for definition of a directional infor-
mation rate, Paluš et al. [160] arrived to the same measure which they denoted
by i(X|Y ) and called the coarse-grained transinformation rate (CTIR) of
{X} given {Y }. It is the average rate of the net amount of information “trans-
ferred” from the process {Y } to the process {X} or, in other words, the average
rate of the net information flow by which the process {Y } influences the process
{X}.

Using several numerical examples of coupled chaotic systems, Paluš et al. [160]
demonstrated that the CTIR is able to identify the coupling directionality from
time series measured in coupled, but not yet fully synchronized systems. As a
practical application, CTIR was used in analyses of electroencephalograms of
patients suffering from epilepsy. Causal relations between EEG signals mea-
sured in different parts of the brain were identified. In transients from normal
brain activity to epileptic seizures, asymmetries in information flow emerge or
are amplified. The potential of the CTIR method for anticipating seizure on-
sets and for localization of epileptogenic foci was discussed in [159]. Paluš and
Stefanovska [158] adapted the conditional mutual information approach [160]
to the analysis of instantaneous phases of interacting oscillators and demon-
strated suitability of this approach for analyzing causality in cardio-respiratory
interaction [160].

2.4 Conditional mutual information and transfer entropy

The principal measure, used by Paluš et al. [160] for inferring causality relations,
i.e., the directionality of coupling between the processes {X(t)} and {Y (t)}, is
the conditional mutual information I(y;xτ |x) and I(x; yτ |y). If the processes
{X(t)} and {Y (t)} are substituted by dynamical systems evolving in measurable
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spaces of dimensions m and n, respectively, the variables x and y in I(y; xτ |x)
and I(x; yτ |y) should be considered as n− and m−dimensional vectors. In
experimental practice, however, usually only one observable is recorded for each
system. Then, instead of the original components of the vectors ~X(t) and ~Y (t),
the time delay embedding vectors according to Takens [224] are used. Then,
back in time-series representation, we have

I
(
~Y (t); ~X(t + τ)| ~X(t)

)
= (31)

I
((

y(t), y(t−ρ), . . . , y(t−(m−1)ρ)
)
; x(t+τ)|(x(t), x(t−η), . . . , x(t−(n−1)η)

))
,

where η and ρ are time lags used for the embedding of systems ~X(t) and ~Y (t),
respectively. For simplicity, only information about one component x(t + τ)
in the τ−future of the system ~X(t) is used. The opposite CMI I

(
~X(t); ~Y (t +

τ)|~Y (t)
)

is defined in the full analogy. Exactly the same formulation can be
used for Markov processes of finite orders m and n.

Using the idea of finite-order Markov processes, Schreiber [206] introduced
a measure quantifying causal information transfer between systems evolving in
time, based on appropriately conditioned transition probabilities. Assuming
that the system under study can be approximated by a stationary Markov pro-
cess of order k, the transition probabilities describing the evolution of the system
are p(in+1|in, ..., in−k+1). If two processes I and J are independent, then the
generalized Markov property

p(in+1|in, ..., in−k+1) = p(in+1 | i(k)
n , j(l)

n ), (32)

holds, where i
(k)
n = (in, ..., in−k+1) and j

(l)
n = (jn, ..., jn−l+1) and l is the number

of conditioning state from process J . Schreiber proposed using the Kullback-
Leibler divergence (15) to measure the deviation of the transition probabilities
from the generalized Markov property (32). This results into the definition

TJ→I =
∑

p(in+1, i
(k)
n , j(l)

n ) log
p(in+1|i(k)

n , j
(l)
n )

p(in+1|i(k)
n )

, (33)

denoted as transfer entropy. The transfer entropy can be understood as the
excess amount of bits that must be used to encode the information of the state
of the process by erroneously assuming that the actual transition probability
distribution function is p(in+1|i(k)

n ), instead of p(in+1|i(k), j
(l)
n ).

Considering the relation between the joint and conditional probabilities, from
Eq. (33) we can obtain

TJ→I =
∑

p(in+1, i
(k)
n , j(l)

n ) log
p(in+1, i

(k)
n , j

(l)
n )

p(in+1|i(k)
n )p(i(k)

n , j
(l)
n )

,

and, after a few simple manipulations we have

TJ→I =
∑

p(in+1, i
(k)
n , j(l)

n ) log p(in+1, j
(l)
n |i(k)

n ) (34)
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−
∑

p(in+1, i
(k)
n ) log p(in+1|i(k)

n )−
∑

p(i(k)
n , j(l)

n ) log p(j(l)
n )|i(k)

n ).

Now, considering Eq. (13), let us go back to the expression for conditional
mutual information (31) and express it using conditional entropies as

I
(
~Y (t); ~X(t + τ)| ~X(t)

)
= (35)

H
((

y(t), y(t− ρ), . . . , y(t− (m− 1)ρ)
)|(x(t), x(t− η), . . . , x(t− (n− 1)η)

))

+H
(
x(t + τ)|(x(t), x(t− η), . . . , x(t− (n− 1)η)

))

−H
((

y(t), y(t−ρ), . . . , y(t−(m−1)ρ)
)
, x(t+τ)|(x(t), x(t−η), . . . , x(t−(n−1)η)

))
.

Now, we express the conditional entropies using the probability distributions.
However, let us change our notations according to Schreiber by equating I ≡
{X(t)}, m = k, and J ≡ {Y (t)}, n = l, substitute t for n and set η = ρ = τ = 1.
We can see that we obtain the same expression as Eq. (34) for the transfer
entropy. Thus the transfer entropy is in fact an equivalent expression for the
conditional mutual information.

3 Basic classification of current methods for en-
tropy and mutual information estimation

Calculations of mutual information occur mainly in the literature in four con-
texts in the analysis of observational data: learning theory questions, iden-
tification of nonlinear correlation (and consequently causality detection), de-
termination of an optimal sampling interval and in the investigation of causal
relationships concretely with directed mutual information.

The key problem for causality detection by means of conditional mutual
information is to have an estimator of mutual information. Most entropy esti-
mators in the literature, which are designed for multi-dimensional spaces, can be
applied to mutual information estimation. Therefore this paper focuses mainly
to entropy estimation in multidimensional spaces. In the following, we adopt
the classification and mathematical criteria for evaluation of the differential en-
tropy estimators from the overview of nonparametric methods from Beirlant et
al. [22].

The basic properties of differential entropy are summarized e.g. in [50]. The
differential entropy has some important extremal properties:

(i) If the density f is concentrated on the unit interval [0, 1] then the differ-
ential entropy is maximal iff f is uniform on [0, 1].

(ii) If the density is concentrated on the positive half line and has a fixed
expectation then the differential entropy takes its maximum for the expo-
nential distribution.
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(iii) If the density has fixed variance then the differential entropy is maximized
by the Gaussian density.

3.1 Conditions and criteria

If for the identically independent distributed (i.i.d.) sample X1, . . . , Xn, Hn is
an estimate of H(f), then the following types of consistencies can be considered:

Weak consistency: limn→∞Hn = H(f) in probability.

Mean square consistency: limn→∞E(Hn −H(f))2 = 0.

Strong (universal) consistency: limn→∞Hn = H(f) a.s. (almost
sure).

Slow-rate convergence: lim supn→∞
E|Hn−H|

an
= ∞ for any sequence of

positive numbers {an} converging to zero.

Root-n consistency results are either of form of asymptotic normality, i.e.
limn→∞n1/2(Hn − H(f)) = N(0, σ2) in distribution, of L2 rate of conver-
gence: limn→∞nE(Hn −H(f))2 = σ2 or the consistency in L2, i.e.
limn→∞E(Hn −H(f))2 = 0.

The following usual conditions on the underlying density f are:

Smoothness conditions:
(S1) f is continuous.

(S2) f is k times differentiable.

Tail conditions:
(T1) H([X]) < ∞, where [X] is the integer part of X.

(T2) inff(x)>0 f(x) > 0.

Peak conditions:
(P1)

∫
f(log f)2 < ∞. (This is also a mild tail condition.)

(P2) f is bounded.

Many probability distributions in statistics can be characterized as having maxi-
mum entropy and can be generally characterized by Kagan-Linnik-Rao theorem
([123]). When dealing with the convergence properties of the presented estima-
tors, one needs the following definitions. By means of Asymptotically con-
sistent estimator one understand that the series of the approximants converge
in infinity to the function to be approximated (see i.e. [22]). Asymptotically
unbiased estimator is that one which is unbiased in the limit.
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3.2 Classification of methods for entropy estimation

There is an extensive literature dealing with entropy estimates, and in their
classification we will roughly keep the schema given by Beirlant et al. in [22]
and by Erdogmus in [70]. We extend them to newer methods and approaches
and also to the non-parametric ones. At this point it is necessary to note that a
great proportion of the literature dealing with entropy and MI estimation was
originally motivated by other questions than detection of causality: by learning
theory questions, i.e. blind separation, necessary for application of principal
or independent component analysis (PCA and ICA) or by nonlinear dynamics
applications.

Many of these methods, although accurate in one or two dimension, become
inapplicable in higher dimensional spaces (because of their computational com-
plexity). In this review paper we focus mainly on entropy estimation methods
which are applicable in higher-dimensional spaces. The older methods (mostly
adopted from [22]) will be presented briefly and the newer methods will be
discussed more in detail.

4 Nonparametric estimators

4.1 Plug-in estimates

Plug-in estimates are based on a consistent density estimate fn of f such that
fn depends on X1, . . . , Xn. Their name ”plug-in” was introduced by Silverman
[215]. In these estimates, a consistent probability density function estimator is
substituted into the place of the pdf of a functional.

4.1.1 Integral estimates of entropy

These estimates have form given by

Hn = −
∫

An

fn(x) log fn(x)dx (36)

where, with the set An one typically excludes the small or tail values of fn.
These estimates evaluate approximately (or exactly) the integral. The first
such estimator was introduced by Dmitriev and Tarasenko [66], who proposed to
estimate Hn by (36) for d = 1, where An = [−bn, bn] and fn is the kernel density
estimator (see section 4.8). The strong consistency of Hn defined by formula
(36) was shown in Ref. [66] and in Ref. [181]. Mokkadem [150] calculated the
expected Lr error of this estimate, also for the estimation of mutual information.

To evaluate the (infinite) integral form of entropy (the exact or approximate
one), numerical integration must be performed, which is not easy to be computed
if fn is a kernel density estimator.

Joe [121] estimated entropy H(f) by the sequence of integral estimators Hn

given by formula (36) when f is a multivariate pdf, but he pointed out that
the calculation of Hn, when fn is a kernel estimator, gets more difficult for
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d ≥ 2. He therefore excluded the integral estimate from further study (curse of
dimensionality). The integral estimator can however be easily calculated if, for
example, fn is a histogram [99].

4.1.2 Resubstitution estimates

The resubstitution estimation is of the form

Hn = − 1
n

n∑

i=1

log fn(Xi). (37)

This approach includes the approximation of the expectation operator (i.e. the
expected value of an argument) in the entropy definition with the sample mean
or by polynomial expansions. Polynomial expansions of pdfs in order to estimate
entropy were lately applied by Van Hulle [241] who used Edgeworth expansion
(see Section 5 Parametric methods) and by Viola [251]. Ahmad and Lin in [3]
proposed estimating H(f) by (37), where fn is a kernel density estimate. They
showed the mean square consistency of (37) under some mild conditions.

Joe [121] considered the estimation of H(f) for multivariate pdf’s by (37),
also based on a kernel-based estimate. Joe obtained asymptotic bias and vari-
ance terms, and showed that non-unimodal kernels satisfying certain conditions
can reduce the mean square error. He concluded that in order to obtain accurate
estimates especially in multivariate situations, the number of samples required
increased rapidly with the dimensionality d of the multivariate density (curse of
dimensionality). These results strongly rely on conditions T2 and P2.
Hall and Morton [105] investigated both the case when fn is a histogram den-
sity estimator and when it is a kernel estimator in (37). Root-n consistency
of form of asymptotic normality was proven for histogram under certain tail
and smoothness conditions with σ2 = V ar(log f(X)). The histogram-based
estimator can only be root-n consistent when d = 1 or 2. However, the esti-
mator has in case of d = 2 significant bias. They suggest an empirical rule for
the bandwidth, using a penalty term. The effects of tail behavior, distribution
smoothness and dimensionality on convergence properties were studied with the
conclusion that root-n consistency of entropy estimation requires appropriate
assumptions about each of these three features. These results are valid for a
wide class of densities f having unbounded support.

4.1.3 Splitting data estimate

The approach of these methods is similar to the approach of 4.1.2 except that the
sample set is divided into two subsets, X1, . . . , Xl and X∗

1 , . . . , X∗
m, n = l + m;

One is used for density estimation, while the other one for sample mean. Based
on X1, . . . , Xl, one constructs a density estimate fl and then, using this density
estimate and then the second sample, estimates H(f) by

Hn = − 1
m

m∑

i=1

I[X∗
i ∈Al] log fl(X∗

i ). (38)
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This approach was used for fl being the histogram density estimate in Ref.
[98], for fl being the kernel density estimate in Ref [99] and for fl being any
L1-consistent density estimate such that [X∗

i ∈ Al] = [fl(X∗
i ≥ al], 0 < al → 0

in Ref [100]. Under some mild tail and smoothness conditions of f , the strong
consistency was shown for general dimension d.

4.1.4 Cross-validation estimate

This class of estimators uses a leave-one-out principle in the resubstitution es-
timate. The entropy estimate is obtained by averaging the leave-one-out resub-
stitution estimates of the data set. If fn,i denotes a density estimate based on
X1, . . . , Xn leaving Xi out, then the corresponding density estimate is of the
form

Hn = − 1
m

n∑

i=1

I[Xi∈An] log fn,i(Xi). (39)

Ivanov and Rozhkova [119] proposed such an estimator for Shannon entropy
when fn,i is a kernel-based pdf estimator. They showed strong consistency,
and also made a statement regarding the rate of convergence of the moments
E|Hn −H(f)|r, r ≥ 1.

Hall and Morton [105] also studied entropy estimates of the type (39) based
on kernel estimator. For d = 1, properties of Hn were studied in the context of
Kullback-Leibler distance by Hall [103]. Under some conditions the analysis by
Hall and Morton [105] yields a root-n consistent estimate of the entropy when
1 ≤ d ≤ 3.

4.1.5 Convergence properties of discrete Plug-in estimates

Convergence properties of discrete plug-in estimators were studied by Antos
and Kontoyiannis [9] in a more general scope. They investigated a class of
additive functionals where a discrete random variable is given by its distribution
{p(i); i ∈ H}. The plug-in estimate for F is defined by

F̂n = g((
∑

i∈H
f(i, p(i))),

where

pn(i) =
1
n

n∑

j=1

I{Xj=i}

is the empirical distribution induced by the samples (X1, . . . , Xn) on H. In
other words, F̂n = F (pn). It is assumed that f and g are arbitrary real-valued
functions with the only restriction that f is always nonnegative. For additive
functionals, including the cases of the mean, entropy, Rényi entropy and mu-
tual information, satisfying some mild conditions, the plug-in estimates of F
were shown to be universally consistent and consistent in L2. The L2-error of
the plug-in estimate is of order O( 1

n ). In other words, in the case of discrete
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estimators, the convergence results obtained by Antos and Kontoyiannis [9] are
in agreement with the convergence results of the all above mentioned plug-in
methods but they were done in general for additive functionals among which all
plug-in methods belong (under some mild conditions).

On the other hand, for a wide class of other functionals, including entropy,
it was shown that the universal convergence rates cannot be obtained for any
sequence of estimators. Therefore, for positive rate-of-convergence results, ad-
ditional conditions need to be placed on the class of considered distributions.

It was shown in [9] that there is no universal rate at which the error goes
to zero, no matter what estimator we select, even when our sample space is
discrete (albeit infinite). Given any such assumed rate aN , we can always find
some distribution P for which the true rate of convergence is infinitely slower
than aN . Antos and Kontoyiannis [9] proved identical theorems for the mutual
information, as well as a few other functionals of P .

4.2 Estimates of entropy based on partitioning of the ob-
servation space

This popular class of estimators divides the observation space into a set of
partitions. The methods belonging to this class can be classified according to
the number of features. The partition is generated either directly or recursively
(iteratively). The algorithms employ a fixed scheme independent of the data
distribution or an adaptive scheme which takes the actual distribution of the
data into account. In the following, algorithms employing fixed schemes as well
as algorithms using adaptive schemes are presented.

4.2.1 Fixed partitioning of the observation space

Consider a pair of random variables x and y with values in the measurable
spaces X and Y, respectively. Recalling definitions (6), (9) and (12), their
mutual information is

I(X,Y ) =
mX∑

i=1

mY∑

j=1

p(xi, yj) log
p(xi, yj)

p(xi)p(yj)
. (40)

Classical Histogram methods
One of the most straightforward and widely used nonparametric approach to
estimate (40) is approximation of the probability distributions p(xi, yj), p(xi)
and p(yj) by a histogram estimation [43]. The range of a variable, say x, is
partitioned into mX discrete bins ai ∈ A, each with width hX . Let ki denotes
the number of measurements which lie in the bin ai. The probability p(xi) is
approximated by relative frequencies of occurrence pX(ai) = ki

N , where N is
the size (the number of points) of the data set. Analogously, we estimate the
probability p(yi) using elements bj of the width hy belonging to the partition B

as pY (bj) = kj

N .
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The joint probability p(xi, yj) is then approximated using the product partition
A×B: pX,Y (ai × bj) = ki,j

N . Then the estimator of the mutual information is

I(X,Y ) = log N + (1/N)
mX∑

i=1

mY∑

j=1

ki,j log
ki,j

kikj
, (41)

where ki,j is the number of measurements for which x lies in ai and y in bj .
This method is also referred to as equidistant binning, as all the bins of the
histogram have the same size (Fig. 1).

Insert Fig. 1 here

It can be demonstrated [221] that the estimate of mutual information given
by (41) fluctuates around the true value or gets systematically overestimated.
Moreover, these methods fail in higher dimensions and work well only for two or
three scalars. An insufficient amount of data, occurring especially in higher di-
mensions, leads to a limited occupancy of many histogram bins giving incorrect
estimations of the probability distributions and consequently leads to heavily
biased, usually overestimated values of mutual information.

The accuracy of the histogram entropy estimator is closely related to the
histogram problem: given a scalar data set X, how many elements should be
used to construct a histogram of X? The histogram problem has a long history
and has been examined by several investigators. A systematic theoretic devel-
opment of the question is given by Rissanen et al. [194], who use a minimum
description length argument to conclude that the optimal value of the number
of elements to use in a histogram is the value that gives a minimum value of the
stochastic complexity. As a representative application of histogram methods
to mutual information estimation we mention here Moddemeijer [148] (using a
simple histogram-based method in a procedure to estimate time-delays between
recordings of electroencephalogram (EEG) signals originating from epileptic an-
imals or patients) or the work from Knuth et al. [133] who introduced so called
optimal binning techniques, developed for piecewise-constant, histogram-style
models of the underlying density functions.

Generalized binning with B-Splines
Daub et al. [56] developed a method for estimating multidimensional entropies
using B-splines. In classical histogram approaches to mutual information esti-
mation, data points close to bin boundaries can cross over to a neighboring bin
due to noise or fluctuations, and in this way they introduce additional variance
into the computed estimate. Even for sets of moderate size, this variance is not
negligible. To overcome this problem, Daub et al. [56] proposed a generalized
histogram method, which uses B-spline functions to assign data points to bins.
The sample space is divided into equally sized bins as in equidistant binning.
The major difference between the classical histogram methods and the general-
ized binning is that a data point is assigned to multiple bins simultaneously with
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weights given by B-spline functions which are implicitly normalized. The shape
of the B-spline functions is determined by their order k, which is a parameter
of the method. As an example, B-Splines of order 3 are shown for 4 bins in Fig.
2.

Insert Fig. 2 here

When B-splines of order 1 are selected, each point is assigned to one bin
only and the method is equivalent to simple equidistant binning. The proposed
method is therefore a fixed binning scheme extended by a preprocessing step to
reduce the variance. This strategy also somewhat alleviates the choice-of-origin
problem of classical histogram methods by smoothing the effect of transition of
data points between bins due to shifts in origin.

The probability p(ai) of each bin is estimated by

p̂(ai) =
1
N

N∑

j=1

Bi,k(x̃j), (42)

where Bi,k is a B-spline function of order k evaluated at bin i; x̃j is an
appropriately scaled data sample mapping the values of x into the domain of
the B-spline functions [56, 58]. In two dimensions the joint pdf is computed as

p̂(ai, bj) =
1
N

N∑

l=1

Bi,k(x̃l))×Bj,k(ỹl)). (43)

The mutual information IM,k(X;Y ) can then be estimated from

IM,k(X;Y ) = HM,k(X) + HM,k(Y )−HM,k(X, Y ) (44)

and each of the terms may be computed using the standard formulas applied to
the probabilities (42), (43). The notation IM,k(X;Y ) and HM,k(X, Y ) indicates
that the method has two parameters: M, the number of bins and k, the order of
the B-spline. The procedure can be theoretically extended to a higher number
of dimensions, but the performance of this estimator in the multidimensional
case has not been systematically studied.

Consistency or other properties in the framework of the section 3.1 are not
known. Daub et al. [56] gave numerical estimates of bias and variance with
data set size of N for the estimator IM,k(X; Y ) for statistically independent
data sets and for k = 3. The IM,3 estimator was found to have bias scaling
as ∼ 1/N but the slope was significantly lower than for the classical histogram
method (equivalent to IM,1). The same is true for the standard deviation which
also scaled as 1/N , but with a significantly lower slope than IM,1.

Daub et al. compared their estimator to the estimator ĤBUB also using
binning, introduced by Paninski [167] (more details in Section 4.6) for inde-
pendent data sets. The scaling behavior of the bias was found to be similar.
The standard deviation of their algorithm is however lower than that of ĤBUB .
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The estimator from Daub et al. [56] was also compared to the kernel density
estimator KDE, i.e. [151], [215], [221].

4.2.2 Adaptive partitioning of the observation space

Marginal equiquantization
Any method for computation of mutual information based on partitioning of
data space is always connected with the problem of quantization. By the quan-
tization we understand a definition of finite-size boxes covering the state (data)
space. The probability distribution is then estimated as relative frequencies
of the occurrence of data samples in particular boxes (the histogram approach
described above). A naive approach to estimate the mutual information of con-
tinuous variables would be to use the finest possible quantization, e.g., given
by a computer memory or measurement precision. One must however keep in
mind that a finite number N of data samples is available. Hence, using a quan-
tization that is too fine, the estimation of entropies and mutual information can
be heavily biased: Estimating the joint entropy of n variables using q marginal
bins one obtains qn boxes covering the state space. If the value qn approaches
the number N of data samples, or even qn > N , the estimate of H(X1, . . . , Xn)
can be equal to log N , or, in any case, it can be determined more by the number
of data samples and/or by a number of distinct data values than by a structure
in the data, i.e., by properties of the system under study. In such a case we say
that the data are overquantized. Even a ”natural” quantization of experimental
data given by an A/D (analog to digital) converter can be too fine for reliable
estimation of the mutual information from limited number of samples.

Emergence of overquantization is given by the number of boxes covering the
state space, i.e., the higher the space dimension (the number of variables), the
lower the number of marginal quantization levels that can cause the overquanti-
zation. Recalling the definition of mutual information by formula (12), one can
see that while the estimate of the joint entropy can be overquantized, i.e., satu-
rated on a value given by the number of the data samples and/or by the number
of distinct data values, the estimates of the individual (marginal) entropies are
not and they increase with fining the quantization. Thus the overquantization
causes an overestimation of the mutual information and in the case of the lagged
mutual information, it obscures its dependence on the lag τ [163, 161].

As a simple data adaptive partitioning method, Paluš [164, 161, 163] used a
simple box-counting method with marginal equiquantization. It means that the
marginal boxes are not defined equidistantly but so that there is approximately
the same number of data points in each marginal bin. The choice of the number
of bins is, however, crucial. An example of an equiquantized observation space
is in Fig. 3.

Insert Fig. 3 here

In Ref. [161] Paluš proposed that computing the mutual information In of
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n variables, the number of marginal bins should not exceed the n + 1-st root of
the number of the data samples, i.e. q ≤ n+1

√
N .

The equiquantization method effectively transforms each variable (in one
dimension) into a uniform distribution, i.e. the individual (marginal) entropies
are maximized and the MI is fully determined by the value of the joint entropy
of the studied variable. This type of mutual information estimate, even in
its coarse-grained version, is invariant against any monotonous (and nonlinear)
transformation of the data [165]. Due to this property, the mutual information,
estimated using the marginal equiquantization method, is useful for quantifying
dependence structures in data as well as for statistical tests for nonlinearity
which are robust against static nonlinear transformations of the data [161].

Equiprobable binning was recently used also by Celluci et al. [44], however,
the number of bins is determined using the minimum description length crite-
rion. It is proposed in their work that calculation of mutual information should
be statistically validated by application of a χ2 test of the null hypothesis of
statistical independence. Additionally, the partition of the XY plane, which
is used to calculate the joint probability distribution PXY , should satisfy the
Cochran criterion on the expectancies EXY [44]. A procedure for a non-uniform
XY partition is proposed which reduced sensitivity to outlying values of X and
Y and provides an approximation of the highest partition resolution consistent
with the expectation criterion.

Celluci et al. compare this simple algorithm, adaptive in one dimension, with
the locally data adaptive approach of Fraser and Swinney [78] which is tech-
nically also equivalent to the Darbellay-Vajda algorithm [54, 55] (more details
in the following section). The latter approach is probably the method with the
smallest bias provided the unlimited amount of data. Using the limited number
of samples (less then 104 samples), this algorithm introduced false structures
and the simple marginal equiquantization method gives better results, not to
speak about the CPU time used (see the comparison done by Celluci et al. [44]).

It should be noted that while Fraser and Swinney algorithm uses a χ2 cri-
terion to control subdivisions of the XY plane locally, it does not, in contrast
to the algorithm proposed by [44], provide a global statistical assessment of
an I(X, Y ) calculation that includes the probability of the null hypothesis of
statistical independence.

Adaptive partitioning in two (and more) dimensions
Darbellay and Vajda [54, 55] demonstrated that mutual information can be
approximated arbitrarily closely in probability (i.e. the weak consistency was
proven) by calculating relative frequencies on appropriate partitions and achiev-
ing conditional independence on the rectangles of which the partitions are made.
This method was experimentally compared to maximum-likelihood estimators
(see Sec. 4.6). The partitioning scheme used by Darbellay and Vajda [54, 55]
(described below) was originally proposed by Fraser and Swinney [78, 79] and
in physical literature is referred to as the Fraser-Swinney algorithm. Darbel-
lay and Vajda [54, 55] proved the weak consistency of this estimate and tested
the method on a number of probability distributions. In the mathematical and
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information-theoretic literature the method has recently been referred to as the
Darbellay-Vajda algorithm.

The consistency proof of Darbellay and Vajda [54, 55] starts from the fol-
lowing definition of mutual information due to Dobrushin [67]:

I(Xa,Xb) ≡ sup
{Ai}{Bi}

∑

i,j

PX(Ai ×Bj) log
PX(Ai ×Bj)

PXa
(Ai)PXb

(Bj)
(45)

where Xa, Xb are random vectors with values in Rda , Rdb respectively.
PXa(Ai)PXb

(Bj) = (PXa × PXb
)(A × B) is the product measure defined as

the probability measure for A,B elements of the respective σ-algebras of Rda

and Rdb .
The supremum in (45) is taken over all finite partitions Γa = {Ai|i ∈ 1, ..., m}

of Rda and all finite partitions Γb = {Bj |j ∈ 1, ..., n} of Rdb .
A finite partition of a set X is any finite system of sets Γ = {Ck|k ∈ 1, ..., q}

which satisfies Ci ∩ Cj = ∅ for i 6= j and
⋃q

k=1 Ck = X. Each set Ck is called a
cell of the partition Γ. A partition Λ = {Dl|l = 1, ..., r} is a refinement of the
partition Γ if for each Dl ∈ Λ there exists Ck ∈ Γ such that Dl ⊂ Ck.

Darbellay [55] notes that the sequence of numbers

DΓ ≡
∑

k

PX(Ck) log
PX(Ck)

PXa×Xn(Ck)
(46)

never decreases as the partition Γ is made successively finer and finer. An im-
portant fact with respect to the developed algorithm is that if Λ is a refinement
of the partition Γ such that Ck ∈ Γ =

⋃
l Dk,l ∈ Λ for some set of indices l

depending on k then

DΓ = DΛ ⇐⇒ PX(Dk,l)
PXa×Xb

(Dk,l)
=

PX(Ck)
PXa×Xb

(Ck)
∀k, l. (47)

This means that the random vectors Xa,Xb must be conditionally independent
if they attain values in the cell Ck. If this is true for all cells Ck, then the mutual
information I(Xa,Xb) can be estimated as DΓ.

The algorithm works with d-dimensional hyperrectangles. To split a given
cell, each of its d edges is split into α ≥ 2 equiprobable intervals (marginal
equiquantization). At every partitioning step, a cell is split into αd subcells.
Initially, the entire space Rd is one cell. The algorithm follows by first checking
the condition on the right side of (47) for each cell Ck and if the cell does
not satisfy the condition, then it is split by marginal equiquantization. The
parameter α is usually set to 2 since the recursive nature of the algorithm allows
further splitting of regions where conditional independence is not achieved. Fig.
4 illustrates how such a partition might look like.

Insert Fig. 4 here

It is advantageous to combine all the conditional independence tests (47)
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into one statistic. Here the χ2({Dk,l}) statistic is used. To increase robustness
of the test, when testing for conditional independence, the splitting can be done
at multiple levels of refinement t = 1, 2, ...β. This means that the cell Ck is
broken into αtd cells for each t. A higher value of β prevents the algorithm from
stopping the partitioning process too early, while a value of β too high might
force the splitting process to continue until there is a very small number of
points in each partition. The choice of β also depends on the number of points
available and the depth of the cell. When testing the algorithms numerically, β
was set to 2 for partitioning depth up to 3 and then to 1 for deeper cells if the
problem was more than 2-dimensional. For 2-dimensional problems the authors
used β = 2. This setup provides some guidelines for selecting the values of α
and β.

The estimator was tested on correlated Gaussians, where another estimate
of the mutual information is available via a maximum likelihood estimator. The
recursive space partitioning estimator appears to be asymptotically unbiased
and numerical tests also suggest that it is

√
N -consistent for a large class of

distributions. The estimator is not universally consistent since the examples of
distributions, where the estimator does not converge, are known. These dis-
tributions are however rather ’exotic’ (e.g. exhibiting some symmetries, which
prevent the conditional independence test to succeed). Asymptotically, the es-
timates of mutual information Î have a normal distribution, except for very low
values of mutual information.

4.3 Ranking

Pompe [179] proposed an estimator of dependencies of a time series based on
second order Rényi entropy (more details on Rényi entropy in section 4.5.1). In
general, Rényi entropy does not possess the attractive properties of Shannon
entropy, such as non-negativity and it is not possible to infer independence with
vanishing Rényi entropy. However, Pompe noticed that if the time series is
uniformly distributed, some of the desirable properties of Shannon entropy can
be preserved for the second order Rényi entropy. Moreover, the second order
Rényi entropy can be effectively estimated using the Grassberger-Procaccia-
Takens Algorithm (GPTA) [94, 225].

Consider a stationary discrete time series {Xt} such that Xt attains one of
k different values x(n), n ∈ 1, 2, ..., k.

The statistical dependency between a d-dimensional vector of ’past’ val-
ues ~Xt = (Xt−Θd−1 , ..., Xt−Θ0) and one ’future’ value Xt+τ is examined, d is
1, 2, 3, ... and Θd−1 > Θd−2 > ... > Θ0 = 0 and also τ ≥ 0. The joint probabili-
ties are denoted as

pmd−1,...,m0,n(τ) = p{Xt−Θd−1 = x(m0), ...,
Xt−Θ0 = x(m0), Xt+τ = x(n)} (48)

where each of the indices mi, i ∈ {d−1, ..., 0} and n are in 1, 2, ..., k. The vector
of values (md−1, ...,m0) is hereafter denoted as ~m. Using the above notation,
Pompe defines the contingency
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ϕ2
d(τ) ≡

k∑

~m,n=1

[p~m,n(τ)− p~mpn]2

pmd−1 ...pm0pn
. (49)

The key point is the assumption that Xt is uniformly distributed. All the prob-
abilities thus satisfy pmd−1 = ... = pm0 = pn = 1/k = ε and it is possible to
rewrite the equation for contingency

ϕ2
d(τ) ≡ ε−(d−1)

k∑

~m,n=1

p2
~m,n(τ)− ε−d

k∑

~m,n

p2
~m. (50)

The contingency φ2
d(τ) can be related to the generalized mutual information

I
(2)
d (τ) ≡ H

(2)
1 + H

(2)
d −H

(2)
d+1(τ) (51)

with the formula

I
(2)
d (τ) = log(

ϕ2
D(τ)

ε−d
∑

~m=1 p2
~m

+ 1). (52)

From the equation (52) it can be seen that I
(2)
d (τ) ≥ 0 because ϕ2

d(τ) ≥ 0 and
the argument of the logarithm is always ≥ 1. It was also noted in [179] that
I
(2)
d (τ) = 0 iff ~Xt and ~Xt+τ are independent, i.e. it is true that p~m,n(τ) = p~mpn

for all combinations ~m, n. It is further proven that

0 ≤ I
(2)
d (τ) ≤ H

(2)
1 = log k = − log ε, (53)

always assuming the uniform distribution of data.
The transformation of an arbitrarily distributed time series to a uniform

distribution is accomplished by sorting the samples using some common fast
sorting algorithm such as quicksort or heapsort and replacing each sample by its
rank in the sorted sequence. If the generating process Yt is continuous then the
above transformation function would be equivalent to the distribution function
of Yt. A side-effect is that the estimation of I

(2)
d in this way is insensitive to

non-linear invertible distortions of the original signal. After the transformation,
Pompe recommends estimating the generalized mutual information using the
GPTA algorithm as

I
(2)
d (τ) ' log

Cd+1,ε/2(τ)
Cd,ε/2C1,ε/2

for ε → 0, (54)

where CX,δ represents the correlation integral ([94], [108], [106]) with the ap-
propriate time-delay embedding ~Xt for Cd,ε/2, ( ~Xt, Xt+τ ) for Cd+1,ε/2, Xt+τ for
C1,ε/2 and the neighborhood size δ.

The above considerations are however not entirely applicable to the quan-
tized and sampled time-series, as the possibility of two different samples coincid-
ing is non-zero. In fact this commonly occurs in practice. Under these conditions
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it is not possible to obtain a unique ranking of the original sequence as equal
samples can be arbitrarily interchanged. Pompe suggests using a neighborhood
size equal to at least ρmaxεq, where εq represents the relative quantization er-
ror and ρmax is the maximum value of the one-dimensional distribution density
of the original data. In practice ρmax would be estimated as leq,max/T where
leq,max is the maximal number of equal data samples in the series. By adhering
to this policy, problems stemming from the non-uniqueness of the samples are
circumvented.

4.4 Estimates of entropy and mutual information based
on computing distances

4.4.1 Based on sample spacings

These methods are defined only for d = 1 and their generalization to multivariate
cases is not trivial. Let X1, . . . , X2 be a sample of i.i.d. real valued random
values and let Xn,1 ≤ Xn,2 ≤ . . . , Xn,n be the corresponding order statistics.
Then Xm,i+m−Xn,i is called m-spacing (1 ≤ i ≤ i+m ≤n). Based on spacings,
it is possible to construct a density estimate:

fn(x) =
m

n

1
Xn,im −Xn,(i−1)m

(55)

if x ∈ [Xn,(i−1)m, Xn,im). This density estimate is consistent if for n →∞ hold

mn →∞, mn/n → 0. (56)

The estimate of entropy based on sample spacings can be derived as a plug-in
integral estimate or resubstitution estimate using a spacing density estimate.
Surprisingly, although the m-spacing density estimates might not be consistent,
their corresponding m-spacing entropy estimates might turn out to be (weakly)
consistent [101].

(i) m-spacing estimate for fixed m has the form

Hm,n =
1
n

n−m∑

i=1

log(
n

m
(Xn,i+m −Xn,i))− ψ(m) + log m (57)

where ψ(x) = −(log Γ(x))′ is the digamma function. Then the correspond-
ing density estimate is not consistent. This implies that in (57) there is
an additional term correcting the asymptotic bias. For uniform f the con-
sistency of (57) was proven by Tarasenko [227] and by Beirlant and van
Zuijlen [20]. Hall proved the weak consistency of (57) for densities sat-
isfying T2 and P2 [101]. The asymptotic normality of Hm,n was studied
under the conditions T2 and P2 in Refs. [53], [68], [101] and [21], who all
proved the asymptotic normality under T2 and P2 with

σ2 = (2m2 − 2m + 1)ψ′(m)− 2m + 1 + V ar(log f(X)), (58)
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which for m = 1 gives

σ2 =
π2

6
− 1 + V ar(lnf(X)).

(ii) mn-spacing estimate with mn →∞
This case is considered in the papers of Vaš́ıček [243], Dudewitz and van
der Meulen [68], Beirlant and van Zuijlen [20], and of Beirlant [21], Hall
[106], van Es [239]. In these papers, the weak and strong consistencies are
proven under condition (56). Consistencies for densities with unbounded
support is proved only in Tarasenko [227] and in Beirlant [20]. Hall [106],
van Es [239] proved asymptotic normality with σ2 = V ar(log f(X)) if f
is not uniform but satisfies T2 and P2. Hall in [106] showed this result
also for the non-consistent choice of Mn/n → ρ if ρ is irrational. This
asymptotic variance is the smallest one for an entropy estimator if f is
not uniform. If f is uniform on [0, 1] then Dudewitz and van Meulen [68]
and van Es [239] showed, respectively for mn = o(n1/3−δ), δ > 0, and for
mn = o(n1/3) that

lim
n→∞

(mn)1/2(Ĥn −H(f)) = N(0, 1/3), (59)

for slight modifications Ĥn of the mm-spacing estimate Hn. (Since sample
spacings are defined only in one dimension, for our application are not
these methods suitable. The generalization of these estimates is in higher
dimension non-trivial.)

4.4.2 Based on nearest neighbor search

Estimators of Shannon entropy based on k-nearest neighbor search in one di-
mensional spaces were studied in statistics already almost 50 years ago by Do-
brushin [67] and by Vaš́ıček [243], but they cannot be directly generalized to
higher dimensional spaces (and therefore not applied to mutual information).

For general multivariate densities, the nearest neighbor entropy estimate
is defined as the sample average of the algorithms of the normalized nearest
neighbor distances plus the Euler constant. More precisely, let ρn,i be the
nearest neighbor distance of Xi and the other Xj : ρn,i = minj 6=i,j≤n||Xi−Xj ||.
Then the nearest neighbor entropy estimate is defined as

Hn =
1
n

n∑

i=1

log(nρn,i) + log 2 + CE , (60)

where CE is the Euler constant CE = − ∫∞
0

e−t log tdt. Under the condition
(P1) introduced in Section 3.1, Kozachenko and Leonenko [135] proved the
mean square consistency for general d ≥ 1. Tsybakov and van der Meulen [237]
showed root-n rate of convergence for a truncated version of Hn when d = 1 for
a class of densities with unbounded support and exponential decreasing tails,
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such as the Gaussian density. Bickel and Breiman [32] considered estimating
a general functional of density. Under general conditions on f they proved
asymptotic normality. Their study unfortunately excludes the entropy.

We will describe here more in detail two nearest neighbor entropy estimators:
KL introduced by Kozachenko and Leonenko [135] and its theoretical analysis
and then its improved modification from Kraskov et al. [136].

Victor [248] applied the KL estimator and claimed that the algorithm was
dramatically more efficient than standard bin-based approaches, such as the
direct method from Strong at al. [222] for amounts of data typically available
from laboratory experiments.

The KL estimator
For simplicity reasons, we describe the estimators in R2. The idea is to rank, for
each point zi = (xi, yi) ∈ R2 its neighbors by distance di,j = ‖zi − zj‖ : di,j1 ≤
di,j2 ≤ . . . (supposing ‖.‖ be a metrics) and than to estimate H(X) from the
average distance to the k−nearest neighbor, averaged over all xi.

Shannon entropy H(X) = − ∫
dxµ(x) log µ(x) can be understood as an av-

erage of log µ(x). Having an unbiased estimator ̂log µ(x) of log µ(x), one would
get an unbiased estimator Ĥ(X) = − 1

N

∑N
i=1

̂log µ(xi). In order to estimate
̂log µ(xi), the probability distribution Pk(ε) is considered for the distance be-

tween xi and its k−th nearest neighbor. The probability Pk(ε)dε can be derived
from the trinomial formula

Pk(ε) = k

(
N − 1

k

)
dpi(ε)/dεpk−1

i (1− pi)N−k−1. (61)

The expectation value of log pi(ε) can be from Pk(ε) derived as E(log pi) =
ψ(k) − ψ(N), where ψ(x) is the digamma function (i.e. logarithmic derivative
of the gamma function, see [2]). The expectation is taken over the positions
of all other N − 1 points, xi is kept fixed. An estimator for log µ(x) is then
obtained by assuming that µ(x) is constant in the whole ε > 0 ball. This gives
pi(ε) ≈ cdε

dµ(xi), where d is the dimension of x and cd is the volume of the
d-dimensional unit ball. (For the maximum norm cd = 1, for the Euclidean
cd = πd/2/Γ(1 + d/2)/2d). Then log µ(xi) ≈ ψ(k) − ψ(N) − dE(log ε) − log cd,
which leads to

Ĥ(X) = −ψ(k) + ψ(N) + log(cd) +
d

N

N∑

i=1

log ε(i) (62)

where ε(i) is twice the distance from xi to its k-th nearest neighbor. In most
investigated cases (including Gaussian and uniform densities in bounded do-
mains with a sharp cutoff) the approximation error is approximately k/N or
k/N log(N/k) [136].
Mutual information can be obtained by estimating H(X), H(Y ), and H(X,Y )
separately and by applying formula (12). But in this way, the errors made in the
individual estimates would not have to cancel (see also the discussion below).
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Leonenko et al. [139] studied a class of k-nearest-neighbor-based Rényi es-
timators for multidimensional densities (as we have already mentioned above,
Shannon entropy is Rényi entropy for q = 1). They investigated theoretically
a class of estimators of the Rényi and Tsallis (also called Havrda-Charvát, see
i.e. [51]) entropies of an unknown multidimensional distribution based on the
k-nearest distances in a sample of independent identically distributed vectors.
It was shown that Rényi entropy of any order can be estimated consistently with
minimal assumptions on the probability density. For Shannon entropy, and for
any k > 0 integer, the expected value of the k-nearest neighbor estimator (in-
cluding both versions of KSG algorithm of the MI estimators I(1,2) described
below) converges with the increasing size of data set N to infinity to the entropy
of f if f is a bounded function (asymptotical unbiasedness). For any k > 0
integer, the k-nearest neighbor estimator converges for the Euclidean metric
(L2 rate of convergence), with the increasing size of data set N to infinity, to
the entropy of f if f is a bounded function (consistency). These statements
in a more general form for Rényi and Tsallis entropies were proven in [139].
Kullback-Leibler distance (KLD) of two functions in d-dimensional Euclidean
space was also examined and for its nearest neighbor estimator similarly proven
to be asymptotically unbiased and consistent. A central limit theorem for func-
tions h of the nearest neighbor method was proven by Bickel and Breiman (for
k = 1 in [32]) and Penrose (for k > 1 in [172]) but only under the condition that
the nearest neighbor estimator computing entropy is bounded (nearest neigh-
bor estimators of Rényi entropies, including Shannon entropy are not in general
bounded). At present, neither exact nor asymptotic results on the distribu-
tion of the k-nearest neighbor entropy estimator are known. Goria et al. [87]
presented a simulation study showing that for many distribution families used
in statistics, the hypothesis of asymptotic normal distribution of the nearest
neighbor estimator seems to be acceptable (for Beta, Cauchy, Gamma, Laplace
and Student t distributions). It was shown that by increasing of parameter k,
one can influence the approximation precision in higher dimensional spaces (the
estimator with bigger k was much more accurate as for k = 1). Similarly, by
setting k = kN , the precision can be influenced for increasing N [139]. For the
Kullback-Leibler divergence (KLD), three various nearest neighbor estimators
were tested on one-dimensional function f given by 10000 data points generated
by a Student distribution with 5 degrees of freedom (t5). All the three tested
estimators converged to t5. Although the asymptotical unbiasedness and consis-
tency of the estimators was proven for multidimensional spaces, up to our best
knowledge, any functional relationship of k with respect to the approximation
error of the estimate is not known.

The KSG estimators
The following algorithm is from Kraskov, Stögbauer and Grassberger (KSG)
[136]. Assume Z = (X, Y ) to be the joint random variable with maximum
norm. The estimator differs from formula (62) that vector x is replaced by z,
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dimension d is replaced by dZ = dX + dY and volume cd by cdX cdY . We get

Ĥ(X,Y ) = −ψ(k) + ψ(N) + log cdX cdY − ((dX + dY )/N)
N∑

i=1

log ε(i), (63)

where ε(i) is twice the distance from xi to its k-th neighbor. Now the formula
(12) for mutual information can be applied for the same k. In this way, the
different distance scales would be effectively used in the joint and marginal
spaces. However, the biases of formula (62) resulting from the nonuniformity of
the density would be different for the estimates H(X),H(Y ) and H(X,Y ) and
would not cancel. To avoid this, Kraskov et al. recommend not to use fixed k
for marginal entropy estimation. Two estimators are proposed. Assume that
the k-th neighbor of xi is on one of the vertical sides of the square of size ε(i) (in
two dimensions). Then if there are altogether nx(i) points within the vertical
lines (xi − ε(i)/2, xi + ε(i)/2), then ε(i)/2 is the distance to the (nx(i) + 1)-th
neighbor of and xi and

Ĥ(X) = − 1
N

∑
ψ[nx(i) + 1] + ψ(N) + log cdX

+
dX

N

N∑

i=1

log ε(i). (64)

For the coordinate Y, this is not exactly true, i.e. ε(i) is not exactly equal
twice the distance to the (ny(i) + 1)-th neighbor if ny(i) is analogously defined
as the number of points in (yi − ε(i)/2, yi + ε(i)/2). The first estimator uses
hyper-cubes in the joint space and is given in dimension d by

I(1)(X1, . . . , Xd) = ψ(k)− (d− 1)ψ(N)− < ψ(nx1) + · · ·+ ψ(nxd
) > (65)

where < · · · >= (1/N)
∑N

i=1 E[. . . (i)] and nxi is the number of points xj so
that ‖xj−xj‖ < ε(i)/2. The second estimate uses hyper-rectangles and is given
in dimension d by

I(2)(X1, . . . , Xd) = ψ(k)− d− 1
k

+(d−1)ψ(N)− < ψ(nx1) · · ·+ψ(nxd
) > . (66)

More details can be found in [136]. Both estimators (for k = 1) for correlated
Gaussian distributions give approximately the same results, only in very high
dimensions gives I(2) better results because ε(i) tends to be much larger than
the marginal εxj (i). Some hints for selection of parameter k, influencing the
precision of approximation, can be found in [136]. Both estimators appeared
in the experiments adaptive (i.e. the resolution is higher where data are more
numerous) and had minimal bias.

Fig. 5 (a) shows how ε(i), nx(i), and ny(i) are determined in the first algo-
rithm (I(1)), for k = 1 and some fixed i. In this case, nx(i) = 5 and ny(i) = 3.
The two bottom images of Fig. 5 show how to find εx(i), εy(i), nx(i), ny(i) in the
second algorithm (I(2)) for k = 2. The left image (b) indicates the case where
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the above are determined by a single point and the right image (c) depicts a
situation where two different points influence the values εx(i), εy(i), nx(i), ny(i).

Insert Fig. 5 here

KSG has the following important property. Numerically, both estimators
become exact for independent distributions, i.e. the estimator error vanishes
(up to statistical fluctuations) if µ(x, y) = µ(x)µ(y) as confirmed by experi-
ments. The results for correlated Gaussians are shown in Fig. 6. This holds for
all tested marginal distributions and for all dimensions of x and y (see below).
Many points in a large set may have identical coordinates. In that case, the
numbers nx(i) and ny(i) need no longer be unique (the assumption of continu-
ously distributed points is violated). The nearest neighbor counting can lead to
wrong results. [136] solved this by adding very low-amplitude noise to the data.
The k-nearest neighbor search in KSG is done by so called Box-assisted algo-
rithm from Grassberger [93]. This algorithm is recommended to be used with
KSG in lower dimensions (up to 3), while k-d trie (a data representation struc-
ture similar to k-d trees) showed up to be considerably more advantageous in
higher dimensional spaces (Vejmelka and Hlaváčková -Schindler [244]). The es-
timators were applied to assess the actual independence of components obtained
from independent component analysis (ICA), to improve ICA and to estimate
blind source separation. Rossi et al. [195] applied the KSG estimator of MI
in higher dimensional spaces to selection of relevant variables in spectrometric
nonlinear modeling, another application is from Sorjamaa et al. [219].

Insert Fig. 6 here

The KSG method was experimentally compared to the adaptive partitioning
method from Darbellay and Vajda [54] and was slower. On the other hand,
mutual information estimated by KSG estimates I(1,2), worked for more non-
Gaussian general distributions, where the adaptive partitioning method failed.
KSG and Edgeworth expansion method (for more details about Edgeworth ex-
pansion, see Section 5.2.2) for entropy and MI of Gaussian distributions were
experimentally compared in Ref. [241]. One can see that the Edgeworth ex-
pansion has an advantage for Gaussian distributions or distributions ”close” to
Gaussian, since the error is caused only by the cumulants. On the other hand,
the parameter k gives flexibility both to the KL and KSG estimator to widen
its approximation ability to more general distributions.

4.5 Estimates based on learning theory methods

4.5.1 Motivated by signal processing problems

Entropy and mutual information are often used as a criterion in learning the-
ory. For example, classification and pattern recognition literature uses it them
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for feature extraction, i.e. Torkkola, [233] or for principal or independent com-
ponent analysis, i.e. Xu et al. [254], [184], [185]. Entropy as a measure of
dispersion is applied in many other areas, in control, search, or in the area of
neural networks and supervised learning, i.e. Refs. [174], [186], [70], [71], [205]
and [251]. Many of the developed methods belong as well to non-parametric
plug-in estimators.

Learning theory is interested in computationally simpler entropy estimators
which are continuous and differentiable in terms of the samples, since the main
objective is not to estimate the entropy itself but to use this estimate in optimiz-
ing the parameters of an adaptive (learning) system. The consistency properties
of an estimator are not questioned strictly in this field since for relatively small
data sets it is not critical to have a consistent or an inconsistent estimate of the
entropy as long as the global optimum lies at the desired solution. Since these
methods work in general also in higher dimensional spaces (and therefore can be
applicable to mutual information), they definitely deserve our attention. From
this variety of learning theory applications, we mention here the nonparametric
estimator of Rényi entropy from Erdogmus [70] and some neural network-based
approaches. Concerning the former estimator, we will first explain the Parzen
estimation and then the properties of Parzen estimation of Rényi entropy, in-
cluding Rényi divergence, mutual information and their estimators.

Quadratic Rényi entropy estimator

The nonparametric estimator for Rényi quadratic entropy introduced by
Principe and Erdogmus [70] uses Parzen windowing with Gaussian kernels in
the following manner. Let the (continuous) quadratic entropy be given by

H2(X) = − log
∫ ∞

−∞
f2

X(x)dx. (67)

Let xi, . . . , xN are identically distributed samples of the random variable X.
The Parzen (Window) estimate [170] of the pdf using an arbitrary kernel func-
tion κσ(.) is given by

f̂X(x) =
1
N

N∑

i=1

κσ(x− xi), (68)

where the kernel function κσ is a valid pdf in general and is continuous and
differentiable. If Gaussian kernels Gσ(.) with standard deviation σ

κσ(y) = G(y, σ2I) =
1

2/π
M/2

σM
exp(−yT y

2σ2
), (69)

is substituted into the quadratic entropy expression (67), the following quadratic
Rényi entropy estimator is derived by Erdogmus in [70]:

Ĥold
2 (X) = − log

1
N2

N∑

i=1

N∑

j=1

Gσ
√

2(xj − xi). (70)
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Consider the discrete version of the Rényi entropy written with the expectation
operator

Hα(X) =
1

1− α
log EX [fα−1

X (X)]. (71)

By approximating the expectation operator with the sample mean we get

Hα(X) ≈ 1
1− α

log
1
N

N∑

j=1

fα−1
X (xj). (72)

By substituting the Parzen window estimator into the previous equation, we get

Hnew
α (X) =

1
1− α

log
1

Nα

N∑

j=1

(
N∑

i=1

κσ(xj − xi))α−1. (73)

For α = 2 and Gaussian kernels with standard deviation σ
√

2, the old and
new estimator become identical. The new estimator can be used for entropy
evaluation or when it is desired to adapt the weights of a learning system based
on entropic performance index [257]. The new estimator is consistent if the
Parzen windowing and the sample mean are consistent for the actual pdf of the
iid samples. In case of estimating the joint entropy of an n-dimensional random
vector X from its samples {x1, . . . , xN}, using a multidimensional kernel that is
the product of single-dimensional kernels, the estimate of the joint entropy and
the estimate of the marginal entropies are consistent [70].

Similarly as for Shannon entropy, the Kullback-Leibler divergence (KLD)
is defined also for Rényi entropy. Erdogmus [70] derived analogously a kernel-
based resubstitution estimate for Rényi order α divergence. The computational
complexity in both cases is O(N2).

In the Shannon’s case is the mutual information between the components of
an n-dimensional random vector X equal to the KLD of the joint distribution of
X from the product of the marginal distributions of the components X. Rényi
order-α mutual information is defined as the Rényi divergence between the same
quantities.

Letting fX(.) be the joint distribution and fXb(.) be the marginal density of
the bth component, Rényi mutual information becomes (Rényi, 1976, [192])

Iα(X) =
1

α− 1
log

N∑

i=1

· · ·
N∑

i=1

fα
X(xi

1, . . . , x
i
n)∏n

b=1 fα−1
Xb (xi

b)
. (74)

It is again possible to write kernel-based resubstitution estimator for Rényi mu-
tual information by approximating the joint expectation with the sample mean
and then by replacing the pdfs with their Parzen estimators that use consis-
tent kernels between the marginal and joint pdf estimates. The nonparametric
mutual information estimator is then

Îα(X) =
1

α− 1
log

1
N

N∑

j=1

(
( 1

N

∑N
i=1

∏n
b=1 κσb

(xj
b − xi

b))∏n
b=1(

1
N

∑N
i=1 κσb

(xj
b − xi

b))
)α−1. (75)
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This estimator can be used in problems where it is necessary to evaluate the
mutual information between sets of samples and in adaptation scenarios, where
optimizing according to the mutual information between certain variables is the
primary objective.

In order to improve the performance by smoothing its learning curve, Er-
dogmus [70] designed two recursive nonparametric quadratic entropy estimators.
One is an exact recursion that provides the exact estimate given by the batch
estimator, and the other one a forgetting recursion that incorporates the ad-
vantages of a forgetting factor for successful entropy tracking in non-stationary
environments. The gradient of the latter estimator directly yields a recursive
entropy gradient, called recursive information gradient (RIG). (The stochastic
information gradient is shown to be a special case of this corresponding to zero
memory, as expected).

Other entropy applications in signal processing are from Bercher and Vignat
[27] and Viola [250], [251]; they use spectral-estimation based or polynomial
expansion type pdf estimates substituted for the actual pdf in Shannon entropy
definition. Viola derived a differential learning rule called EMMA that optimizes
entropy by kernel (Parzen) density estimation. Entropy and its derivative can
then be calculated by sampling from this density estimate. EMMA was applied
for the alignment of three-dimensional models to complex natural images and
for detection and correction of corruption in magnetic resonance images. These
applications outperform the results done by parametrical methods.

Bercher and Vignat [27] presented an entropy estimator of continuous sig-
nals. The estimator relies on a simple analogy between the problems of pdf
estimation and power spectrum estimation. The unknown probability density
of data is modeled in the form of an autoregressive (AR) spectrum density and
regularized long-AR models are applied to identify the AR parameters. The
corresponding estimator does not require the explicit estimation of the pdf but
only of some samples of a correlation sequence. It was evaluated and com-
pared with other estimators based on histograms, kernel density models, and
order statistics. An adaptive version of this entropy estimator was applied for
detection of law changes, blind deconvolution, and source separation.

4.5.2 Estimates by neural network approaches

The computation of entropy from a data set by a neural network unfortunately
requires explicit knowledge of the local data density. This information is usually
not available in the learning from samples case. Schraudolph [204] analyzed
three following methods for making density estimation accessible to a neural
network: parametric modeling, probabilistic networks and nonparametric esti-
mation (by Parzen window estimator). By imposing their own structure to the
data, parametric density models implement impoverished but tractable forms
of entropy such as the log-variance (see Section 5).

In the probabilistic networks, neural network node activities are interpreted
as the defining parameters of a stochastic process. The net input to such a node
determines its probability of being active rather than its level of activation. The
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distribution of states in a stochastic network of these nodes can be calculated
with models from statistical mechanics by treating the net inputs as energy
levels. Since the distribution is analytically available, entropy can be optimized
directly, but it is the entropy of the network rather than that of the data itself.
The result of entropy optimization in such a system therefore depends on the
nature of the stochastic model. A well-known example of this type of network is
Boltzmann Machine (i.e. [112]). The entropy of the process can then be calcu-
lated from its parameters, and hence optimized. The nonparametric technique
by Parzen or kernel density estimation leads to an entropy optimization algo-
rithm in which the network adapts in response to the distance between pairs
of data samples. Such entropy estimate is differentiable and can therefore be
optimized in a neural network, allowing to avoid the limitations encountered
with parametric methods and probabilistic networks.

The nonparametric estimate of the empirical entropy of Y by Parzen method
was derived in the form [204]:

Ĥ(Y ) = − 1
|S|

∑

yi∈S

log p̂(yi) = − 1
|S|

∑

yi∈S

log
∑

yj∈T

κσ(yi − yj) + log |T | (76)

where κ is defined by formula (69). Note that Schraudolph does not use Renyi
entropy as is used in the estimators in formulas (70) and (73) but the Shannon
one. The Parzen density was used to estimate and optimize the entropy at the
output of a parametrized mapping such as a neural network. This resulted in a
simple yet efficient batch learning rule that operates on pairs of input samples.

Taleb and Jutten [226] proposed optimization of entropy by neural networks.
To optimize the output entropy, one needs to estimate the output pdf (more
precisely its derivatives). They suggest to apply a multilayer perceptron (MLP)
in unsupervised learning with the weight vector w. Let x be the input vector,
and y the output of this MLP. The definition of Shannon entropy (5) can be
expressed as

−E[log pY (y)]. (77)

The weight vector w is trained (under some constraints) to optimize (77) and
the stochastic gradient learning algorithm is

wt+1 = wt + µt∇wyT∇y log pY (y), (78)

where µt is the learning rate and the sign of the rate depends on if we want
to maximize or minimize output entropy. Taleb and Jutten applied a method
for the estimation of ∇y log p(y) called score functions. Let X = (X1, . . . ,Xn)
∈ Rn be a random variable, with differentiable pdf pX(x). Score function in the
multivariate case is defined as:

ψX(x) = (
δ log pX(x)

δx1
, . . . ,

δ log pX(x)
δxn

)T .

Suppose that ψX(x) is known. Then, using function approximation ability of
neural networks, one can use a simple MLP with one input and one output unit

39



to provide an estimation h(w, x) of ψX(x). The parameter vector w is trained
to minimize the mean squared error:

ε =
1
2
E[(h(w, x)− ψX(x))2]. (79)

A gradient descent algorithm on (79) leads to the following weights update

wt+1 = wt − µt∇wε,

where

∇wε = E[h(w, x)∇wh(w, x) +∇w
δh(w, x)

δx
]. (80)

Since ψX(x) in (80) disappears, the supervised learning algorithm changes into
the unsupervised one. The method can be easily extended into the multivariate
case by using a multilayer perceptron with n inputs. To improve the speed of
the learning algorithm based on a simple gradient descent, one can use second
order minimization techniques. This algorithm was applied to the blind source
separation.

To mention another application of entropy estimation, Rigoll [193] used en-
tropy as a learning criterion for perceptron-like networks using self-organizing
training. On the other hand, based on the entropy values, the complexity of a
neural network approximating a function can be determined [113].

4.6 Entropy estimates based on maximum likelihood

Maximum likelihood estimation (MLE) is a popular statistical method used to
make inferences about parameters of the underlying probability distribution of
a given data set. The method was pioneered by geneticist and statistician Sir
R. A. Fisher already in 1912 [75, 76]. We could classify this approach as well as
a parametrical one (Section 5).

When maximizing the likelihood, we may equivalently maximize the log of
the likelihood, since log is a continuous (monotonously) increasing function over
the range of the likelihood (and the number of calculations may be reduced).
The log-likelihood is closely related to entropy and Fisher information (the latter
is the negative of expectation of the second derivative of the log of f with respect
to θ, where f is the probability function and θ is a parameter). Popular methods
for maximum likelihood are the Expectation-Maximization (EM) (i.e. Demster
et al. [60] and Berger, Neal and Hinton [152]) and Improved Iterative Scaling
(IIS) algorithms (Berger [26]). These methods are often used in classification
tasks, especially in speech recognition.

Maximum likelihood estimator

The joint pdf f(X, θ), given in a parametric form, is computed, where X =
{x1, . . . , xN} is the set of randomly drawn samples from this pdf. By statis-
tical independence, f(X, θ) =

∏N
i=1 f(xi, θ), which is known as the likelihood
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function of θ. The maximum likelihood (ML) method estimates θ such that the
likelihood function takes its maximum value [232], that

θ̂ML = arg max
θ

N∏

i=1

f(xi, θ). (81)

The maximum a posteriori probability (MAP) estimate θ̂MAP is defined as
the point where f(θ|X) = f(θ)f(X|θ) becomes maximum. A method apply-
ing log maximum likelihood approach to kernel entropy estimation and using
Expectation-Maximization algorithm will be discussed in Section 4.8.

Paninski [167] used an exact local expansion of the entropy function and
proved almost sure consistency (strong consistency) and central limit theorems
for three of the most commonly used discretized information estimators, namely
the maximum likelihood (MLE) estimator ĤMLE(pN ) =

∑N
i=1 pN,i log pN,i, in

our terminology plug-in (see above), the MLE with the so-called Miller-Madow
bias correction [146], [145]

ĤMM (pN ) = ĤMLE(pN ) +
m̂− 1
2N

(82)

where m̂ is some estimate of the number of bins with nonzero p−probability
([167] considers m̂ to be the number of bins with non-zero pN probability), and
the jackknifed version of MLE from Efron and Stein [69]

ĤJK = NĤMLE − N − 1
N

N∑

j=1

ĤMLE−j (83)

where ĤMLE−j is the MLE based on all but the j − th sample.
This framework leads to the estimator ĤBUB (Best Upper Bounds estimator)

equipped with the bounds on the maximum error over all possible underlying
probability distributions; this maximum error is very small. This estimator was
applied both on real and simulated data.

Mixture models

Mixture models provide more flexibility into the density estimation. Here, the
unknown density is modeled as a mixture of M densities

f(x) =
M∑

m=1

f(x|m)Pm, (84)

where
∑

m=1 Pm = 1. Thus, this modeling assumes that each point x may
be drawn from any of the M model distributions with probability Pm, m =
1, . . . , M . The density components have a parametric form, f(x|m, θ) and then
the unknown parameters θ and Pm, m = 1, . . . ,M must be computed from the
samples. Since the contribution of mixture density is not known, the maximum
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likelihood principle cannot be easily employed, and one can apply the EM al-
gorithm to solve the problem. Because of the additional flexibility the mixture
models add to the parametric models, this method may be regarded as semi-
parametric. There are basically two drawbacks associated with the parametric
density estimation schemes discussed above. In the case that an information
theoretic measure is used as a cost function for training adaptive systems, the
parametric methods require solving an optimization problem within an opti-
mization problem, where the ’external’ optimization is the adaption process
(using for example gradient-based learning algorithms). The second drawback
is the insufficiency of parametric models for general-purpose modeling tasks.
The selected parametric family may be too limiting to be able to accurately
model the data distributions in question; it may be as well difficult to select the
right parametric class.

4.7 Correction methods and bias analysis in undersam-
pled regime

Basharin [18] and Herzel [109] pointed out that to the second order, the bias
for an entropy estimation is independent of actual distribution. One can use
Bayesian approaches or use very strong assumptions about the estimator to
get a small bias, but estimators with very small bias, i.e. [202], [180] have
unfortunately large statistical errors. In this subsection we discuss entropy
estimates, which are mostly analytical and their bias can be computed.

Let us first consider the simplest and the most straightforward one, the naive
(”likelihood”) estimator, where one replaces the discrete probabilities pi, i =
1, . . . , K (N is the number of observations, and ni the frequency of realization
i among all observations) in the Shannon entropy formula by p̂i = ni

N . We get

Ĥnaive = −
K∑

i=1

p̂i log p̂i. (85)

Ĥnaive is also a maximum likelihood estimator SML, since the maximum like-
lihood estimate of the probabilities is given by the frequencies. This estimator
leads to a systematic underestimation of entropy H (i.e. the difference of the
real entropy and its estimator is positive).

Among the first corrections of the estimation error belongs the work of Miller
[146], applying a Taylor expansion around pi to the log function into the naive
estimator with the correction term of O(1/N). Paninski [167] applied Bernstein
polynomials (i.e. a linear combination of binomial polynomials, from which
he derived the estimator ĤBUB discussed in Section 4.6 above, more details
[167]) and achieved that the maximum (over all pi) systematic deviations are of
O(1/N2). Unfortunately, the variance of the corresponding estimator turns out
to be very large [167]. Thus a good estimator should have the bounds on bias
and variance minimized simultaneously. The result is a regularized least-squares
problem. There is however no guarantee that the solution of the regularized
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problem implies a good polynomial approximation of the entropy function; this
also depends on the priority, what is more important whether reducing bias or
variance, or vice versa.

In a more recent work by the same author [168], the entropy estimation
is investigated in the undersampled regime (i.e. on m bins given fewer than
m samples). It has been long known [146] that the crucial quantity in this
estimation problem is the ratio N/m: if the number of samples is much greater
than the number of bins, the estimation problem is easy, and vice versa. Paninski
concentrated on this part of the problem: how can one estimate the entropy
when is N/mN bounded? He showed that a consistent estimator H(pN ) exists
in this regime (by proving his main conjecture from [167]). The most surprising
implication of this result is that it is possible to accurately estimate the entropy
on m bins, given N samples, even when N/mN is small (provided that both N
and m are sufficiently large).

Nemenman et al. [153, 154] studied properties of near-uniform (Dirichlet)
priors for learning undersampled probability distributions on discrete non-metric
spaces and entropy and information in neural spike trains. The authors argue
that for the estimates of entropy using knowledge of priors, fixing one parameter
(beta in the Dirichlet priors) specifies the entropy almost uniquely.

A Bayesian entropy estimator SML was introduced by Nemenman and Bialek
[155] as a maximum likelihood estimator and was applied to synthetic data in-
spired by experiments and to real experimental spike trains. The estimator SML

was inspired by the Ma’s entropy estimation by counting coincidences for uni-
form distributions. Ma’s idea was generalized to an arbitrary distribution. It is
well known that one needs N ∼ K (N is the size of the data set and K the num-
ber of all possible values of a distribution) to estimate entropy universally with
small additive or multiplicative errors [167]. Thus the main question is: does a
particular method work well only for abstract model problems, or does work also
on natural data? The goal of [154] was to show that the method introduced in
[153] can generate reliable estimates well into a classically undersampled regime
for an experimentally relevant case of neurophysiological recordings.
In an experiment, in N examples each possibility i occurred ni times. If N À K,
one can use the naive estimator Ĥnaive given by formula (85). It is known
that SML underestimates entropy ([167]). With good sampling (N À K),
classical arguments due to Miller [146] show that the SML estimate should be
corrected by a universal term K−1

2N (compare to the negative results of Paninski
for K ∼ N in the mentioned discussion above from [167], where K = mN ).
There are other correcting approaches, but however they work only when the
sampling errors are in some sense a small perturbation. To make progress
outside of the asymptotically large N regime, one needs an estimator that does
not have a perturbative expansion in 1/N with SML as the zero order term.
The estimator SML from [153] has this property. SML is the limiting case of
Bayesian estimation with Dirichlet priors.

Maximum likelihood estimation is Bayesian estimation with this prior in the
limit β → 0, while the natural ”uniform” prior is β = 1. The key observation
of [153] is that while these priors are quite smooth on the state space of p,
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the distributions drawn at random from Pβ all have very similar entropies,
with a variance that vanishes as K becomes large. This is the origin of the
sample size dependent bias in entropy estimation. The goal is to construct a
prior on the space of probability distributions which generates a nearly uniform
distribution of entropies. It is probable that such a uniform distribution prior
would largely remove the sample size dependent bias in entropy estimation,
but it is crucial to test it experimentally. In particular, there are infinitely
many priors which are approximately (and even exactly) uniform in entropy,
and it is not clear which of them will allow successful estimation in real world
problems. An estimator SNSB was computed in Ref. [154] and about it proven
that the NSB prior almost completely removed the bias in a model problem
and that the SNSB is a consistent Bayesian estimator (the derivation of this
and of the entropy estimator SNSB can be found in [153] and [154]). Since
the analysis is Bayesian, one obtains not only SNSB but also the a posteriori
standard deviation, an error bar on our estimate. Secondly, for real data in a
regime where undersampling can be beaten down by data, the bias is removed to
yield agreement with the extrapolated ML estimator even at a very small sizes.
Finally and most crucially, applied to natural and nature-inspired synthetic
signals, the NSB estimation performs smoothly and stably over a wide range of
K À N . This opens new possibilities for the information theoretic analysis of
experiments.

In the following we focus on other correction methods, which do not use
Bayesian analysis. Grassberger [95] derived an estimator (in more general form
for Rényi entropy) which is at least asymptotically unbiased for large N , and
is also a ‘good’ approximation in the case of small samples. The corresponding
estimator of the Shannon entropy (assumes that the observation space is divided
into M À 1 boxes, each with probability pi,

∑
i pi = 1 so that each ni is a

random variable with a Poisson distribution) has the form

Ĥψ =
M∑

i=1

ni

N
(log N − ψ(ni)− (−1)ni

ni(ni + 1)
) (86)

where ψ(n) = log Γ(n)/dn is the digamma function. In the case of small prob-
abilities pi ¿ 1, is this estimate less biased both than the above mentioned the
naive estimator and the Miller’s correction estimate.

Grassberger [96] modified the previous estimator into the form

ĤG =
M∑

i=1

ni

N
(ψ(N)− ψ(ni)− (−1)ni

∫ 1

0

tni−1

t + 1
dt). (87)

In the high sampling regime (i.e. À 1 points in each box), both estimators
have exponentially small biases. In the low sampling regime, the errors increase
but are smaller than for most other estimators (i.e. Miller’s correction [146]).
The correction term of the estimator (86) is recovered by a series expansion of
the integrand in (87) up to the second order. The higher order terms of the
integrand lead to successive bias reductions compared to (86).
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Schürmann [209] proposed a class of parametrical entropy estimators and
determined their systematical error analytically. The estimator of Shannon
entropy is of the form

ĤS(ξ) = ψ(N)− 1
N

M∑

i=1

niSni
(ξ) (88)

where ĤS(ξ) =
∑M

i=1 ĥ(ξ, ni) and Sn(ξ) = ψ(n) + (−1)n
∫ 1/ξ−1

0
tn−1

1+t dt and ĥ is
an estimator of h(p) = −p log p satisfying ĥ. For bias of ĥ holds

b(ξ, p) = −p

∫ 1−p/ξ

0

tN−1

1− t
dt and E[Ĥ(ξ, n)] = −p log p + b(ξ, p).

This estimator is unbiased for ξ = p and there is a turning point for ξ = pN . The
estimator is asymptotically unbiased, i.e. b(ξ, p) → 0 for N →∞ if ξ ≥ p/2. The
mean square error (i.e. statistical error) is σ2(ξ, p) = E[(ĥ(ξ, n)−h(p))2] (where
h(p) = −p log p). For ξ = 1 the estimator ĥ in the asymptotic regime n À 1
it leads to the Miller’s correction. For ξ = e−1/2 is the Grassberger estimator
Ĥψ a special case. For ξ = 1/2 is the estimator identical to the estimator ĤG

from Grassberger. This estimator is less biased than Miller’s correction and
the estimator ĥ(e−1/2, n), but the statistical error is bigger. The experiments in
[205] indicate that it is not possible to decide which estimator should be generally
preferred. A good choice of the parameter is always application dependent.

4.8 Kernel methods

Kernel density estimation methods (KDE)

Mutual information was first estimated by this approach by Moon et al. [151].
According to Steuer et al. [221], the KDE methods were found to be superior to
the classical histogram methods (see Section 4.2.1) from the following reasons:
1. they have a better mean square error rate of convergence of the estimate
to the underlying density; 2. they are insensitive to the choice of origin; 3.
the window shapes are not limited to the rectangular window. Kernel density
estimator introduced by Silverman [215] in one dimensional space is defined

f(x) =
1

Nh

N∑

i=1

K(
x− xi

h
) (89)

where h is the kernel width parameter. Kernel function K(x) is required to be a
(normalized) probability density function. It follows that also f itself is a prob-
ability density. The selection of h is crucial but the methods for selection of h
are usually computationally intensive. Silverman suggests, as the optimal width
h to use the one which minimizes the mean integrated square error, assuming
the underlying distribution is Gaussian:
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hopt = (
4

3N

1/5

)σ ≈ (1.06σN1/5) (90)

where σ denotes the standard deviation of the data. For two dimensional spaces,
we use two-dimensional Gaussian kernel estimate

Fg(x) =
1

2πNh2

N∑

i=1

exp
di(x,y)2

2h2 (91)

where di(x, y) is the Euclidean distance of (x, y) from (xi, yi). According to
Silverman [215], under the assumption that the density Fg is Gaussian, an
approximately optimal value is given by

hopt ≈ σ(
4

d + 2
)

1
d+4 N

−1
d+4 (92)

where d is the dimension of the data set and s the average marginal standard
deviation. Steuer et al. [221] made objections against a straightforward intro-
duction of a kernel density estimator into the logarithmic formula of mutual
information. The reason is that kernel estimation can be used for a continuous
form of mutual information while we are interested in the MI of discrete states.
The discretization of the (x, y)-plane into infinitesimal bins corresponds to the
continuous form of MI

I(X, Y ) =
∫

X

∫

Y

f(x, y) log(
f(x, y)

f(x)f(y)
)dxdy. (93)

But such a correspondence does not hold for the individual entropies used in
the formula I(X,Y ) = H(X)+H(Y )−H(X,Y ). The discretization introduced
by numerical integration for computing the above integral does not correspond
to the partition of data. It is shown in Ref. [221] that the estimated mutual
information is much less sensitive than the probability density itself.

Generalized Cross-redundancies

Prichard and Theiler [182] introduced a method to compute information theo-
retic functionals based on mutual information using correlation integrals. Cor-
relation integrals were introduced by Grassberger and Procaccia ([94]) as

Cq(x, ε) =
1

N2

N∑

i=1

N∑

j=1

Θ(ε− ||xi − xj ||) (94)

where q is the order of the integral, N is the number of samples, ε is the radius
of the neighborhood and Θ(x) is the Heaviside function. A similar work on cor-
relation integrals is from [108] and [106]. Prichard and Theiler [182] introduced
the generalized redundancy

Iq(x1; x2, l, ε) = Hq(x1(t), ε) + Hq(x2(t− l), ε)−Hq(x1(t), x2(t− l), ε) (95)
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which is a time-lagged mutual information functional between x1(t) and x2(t−
l) parametrized by ε > 0 and q which is the order of Rényi entropy. They
were inspired by the work of Green and Savit [97] on statistics quantifying
dependencies between variables. Setting q = 1, mutual information based on
Shannon entropy is obtained. This cross-redundancy [182] can be expressed
using correlation integrals as

Iq(x1;x2, l, ε) = − log2

Cq(x1(t), ε)Cq(x2(t− l), ε)
Cq((x1(t), x2(t− l)), ε)

. (96)

Entropy from maximum likelihood kernel density estimation

Although both maximum likelihood methods and Parzen estimator were dis-
cussed already in the previous chapters, we will allow ourselves to present here
these methods once more in the framework of multidimensional kernel methods.
Schraudolph [205] proposed an estimate of entropy based on kernel density es-
timation (Parzen window estimation). The underlying assumption is that the
probability density p(y) of the generating process is a smoothed version of the
empirical pdf of the sample. The estimate based on Parzen windows based on
a sample of data T can be written as

p̂(y) =
1
|T |

∑

yj∈T

K(y − yj) (97)

where K is the kernel. This is an unbiased density estimate of the true density.
The kernel used in the work [205] is

K(y) = N(0,Σ) =
exp(− 1

2y
T Σ−1y)

(2π)
n
2 |Σ| 12 , (98)

with dimensionality n and the covariance matrix Σ. The obvious problem is
the choice of the covariance matrix Σ: in one extreme the estimated pdf will
converge to the form of the kernel regardless of the sample distribution and in
the other extreme the estimated pdf is too dependent on the particular set of
samples in T (thus inducing large variance in the estimate). A suitable kernel
between these extremes can be found by the maximum likelihood method. An
empirical estimate of the maximum likelihood kernel is the kernel which makes a
second sample S drawn independently from the pdf p(y). Usually, the logarithm
of the maximum likelihood is maximized for numerical reasons

L̂ = log
∏

yi∈S

p̂(yi) =
∑

yi∈S

log
∑

yj∈T

K(yi − yj)− |S| log |T |. (99)

The estimated log-likelihood from formula (99) (which equals to formula (76)
multiplied by −|S|) assumes two independent sample sets S and T . In practice,
not enough data might be available to create separate sample sets S and T .
The data is also likely to be quantized by some measurement process. Both of
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the above effects distort the shape of the log-likelihood function and thus can
shift the position of the maximum. Schraudolph uses a technique called leave-
one-out to ensure S ∩ T = ∅. When estimating the pdf at the sample yi the set
Ti = S − {yi} is used. This method ensures optimal use of the sample T while
respecting the maximum likelihood requirement S ∩ T = ∅. The quantization
effect is mitigated by reintroducing the quantization noise into the kernel

K(y) =
[exp(− 1

2 (yT Σ−1y + κbT Σ−1b)]

(2π)
n
2 |Σ| 12 (100)

where b is the vector of the quantization bin widths in each dimension and
κ = 1

12 if the condition y /∈ T holds.
Schraudolph [205] showed how the maximum likelihood L̂ can be maximized

using gradient ascent for a diagonal Σ matrix. Because the performance of
standard gradient ascent is not satisfactory due to the shape of the L̂ function, it
is recommended to use exponentiated gradient ascent with step-size adaptation
[205]. Using this approach, the convergence of the method has significantly
improved.

Schraudolph also presents an Expectation Maximization (EM) algorithm
variant (for the original EM algorithm see i.e. [107]) , which has Σ as the only
optimized variable, with fixed centers (i.e. data points yi). This is possible since
the kernel used the problem can be understood as the estimation of a mixture
of Gaussians. In the E-step, using a given Σ, so called proximity factors πij are
computed. The proximity factors indicate how is each data point yi responsible
for the mixture j; they are estimated by

πij =
K(yi − yj)∑

yk∈T

K(yi − yk)
. (101)

In the maximization step of the EM algorithm, the new covariance matrix
is computed as the covariance of the proximity weighted data

Σ =
1
|S|

∑

yi∈S

∑

yj∈T

πij(yi − yj)(yi − yj)T . (102)

The convergence of the algorithm is further improved by overrelaxation,
where the covariance matrix is modified as

Σ(t) = Σ(t)Σ−1(t− 1)Σ(t). (103)

It is recommended to use the covariance matrix of the entire sample (uni-
formly weighted) to initialize the EM algorithm.

An estimate of the Shannon entropy can be computed using the kernel den-
sity estimate defined above by formula (76).
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4.8.1 Transfer entropy

The causality detection approach based on so-called transfer entropy [206] was
introduced and discussed in Sec. 2.4, showing that the expression for the trans-
fer entropy (33) is equivalent to the conditional mutual information defined in
the same set-up (dimensions, time lags). Here we remind again the paper of
Schreiber [206], now from the point of view of the estimation method.

Schreiber [206] proposed to compute the transfer entropy using the correla-
tion integrals [94]

p̂r(xn+1, xn, yn) = 1
N

∑
n′ Θ


r −

∣∣∣∣∣∣




xn+1 − xn′+1

xn − xn′

yn − yn′




∣∣∣∣∣∣


 , (104)

where Θ is a suitable kernel and | · | is a norm. The generalized correla-
tion integral based on time series xn, yn approximates the probability measure
p(in+1|i(k)

n , j
(l)
n ). The step kernel Θ(x > 0) = 1; Θ(x ≤ 0) = 0 and the maximum

norm are used. It is recommended to exclude dynamically correlated pairs (e.g.
using a Theiler window [231]).

The transfer entropy was tested on a lattice of 100 unidirectionally coupled
Ulam maps (for the definition see e.g. Ref [238]). The direction of information
transfer was correctly shown. Moreover, the bifurcation points, where the be-
havior of the lattice changed, was identified. The analysis was done using 105

data points in each series [206].
Verdes [245] proposed a modification of Schreiber’s method which generalizes
the above mentioned correlation integral to non-cubic neighborhoods. Instead of
using the standard neighborhood, which uses the same ε value in each dimension,
Verdes uses a neighborhood

p∗(xi, yi, zi) =
1

Npairs
n(∆xij < ε, ∆yij < ∆Y , zij < δZ). (105)

Verdes conjectures that due to the limited amount of available data and noise
in the data bounds, reasonable δY values from below and for large δY the con-
ditioning has no effect; a possible choice of δY is

δY = arg max
n(∆xij < ε, ∆yij < ∆Y )

n(∆yij < δY )
. (106)

The value for δZ is selected analogically.

5 Parametric estimators

No finite sample can determine density or the entropy directly. Therefore some
assumption about either the functional form of the density or about its smooth-
ness can be appropriate in some cases. The most common approach is to assume
that the density has a parametric form.
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This approach is preferred when there is confidence that the pdf underlying
the samples belongs to a known parametric family of pdf’s. It is effective when
the assumed parametric family is accurate but it is not appropriate in adaptation
scenarios where the constantly changing pdf of the data under consideration may
not lie in a simple parametric family. Then, it becomes necessary to estimate
the entropy non-parametrically. Parametric entropy estimation is a two step
process. First, the most probable density function is selected from the space
of possible density functions. This often requires a search through parameter
space (for example maximum likelihood methods). Second, the entropy of the
most likely density is evaluated.

When the parametric assumption is violated, the resulting algorithms are
incorrect. The most common assumption, that the data follow the Gaussian
density, is especially restrictive. An entropy maximization technique that as-
sumes that data are Gaussian, but operates on data drawn from a non-Gaussian
density, may in fact end up minimizing entropy.

The popularity of the Gaussian function is based on three considerations:
(1) finding the Gaussian that fits the data best is very easy, (2) the entropy
of the Gaussian can be directly calculated from its variance, and (3) an affine
transformation of a Gaussian random variable remains Gaussian. Entropy of a
Gaussian density is h(X) = −EX [log gψ(x−µ)] = 1

2 log 2 exp πψ, where gψ(x−µ)
is the Gaussian density with variance ψ and mean µ and EX is the expectation
over the random variable X. It is well known that given a sample set A, the
most likely Gaussian density has its mean the mean of A and as its variance the
variance of A. As a result, if we assume that a random variable is Gaussian,
its empirical entropy is proportional to the log of the sample variance. More
simply, when the data is assumed Gaussian, maximizing entropy is equivalent
to maximizing variance.

Schraudolph in [204] argues that one does not have to assume a particular
shape for the density in order to set up a parametric model for entropy optimiza-
tion: Let X be a continuous random variable with density P (x) = Prob[X = x],
and let Y be the linear function Y = σX + µ. Since the density of Y is given
by P (x) = Prob[X = x] = p((y − µ)/σ)/σ, its entropy is

H(Y ) = −E[log(p(y − µ)/σ/σ)] = −E[log p(x)− log σ] = H(X) + log σ.

That is, regardless of the shape of pdf p(x), the entropy of a linear function of
X scales with the log of the variance. Matching p(x) to empirical data with
a linear transformation thus changes the model’s entropy in proportion to the
log-variance log σ of the data.

5.1 Entropy expressions for multivariate distributions

Verdugo Lazo and Rathie [246] computed a table of explicit Shannon entropy
expressions for many commonly used univariate continuous pdfs. Ahmed and
Gokhale [4] extended this table and results to the entropy of several families of
multivariate distributions, including multivariate normal, normal, log-normal,
logistic and Pareto distributions.
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Consistent estimators for the parametric entropy of all the above listed mul-
tivariate distributions can be formed by replacing the parameters with their
consistent estimators (computed by Arnold [11]). Besides an explicit functional
form or a smoothness condition for density estimation, one can assume that the
pdf could be estimated i.e. by a neural network of a given type. In this way we
can define parametric neural network estimators for pdf and then consequently
entropy estimation. Neural network entropy estimation was discussed already in
section 4.5.2 (since neural network approaches can be classified both as learning
theory methods and parametric methods).

5.2 Entropy estimators by higher-order asymptotic ex-
pansions

This class includes Fourier Expansion, Edgeworth Expansion and Gram-Charlier
Expansion and other expansions [107]. We will discuss here only the last two. An
earlier work applying the Gram-Charlier polynomial expansion to MI estimation
for a blind separation algorithm is from Hua Yang and Amari [116]. They
applied the Gram-Charlier expansion and the Edgeworth expansion (both to the
forth order cumulants) to approximate the pdf of the outputs. Their computer
simulations showed that Gram-Charlier expansion is superior to the Edgeworth
expansion for blind separation.

5.2.1 Mutual information estimation by Gram-Charlier polynomial
expansion

Trappenberg et al. [234] introduced a variable selection scheme to a statistical
dependency test based on mutual information. They compared several methods
for mutual information estimation, namely a standard (equally binned) his-
togram method (HG), an adaptive partitioning histogram method (AP) from
Darbellay and Vajda [54] and the MI estimation based on the Gram-Charlier
polynomial expansion (GC) [35].

The CG method of MI estimation is based on the Gram-Charlier polynomial
expansion of a probability density function derived by Blinnikov and Moessner
[35] in the form

f(x) ≈
∞∑

n=0

cn
dnZ(x)

dxn
, (107)

where Z(x) = exp(−x2/2)√
2π

is a Gaussian function and cn are factors that deter-
mine the weights of different order derivations of Z(x). Using the truncated
polynomial expansion for marginal pdf’s, Amari et al. [6] derived an approxi-
mation of the marginal entropy

Ĥ(x) =
2eπ

2
− (kx

3 )2

2.3!
− (kx

4 )2

2.4!
+

(5.kx
3 )2kx

4

8
+

(kx
4 )3

16
(108)

where kx
3 and kx

4 are third and fourth order cumulants. Using the fourth order
Gram-Charlier expansion for two-dimensional joint pdf, Akaho et al. [5] derived
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the joint entropy

H(x, y) = H(r, s) +
1
2

log(1− ρ2) (109)

where ρ = E[xy], r and s are a linear combination of x and y,
[
r
s

]
=

(
c+ c−

c− c+

)[
x
y

]

c+ = [(1 + ρ)−1/2 + (1 − ρ)−1/2]/2, c− = [(1 + ρ)−1/2 − (1 − ρ)−1/2]/2 and
Ĥ(r, s) = 1 + log 2π− 1

2.3! [(β3,0)2 + 3(β2,1)2 + 3(β1,2)2 + (β0,3)2]− 1
2.4! [(β4,0)2 +

4(β3,1)2 + 6(β2,2)2 + 4(β1,3)2 + (β0,4)2] where βk,l = E{rksl} − βk,l
0 ,

βk,l
0 =





3 k = 4 or l = 4
1 k = l = 2
0 otherwise.

(110)

Mutual information can then be calculated from these estimates using formula
(12), which corresponds to a polynomial of high order cumulants.

The comparison of these three MI estimators can be summarized as follows:
The advantage of MI estimation with Gram-Charlier expansion is that it only
calculates the expectation value of different powers of the samples. Thus, it
is fast and easy to calculate. The disadvantage of the GC method is that the
estimate might suffer from the truncation of the expansion in the case of non-
Gaussian signals and result into the underestimation of mutual information.
The histogram based methods are in this sense more general than polynomial
expansion-based methods because they are less sensitive to the bin partitioning.
A rough partitioning might result in bias towards high MI, while fine-grained
partitions might result in underestimating MI. A good choice of bin width is
particularly important for MI estimation as the regions with low data densities
carry large information content (such as the tails of a distribution).

5.2.2 Edgeworth approximation of entropy and mutual information

The Edgeworth expansion, similarly as the Charlier-Gram expansion approxi-
mates a probability distribution in terms of its cumulants. According to Hall
[104], it provides in general accurate approximations to the finite-sample dis-
tribution and can be used in deriving the higher-order accuracy of the boot-
strap methods. The advantage of the Edgeworth series with respect to the
Gram-Charlier series is that the error is controlled, so it is a true asymptotic
expansion. Edgeworth expansion is consistent, i.e. in infinity converges to the
function which it expands, Cramer [52].

The Edgeworth expansion of a function is estimated in terms of a known
distribution f with the same pdf as the function to be approximated, and cu-
mulants κi. The density f is generally chosen to be that of normal distribution.
Here we mention the definition of the Edgeworth expansion for multivariate
density p(v), v ∈ Rd and up to the fifth order about its best normal estimate
φp(v) (i.e. with the same mean and covariance matrix as p) and corresponding
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multivariate entropy H(p) is it was used in [242]:

p(v) ≈ φp(v)(1 + (1/3!)
∑

i,j,k

κi,j,khijk(v) + κ) (111)

with the ijk− th Hermite polynomial and κi,j,k = κijk/(s2
i s

2
js

2
k)−1/2 where κijk

is the sample third cumulant over input dimensions i, j, k, and si the sample
second central moment over input dimension i. The term κ collects the terms
in hijkl and hijklpq that are dropped out in the first -order entropy derivation
below. (For the precise calculation of the terms of expansion we refer the reader
to i.e. Blinnikov and Moessner [35]). Since the differential entropy H(p) =
H(φp)− J(p), with J neg-entropy, the H(p) can be approximated as [242]:

H(p) ≈ H(φp)− 1
12

[
d∑

i=1

(κi,i,i)2 + 3
d∑

i,j=1,i6=j

(κi,i,j)2 +
1
6
(

d∑

i,j,k=1,i<j<k

(κi,j,k)2]

(112)
which converges on the order of O(N−2) with N number of data points. The
term H(φp) is the expression for the d-dimensional entropy:
H(φp) = 0.5 log |∑ |+ d

2 log 2π + d
2 , where |.| denotes determinant.

To our best knowledge, the first application of Edgeworth expansions for neg-
entropy in the univariate case in the literature was proposed in [122] and was
generalized for multivariate case and for entropy and Kullback-Leibler distance
in [141].

The Edgeworth approximations for the KLD and neg-entropy in the exper-
iments of Lin et al. ([141]) required in the simulations that the distributions p
and p0 are not far from the Gaussian distribution [103] (to avoid a big approx-
imation error). In the case of differential entropy, one can get it from KLD by
using the formula H(X) = H(p) = H(φp)−K(p, φp), where H(X) is given by
(6) and p is distribution of the random event. So by using KLD, one can also
obtain differential entropy.

To summarize, to approximate both KLD and differential entropy, and con-
sequently mutual information by Edgeworth expansion makes sense only for
”close”-to-Gaussian distributions. On the other hand, differential entropy by the
Edgeworth expansion avoids the density estimation problems. Furthermore, the
order of Edgeworth approximation of differential entropy is O(N−3/2) and for
KLD O(N−1/2), while the density method approximation is of order O(N−1/2)
where N is size of processed sample. The density estimation cannot be used
for differential entropy and KLD estimation for dimension d > 2 (because of
its speed), while the Edgeworth expansion of neg-entropy produces very good
approximations also for more-dimensional Gaussian distributions [141]. Fur-
thermore, the error rate of the histogram estimator depends not only on sam-
ple size N but also on the choice of the bandwidth value h; the total error is
O(h2)+O(N−1/2) [103]. In the case of histogram, density and kernel estimation,
the error is O(N−1/2) for dimension d < 3. The kernel estimator is much less
sensitive to choices of the bandwidth h compared to the histogram estimator.
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Finally, both the differential entropy and KLD estimator by Edgeworth ex-
pansion can be evaluated for distributions of arbitrary dimension, while the
other three mentioned methods can be practically applied only to low-dimensional
distributions (d ≤ 3).
It appears from the above that the most important advantage of the Edgeworth
expansion is its applicability in multidimensional spaces. On the other hand, it
has the following drawbacks: 1. its behavior on probability distributions that
differ significantly from Gaussian distribution and 2. the EE approximation can
give approximation of pdf having negative values [190]. Gaztanga et al. [83] ad-
dressed the negativity problem by exploring expansions around such pdfs, which
would yield positive densities when the variance is large enough and proposed
to use Gamma probability function (the Gamma pdf, also called negative bino-
mial or Pearson Type 3 (PT3) arises from the χ2 distribution with N degrees of
freedom, where 1/ρ2 = N/2 is taken to be a continuous parameter the Gamma
pdf). Gamma expansion has, by construction, the exponential tails and a bet-
ter general behavior than the Edgeworth expansion, both with respect to the
positivity of approximating pdf and the approximation error. The experiments
in [83] confirmed that the Gaussian EE has tails dropping quickly to zero as the
underlying Gaussian pdf, while the Gamma EE has exponential-type tails. Dif-
ferences in both expansions might be slight, especially around the peak of pdf,
as to the first order both expansions are formally equivalent. Therefore, which
one best fits the data set is a matter of careful data analysis. The Gamma EE
is a real competitor to the Gaussian EE as it can be generalized to multivariate
case.

A multivariate case of the Gaussian EE expansion estimate of differential
entropy and mutual information was experimentally compared to the following
methods in Ref. [241]: 1-spacings from [101], Parzen window plug-in estimate
from [3] and KL and KSG method [135] and [136]. The Edgeworth expansion
up to the order three was used and comparisons were performed on the normal
and exponential distributions. Each distribution was considered along each
dimension and size of the data sample. The best performance results were
achieved for the KSG method, the EE method was since it was biased for the
exponential distribution.

6 Generalized Granger causality

The classical approach of Granger causality as mentioned in Sec. 1.2 is intuitively
based on the temporal properties, i.e. the past and present may cause the future
but the future cannot cause the past [88]. Accordingly, the causality is expressed
in terms of predictability: if the time series Y causally influences the time series
X, then the knowledge of the past values of X and Y would improve a prediction
of the present value of X compared to the knowledge of the past values of X
alone. The causal influence in the opposite direction can likewise be checked by
reversing the role of the two time series. Although this principle was originally
formulated for wide classes of systems, both linear and nonlinear systems, the
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autoregressive modeling framework (Eq. (1)) proposed by Granger was basically
a linear model, and such a choice was made primarily due to practical reasons
[90]. Therefore, its direct application to nonlinear systems may or may not be
appropriate. In the following subsection, we discuss some recent methods to
extend the Granger’s concept to nonlinear cases.

6.1 Nonlinear Granger causality

Ancona et al. [7] extended Granger causality definition to nonlinear bivariate
time series. To define linear Granger causality [88], the vector autoregressive
model (VAR) (for two series x and y) is used, which considers the time series
x as a vector-weighted sum of both series X and Y (similarly for x) and au-
toregressive predictions (AR) (x = V1.X and y = V2.Y, V1 and V2 to be
estimated by least square fit). A directionality index is introduced measuring
the unidirectional, bidirectional influence or uncorrelation. The index

D =
c2 − c1

c1 + c2
(113)

(where c1 = εx−εxy and c2 = εy−εyx) varies from 1 in the case of unidirectional
influence (x → y) to −1 in the opposite case (y → x), with the intermediate
values corresponding to bidirectional influence. According to this definition of
causality, the following property holds for sufficiently large M(M = N −m, N
is the length of the time series, m the order of the model).

If the first time series Y is uncorrelated with X and x then εx = εxy (where
εx is the estimate of the variance of x−V1.X, V1.X is prediction of x, similarly
εy is the estimate of the variance of y − V2.Y, V2.Y is prediction of y; εxy

and εyx are the prediction errors of the VAR model, defined as the estimated
variance of x−W11.X−W12.Y and y−W21.X−W22.Y, respectively). This
means that in this case VAR and AR modelings of the xi time series coincide.
Analogously, if X is uncorrelated with Y and y then εy = εyx. These properties
are fundamental and make the linear prediction approach suitable to evaluate
causality. On the other hand, for nonlinear systems higher order correlations
may be relevant.

Ancona et al. proposed that any prediction scheme providing a nonlinear
extension of Granger causality should satisfy the following property: (P1) if
Y is statistically independent of X and x, then εx = εxy; if X is statistically
independent of Y and y, then εy = εyx. The approach applying locally linear
models suggested by Hua-Yang and Amari in Ref. [114] for evaluation of nonlin-
ear causality needs very long time series to satisfy P1. To construct a method
working effectively on moderately long time series, the problem of extending
Granger causality can be formulated as finding classes of nonlinear models sat-
isfying property P1. Radial basis function method (RBF) [42] is suggested to
be applied to the family of models given by

x = w11.Φ(X) + w12.Ψ(Y) (114)

y = w21.Φ(X) + w22.Ψ(Y)
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where {w} are four n-dimensional real vectors, Φ = (φ1, . . . , φn) are n given
nonlinear real functions of m variables, and Ψ = (ψ1, . . . , ψn) are n other real
functions of m variables. The prediction errors are given by empirical risks

εxy =
1
M

∑

k=1

M [xk −w11Φ(Xk)−w12Ψ(Yk)]2 (115)

εyx =
1
M

∑

k=1

M [yk −w21Φ(Xk)−w22Ψ(Yk)]2.

Fixed M À n where n is the number of centers {X̂ρ}n
ρ=1 in the space of X

vectors, are determined by a clustering (or other) procedure applied to data
{X}Mk=1. Analogously, n centers {Ŷρ}n

ρ=1 in the space of Y vectors, are de-
termined by a clustering applied to data {Y}Mk=1. Ancona et al. suggest to
choose

φρ(X) = exp(−‖X− X̂ρ‖2/2σ2), ρ = 1, . . . ,n (116)

ψρ(Y) = exp(−‖Y − Ŷρ‖2/2σ2), ρ = 1, . . . ,n (117)

where ρ is a fixed parameter, whose order of magnitude is the average spacing
between the centers. The centers X̂ρ are prototypes of the X variable. Functions
φ measure the similarity to these typical patterns, analogously, ψ measure the
similarity to typical patterns of Y.

The method was tested on chaotic maps and on time series of heart rate
and breath rate of a sleeping human suffering from sleep apnea. There is a
growing evidence that suggests a causal link between sleep apnea and cardio-
vascular disease. This data set has been already analyzed by Schreiber in [206],
measuring the rate of information flow (transfer entropy), and a stronger flow of
information from the heart rate to the breath rate was found. In this example,
the rate of information flow entropy and Granger nonlinear causality give con-
sistent results. Both these quantities, in the end, measure the departure from
the generalized Markov property [206]. The results in [7] showed that the value
of the directionality index D may in some cases be very sensitive to statistical
fluctuations, especially when the interdependence is weak.

According to Ancona et al., the standard RBF model of bivariate time series
in comparison to formula (115) (as described i.e. by Bishop [34]) does not satisfy
in general property P1 and therefore is not suited to evaluate causality. Ancona
and Stramaglia [8] argued that not all nonlinear prediction schemes are suitable
to evaluate causality between two time series, since they should be invariant
if statistically independent variables are added to the set of input variables.
This property guarantees that, at least asymptotically, one would be able to
recognize variables without causality relationship. Marinazzo et al. [143] used
the theoretical results from [8] to find the largest class of RBF models suitable to
evaluate causality, and in this sense they extended the results of [8]. Moreover,
they showed the application of causality to the analysis of cardio-circulatory
interaction and studied the mutual influences in inhibitory and excitatory model
neurons.
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6.2 Nonparametric Granger causality

Despite the computational benefit of model-based (linear and/or nonlinear)
Granger causality approaches, it should be noted that the selected model must
be appropriately matched to the underlying dynamics, otherwise model mis-
specification would arise, leading to spurious causality values. A suitable alter-
native would be to adopt nonparametric approaches which are free from model
mismatch problems. Since the topic of this paper is causality based on infor-
mation theory, we discuss primarily those nonparametric approaches which can
be expressed in the information theoretic terms.

Let us first reformulate the Granger causality in information theoretic terms
[64, 62]: For a pair of stationary, weakly dependent, bivariate time series {Xt, Yt},
Y is a Granger cause of X if the distribution of Xt given past observations of
X and Y differs from the distribution of Xt given past observations of X only.
Thus {Yt} is a Granger cause of {Xt} if

FXt+1(x|FX(t), FY (t)) 6= FXt+1(x|FX(t)) (118)

where FXt+1 represents the cumulative distribution function of Xt+1 given F ,
and FX(t) and FY (t) represents the information contained in past observations
of X and Y up to and including time t.

Given two time series, the delay vectors are first constructed as follows: Xt =
(Xt, Xt−τx , . . . , Xt−τx(dx−1)), and Yt = (Yt, Yt−τy , . . . , Yt−τy(dy−1)) where time
delays are τx and τy, and embedding dimensions are dx and dy, respectively. The
idea of the Granger causality is to quantify the additional amount of information
on Xt+1 contained in Yt, given Xt.

Now, the average amount of information which a random variable X contains
about another random variable Y can be expressed in terms of generalized
correlation integrals (see the equivalent Eq. (9)) as

Iq(X, Y ) = log Cq(X, Y )− log Cq(X)− log Cq(Y ) (119)

where the generalized correlation integral [94], Cq can be estimated by

Cq(X, ε) =
1

N(N − 1)q−1

N∑

j=1

[∑

i 6=j

Θ(||Xj −Xi|| − ε)
]q−1

; (120)

Θ is the Heaviside function, ‖.‖ a norm and the last term is related to kernel
density estimation. C2(X, ε) is simply the probability that a distance between
two independent realizations of X is smaller than or equal to ε. For computa-
tional ease, q = 2 is preferred [62], though q = 1 is also used elsewhere [45].
We refer the interested readers to Ref. [45, 182] for computational and statisti-
cal properties of correlation integral with different choices of order (q) and the
length scale (ε). For visual clarity, both of these indices are omitted from the
following equations.

Now, the amount of information about Xt+1 contained in both Xt and Yt

will be:

I(Xt,Yt; Xt+1) = log C(Xt,Yt, Xt+1)− log C(Xt,Yt)− log C(Xt+1) (121)
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whereas the amount of information of Xt+1 contained in Xt is

I(Xt; Xt+1) = log C(Xt, Xt+1)− log C(Xt)− log C(Xt+1). (122)

Given the past values of X at any specific time instant t, if past values
of Y does not contain any information about the future values of X, then
I(Xt,Yt; Xt+1) = I(Xt; Xt+1), otherwise when the past values of Y do con-
tain information about the future, the following inequality I(Xt,Yt; Xt+1) >
I(Xt; Xt+1) is expected.

Accordingly, the extra amount of information that Yt contains about Xt+1 in
addition to the information already contained in Xt will be Eq. (121)− Eq. (122)
which provides the information theoretic measure of Granger causality:

IGC
Y→X = I(Xt,Yt; Xt+1)− I(Xt; Xt+1) (123)

= log C(Xt,Yt, Xt+1)− log C(Xt, Xt+1)− log C(Xt,Yt) + log C(Xt).

In order to obtain the statistical significance, bootstrapping procedure is rec-
ommended to check if the statistic is significantly larger than zero [62, 115].

Here the causality measure is based on conditional entropy, and unlike mu-
tual or time-lagged information measures, can distinguish actually transported
information from that produced as a response to a common driver or past history
[86, 206]. Interestingly, these entropies can be expressed in terms of generalized
correlation integrals whose nonparametric estimation is well known. Correlation
integrals are routinely employed in nonlinear time series analysis [1]. Addition-
ally, correlation integral based entropies require minimal assumptions about the
underlying dynamics of the systems and the nature of their coupling, thus the
applications of these entropies are no longer restricted to deterministic systems
but are suitable for any arbitrary, stationary and weakly mixing systems [182].

Correlation integral based nonparametric Granger causality test was orig-
inally proposed by Baek and Brock [14] and then later modified by Hiemstra
and Jones [110] in the field of econometrics. They proposed the test statistic as

TGC
Y→X =

C(Xt,Yt;Xt+1)
C(Xt,Yt)

− C(Xt, Xt+1)
C(Xt)

(124)

The null hypothesis - Y is not Granger causing X - could be rejected if TGC

is too large because higher values of TGC are expected when past observations
of Y contain information about future observations of X. TGC has some initial
bias since it depends on the length N of the series [14] but it was shown [110] that
asymptotically the statistic under the null hypothesis is normally distributed.
However, one has to be careful in accepting the null hypothesis by using this
statistic for real data applications [65].

Both statistic, IGC and TGC , are closely related (compare Eq. (124) to
Eq. (123)), however, there is no one-to-one mapping between the outcomes of
two statistic. Additionally, the statistical significance of the two statistic are
measured in different ways, one by using Monte Carlo bootstrapping and the
other by asymptotical distribution theory.
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It is worth mentioning that both statistics neither provide any specific infor-
mation about the nature (linear or nonlinear) nor the sign (positive or negative
influence) of the causality. For IGC statistic, one could calculate the linearized
version on the basis of redundancies as proposed by Paluš [161] (see also [45])
which reflects only the dependence contained in the linear correlation matrix
(of the variables which are assumed to be Gaussian). If the general statistic
IGC passes the test of significance, then its linearized counterpart is subject to
test; if the linear version indicates a significant causality, then the causal influ-
ence is most probably due to a linear Gaussian process, otherwise a nonlinear
type of causal influence can be inferred. For TGC statistic, one could use the
residuals from the linear autoregressive model fit to the two time series and any
remaining incremental predictive power of one residual series for another can be
considered nonlinear [14].

The TGC statistic was applied primarily in the field of econometrics and fi-
nance, for example, an unidirectional information flow from relative money sup-
ply to exchange rate in European Monetary System [142], bidirectional causality
between daily stock returns and trading volume in Korean market [214] where as
volume Granger causes returns for Standard and Poor’s index [65] (but see also
their result of weakening this influence on the basis of a modified test statistic),
bi-directional causality between volume and volatility in the New York Stock
Exchange [41], to name a few.

On the other hand, IGC statistic is relatively new but has been applied to
wide classes of systems, from climatological [63], cardiological [115], to neuro-
physiological ones [45].

Other alternative nonparametric tests, such as non-causality test based on
additive models proposed by Bell et al. [23], or test for conditional independence
based on Hellinger distances [223], also exist, however, their applications have
been quite limited, so far.

7 Conclusion

Natural phenomena usually emerge from behaviour or evolution of so-called
complex systems which consist of many parts or subsystems. These subsystems
interact in a complex, non-linear way and the behaviour of the whole system
cannot be explained by a linear summation of dynamics of the system parts. In
real-life situations, we do not have a direct access to the equations governing
the underlying dynamics; instead, we are faced with a data set representing
the temporal dynamics of possibly interacting variables recorded from possibly
interacting subsystems. How can we tell from these observed sequences whether
there exists any causal relationship between two ore more variables?

The basic rationale of this paper was that information theory provides a
crucial key to this answer, and information theoretical measures, in particu-
lar conditional mutual information, can detect and measure causal link and
information flow between observed variables. However, it opens a more diffi-
cult question: How to reliably estimate these measures from a finite data set?
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Research literature abounds with various estimators with a diverse range of as-
sumptions and statistical properties. The overall objective of this paper was to
present the current state of the art of these estimators of information theoretical
measures which could be applied to detect causality. To the best of our knowl-
edge, there is no other review paper available in the literature which deals with
causality and its estimation from this point of view. We classified and discussed
two types of estimators: parametric and non-parametric estimators.

Theoretically, for a good entropy estimator, the condition of consistency
seems to be important. We specifically highlighted those estimators whose con-
sistency results are known or could be derived. However, it should be noted that
the conditions for desired consistency might be too restrictive for an experimen-
tal environment. Accordingly, we also critically reviewed those methods which
have surprisingly good overall performance (i.e. small systematic and statistical
error for a wide class of pdfs) though their consistency properties are not yet
known.

Last but not least, let us mention some informal comments on the detection
of causality which are relevant to any causality measure applied. One needs to be
extra careful before claiming a causal relationship between observed variables.
From the viewpoint of establishing new models, inferences and control strategies,
establishing a causal relationship is always tempting. However, one has to first
carefully scrutinize the statistical properties of the observed data sequences and
the completeness of the model or the assumptions necessary for the estimation
of the information theoretic measures. Otherwise, spurious results could often
be obtained. Despite these precautionary remarks, we would like to stress again
that there are enough good reasons, contrary to B. Russel’s arguments [198],
to investigate causality, offering numerous applications in natural and physical
sciences.
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[243] O. Vaš́ıček, A test for normality based on sample entropy, J. R. Stat. Soc
Ser. B Methodol. 38 (1976) 54-59.

[244] M. Vejmelka and K. Hlaváčková-Schindler, Mutual Information Estima-
tion in Higher Dimensions: A Speed-Up of a k-Nearest Neighbor Based
Estimator, submitted to ICANNGA’07.

[245] P.F. Verdes, Assessing causality from multivariate time series, Physical
Review E 72 (2005) 026222.

[246] A.C.G. Verdugo Lazo and P.N. Rathie, On the entropy of continuous prob-
ability distributions, IEEE Transactions on Information Theory 24 (1978)
120-122.

[247] J. Victor, Asymptotic bias in information estimates and the exponential
(Bell) polynomials, Neural Computation 12 (2000) 2797-2804.

[248] J. Victor, Binless strategies for estimation of information from neural data,
Physical Review E 66 (2002) 051903.

[249] J. Victor and K. Purpura, Metric-space analysis of spike trains: Theory,
algorithms and application. Network 8 (1997) 127-164.

77



[250] P. Viola, Alignment by maximization of mutual information, PhD thesis,
MIT, 1995.

[251] P. Viola, N. Schraudolph and T. Sejnowski, Empirical entropy manipula-
tion for real-world problems, in: Advances in Neural Information Processing
Systems (NIPS 8) (The MIT Press, Cambridge, MA, 1996) pp. 851857.

[252] N. Wiener, The theory of prediction, in: Modern Mathematics for Engi-
neers, ed. E.F. Beckenbach (McGraw-Hill, New York, 1956).

[253] http://en.wikipedia.org/wiki/Causality

[254] L. Xu, C. Cheung, H. Yang and S. Amari, Maximum equalization by
entropy maximization and mixture of cumulative distribution functions, in:
Proc. of ICNN97, Houston (1997) 1821-1826.

[255] J. Xu, Z.R. Liu, R. Liu and Q.F. Yang, Information transmission in human
cerebral cortex, Physica D 106 (1997) 363-374.

[256] H. Yang and S. Amari, Adaptive online learning algorithms for blind sep-
aration: Maximum entropy and minimum mutual information, Neural Com-
putation 9 (1997) 1457-1489.

[257] J. Yang and P. Grigolini, On the time evolution of the entropic index,
Physics Letters A 263 (1999) 323-330.

78



Figure 1: An example of equidistant binning (the method from Butte and Ko-
hane) - the bins have the same size
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Figure 2: Generalized binning with B-splines from Daub et al. - an example of
B-splines of order 3 for four bins.
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Figure 3: An example of marginally equiquantized binning method from Paluš
- the bins can have different size but contain the same number of data points in
their marginals

Figure 4: An example of a partition that can arise from the splitting procedure
defined by the Darbellay & Vajda algorithm.
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Figure 5: Illustration of the ε-neighborhoods for KSG estimators I(1) and I(2)

from Kraskov et al. Detailed description is given in the text. Used with per-
mission.
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Figure 6: Convergence of the KSG estimator from Kraskov et al. for Gaussians
with given correlation coefficient. Used with permission.
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