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Abstract

Daily records of atmospheric surface pressure, temperature and geopotential heights of 500 hPa 1sobaric level were tested for
nonlinearity, the necessary condition for deterministic chaos, using redundancy and surrogate data techniques. While the time
series of the temperature and the geopotential heights were found indiscernible to be from correspondent 1sospectral linear
stochastic processes, a significant nonlinear component was detected in the dynamics of the pressure recording, however, no

specific signatures of low-dimensional chaos were manifest.

During the last decade many papers devoted to the
problem of inferring the dynamical mechanisms of the
weather and climate changes from recorded data have
been published. The measured quantities selected for
the analyses, have included, e.g., local surface pres-
sures, relative sunshine durations, zonal wave ampli-
tudes [1], upper-level geopotential heights [2,3], low-
level vertical velocity components [4], or, oxygen-
isotope concentrations in deep sea cores [1,5-8]. In
the majority of the cases the Grassberger-Procaccia
algonthm for estimating the correlation dimension
[9,10] was used as the analytical tool, and low values
of the dimension estimates obtained were claimed as
evidence for low-dimensional chaos in the weather or
climate dynamics [1-5,7]. On the other hand, Grass-
berger [6] cautioned that in the case of short and noisy
data, as the climatic and weather records usually are,
the reliability of the method is questionable and the
low values of the dimension estimates may be spuri-
ous. And indeed, he constructed a random series of
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corresponding length, preprocessed by the same way
as the chimatic record 1n Ref. [5] and obtained a low
value of the estimated dimension. Also Lorenz [11]
writes that it seems unlikely that global weather or cli-
mate systems possess a low-dimensional attractor.

The problem of reliability of dimensional or Lya-
punov exponent algorithms, applied to experimental
data, 1s the general problem of nonlinear time-series
analysis, and spurious results, leading to false identi-
fication of chaotic dynamics 1n data, consistent with a
simpler explanation, can emerge elsewhere [12-16].
Some authors, considering these problems, proposed
to test necessary conditions for chaos, like nonlinear-
ity or nonlinear determinism [17-19]. As was pointed
out by Theiler et al. [17], detection of nonlinearity is
a considerably easier goal than that of positively iden-
tifying chaotic dynamics. On the other hand, when
the scrutinized data is found consistent with the ex-
planation by a linear stochastic process, underlying
low-dimensional chaos is improbable.

Recently, Palus et al. [18] have demonstrated how
the information theoretic functionals - redundancies
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— can be used for the detection of nonlinearity. A brief
overview of the method follows

Let X, X;, . ,X, be an n-dimensional ran-
dom vanable with zero mean, covariance matrix
C and probability distribution density (PDD)
p(x1,x2,. ,xn) The individual PDDs are denoted
as p(x;), t = 1, ,n (For convenience, we use
the notation p(x,), rather than the more accurate
Px, (x;), and an analogous simphfication for the -
dimensional PDD )

Then the redundancy R(X,, . ,X»), measuring
the level of mutual dependence of the components
X1, X2, ,Xn, 18

R(Xi, :Xn)=/ /p(xl,Xz, , Xn)

p(x1’x29 . ,Xn)
p(x)p(x2) p(xa)

x log dx;  dxn (1)
The redundancy (1) for n = 21s called mutual infor-
mation. For relations of redundancies and entropies,
and for further details see Refs [20,21,18,23] and ref-
erences theremn.

Further, we define the linear redundancy L(X,, . ,
Xn) of X1, X,, . X, as

n n
L(X;; Xn) =3 loglen) ~3 ) log(o), (2)
=1 =1

where ¢,, are the diagonal elements (vanances) and g,
are the eigenvalues of the # x 7 covariance matnx C

If X;,. ,X, has an n-dimenstonal Gaussian dis-
tribution, then L(X;, ,X,)and R(X,, ,X,) are
theoretically equivalent [24]

In usual experimental situations one records a time
series {y (¢)} of a specific observable. {y(¢)} 1s usu-
ally considered as a realization of a stochastic process
{Y (¢)}, which 1s stationary and ergodic

We will study the redundancies for the variables

X (@) =yt + (- 1)1),

where 7 1s a time delay and 7 15 an embedding dimen-
sion [22] Redundancies of the type

1=1, ,n, 3)

Riy(t);y(t+ 1), ,y(t+(n-=-1)1))

are, due to stationarity of {Y (¢)}, independent of ¢.
We introduce the notation

R'(t) = Ry (), y(t+ 1), ,y(t+ (n-1)1))(4)

for the redundancy and
L'(t) = L(y();y(t+ 1), L,y + (n-11))(5)

for the linear redundancy of the n vanables y(?),
y(i+1), ,y@+ (n-1)r) (Quantities (4) and
(5) are obtaimned from a single process realization ~ an
experimental time series — by time averaging, which
can be applied due to the above assumption of ergod-
city )

The redundancy R” (1), based on PDDs, measures
general dependences among the series {y(¢)} and
its delayed versions, while the linear redundancy
L"(7), based on covariances (or correlations, see
Refs. [18,23]) reflects only their linear relations
Therefore Palu§ et al [18] proposed to compare
L"(t) with R"(t), considered as the functions of the
tume lag 7 If their shapes are the same or very sim-
ilar, a linear description of the process under study
should be considered sufficient. Large discrepancies
suggest important nonlinearities in the dynamics of
the process under study.

This approach, further referred to as gqualitative
testing, or, qualitative comparison, was demonstrated
to be successful 1n distinguishing specifically non-
hnear dynamics (chaotic [18] or also nonchaotic
[23]) from linear stochastic processes. In compar-
1son of figures, however, there can be a subjective
factor, influencing the conclusion about the findings.
Therefore the development of a quantitative method,
suitable for rigorous statistical testing, is desirable
This can be achieved by incorporating the concept of
“surrogate data”, advocated by Theiler et al {17]

In testing for nonlinearity, the surrogate data are ar-
tificially generated realizations of a linear stochastic
process, which mimic linear properties of the studied
data, namely the spectrum and autocorrelation func-
tion (For details see Refs. [17,25] ) Nonlinear struc-
tures, 1f present 1n the scrutimzed data, are ehminated
1n the surrogates. Thus we can statistically compare
the redundancies obtained from the analyzed data and
from a set of surrogates to find out whether the data
1s sigmificantly different from the null hypothesis of a
linear stochastic process, or whether a linear stochas-
tic process 1s a probable explanation of the data dy-
namics. As the discriminating statistic we use the dif-
ference between the redundancy, obtamned from the
data, and the mean value of the redundancy for a set
of surrogates, in the number of standard deviations
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(SDs) of the latter. The null hypothesis 1s rejected
and the results called significant, when the probability
p of the null hypothesis 1s lower than a chosen level,
usually set to 0 05 or 0.01. Providing the statistic has
a normal distribution N (0, 1) and 30 realizations of
the surrogates are used 1n the test?, then the proba-
bility of the null hypothesis 1s p < 0 05 for values of
the statistic greater than 1 699; or greater than 2 462
for p < 0 01, etc., see e.g. Ref. [26]

It 1s well-known that 1n construction of n-
dimensional embeddings by the time delay method,
the results are usually influenced by the choice of
the embedding dimension # and the time delay 7.
Therefore, 1n the quantitative testing, we evaluate the
redundancy-based statistics for a wide range of time
delays and, 1f possible (1 e., allowed by the time series
length), also for several embedding dimensions.

However, one cannot always construct good surro-
gate data. That 1s, 1n spite of theoretical expectation,
1n numerical practice linear properties of the surro-
gates can differ from those of the data under study.
The changes 1n linear properties are reflected in non-
linear measures > as well, and thus, a change 1n linear
properties can lead to spurious detection of nonlinear-
1ty 1n hinear data [27,25]. Therefore, we evaluate also
the statistic based on the linear redundancy L"(t),
reflecting specifically the changes in linear properties
Then only those significant differences 1n the nonlin-
ear statistic can rehably count for nonlinearity, which
are not detected 1n the linear statistic.

Due to the central imit theorem, the distribution
of the 1sospectral surrogates of a stationary process
(generated by the Fourier transform) tends to a Gaus-
s1an distnnbution. If a (one-dimensional) distribution
of the scrutinized data 1s different from the Gaussian
one, another case of spurious identification of nonlin-
earity can emerge. Therefore, before the analysis, we

2 With a hmited number Ng of the realizations of the sur-
rogates, the t-distnbution with Ng — 1 degrees of freedom
should be used for deriving the critical values of statistics,
mstead of the normal distribution In all the tests, presented
here, 30 realizations of surrogates were used, therefore the
critical values presented 1n this paper are related to the t-
distribution with 29 degrees of freedom and to one-sided
tests, because the change of the statistics are expected 1n one
direction For more details see Ref [25]

3 We use primarily R” (1), other authors use dimensions,
correlation integral, or nonlinear forecastibility [17]

perform a histogram transformation - “Gaussianiza-
tion”, resulting 1n an approximate Gaussian distribu-
tion of the data [25,28].

Data Two series of daily values of geopotential
heights of 500 hPa 1sobaric level were analyzed, the
first, 6570 samples (18 years) recorded in Prague,
Ruzyné station, the second, 11670 samples (32 years)
recorded 1n Krakow. We generated the surrogate data
using the fast Fourner transform (FFT), which re-
quires the series length to be a power of two, there-
fore we analyzed subseries of lengths 4096 and 8192
samples, respectively

The other two analyzed series, recorded 1n Prague,
Klementinum station, are more unique’ the series of
200 years (73000 samples) of mean daily values of
the surface atmospheric temperature and daily val-
ues of the surface atmospheric pressure. Again, due to
FFT-based surrogate, we analyzed subseries of 65536
samples

Results Geopotential heights The results of the
analysis of the Prague series of the geopotential
heights are presented 1n Fig. 1. The qualitative com-
parison shows no substantial difference between the
time plots of the linear redundancy L?(t) and the
redundancy R%(71), showed 1n Figs la and 1b, re-
spectively In the quantitative analysis (Figs Ic, 1d)
there are several formally significant results (1 e dif-
ferences greater than 1 699), however, there are two
reasons why not to reject the null hypothesis of a
linear stochastic process-

(a) Statistical reason. Due to multiplicity of the test
values (60 1n this case) the criterion for significance of
an 1ndividual value must be strengthened, 1.e., based
on the Bonferroni inequality we should take, in this
case, p < 0.05/60 nstead of p < 0.05 [29,30], which
increases the critical value of the statistics from 1.699
to approximately 3.5 This approach, however, is fully
correct for independent test values, for the dependent
test values, which 1s the case here, the power of the test
can be decreased. In order to avoid the type II error
(1.e., acceptance of the null hypothesis when 1t should
be rejected), the Heilperin-Ruger 1nequality can be
considered 1nstead of the Bonferron: mmequality, and,
expecting k significant values (from m total test val-
ues) p < 0 05k/m can be taken [31,32]. In this case
the critical value 1s still about 3. Thus, no sigmificant
difference was found.

(b) Methodological reason: Even if we accept some
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Fig. 1. (a) Linear redundancy L2(t), (b) redundancy R2(t), as functions of the lag 7, (c) hinear redundancy statistic, (d)
redundancy statistic for the Prague series of the geopotential heights of the 500 hPa 1sobarnc level. Embedding dimension

n=2

values of the nonlinear statistic (based on R" (7)) as
significant, we cannot reject reliably the null hypoth-
esis of a linear stochastic process, as far as equivalent
differences were found in the linear statistic (based
on L"(1)). Therefore the observed differences can be
caused by the fact that the surrogates do not exactly
mumic the linear properties of the data, not by a non-
linearity.

We can conclude that by both the qualitative and
quantitative methods we found the Prague series
of the geopotential heights indiscernible from the
1sospectral linear stochastic process

The main feature of the dynamics of the above
geopotential heights series, as 1t can be observed
in the time-lag plots of the redundancies (Figs. la,
1b), is the one-year periodicity. We can ask whether
there is anything beyond this dynamics; therefore we
analyzed also the filtered series, in which one-year
periodicity was eliminated by the FFT based filter. In

the qualitative analysis both L"(t) and R"(7) show
the same picture - they decrease quickly until the lag
12 days and then fluctuate about a very low level. The
question whether these small values ((2-4)x1072)
can mean a “numerical zero”, i.e., the fact that the
filtered series {y(¢)} and {y(¢ + 7)} for t > 12 are
independent, was answered by the quantitative test
using so-called scrambled surrogates — the elements
of the series were mixed in temporal order so that all
temporal correlations were destroyed. Comparing the
data with the scrambled surrogates the null hypoth-
esis of an IID (independent identically distributed)
process was tested and rejected (differences of 4-8
SDs) On the other hand, using the FFT surrogates,
both the stronger dependences (the lags 1-12) and
the weak dependences for the lags 7 > 12 days were
found consistent with the 1sospectral linear stochastic
process.

The results for the Krakow series were very similar
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Fig. 2 (a) Linear redundancy L”(7), (b) redundancy R"(7), computed from the surface atmospheric temperature series.
The four different curves in each picture are the redundancies for different embedding dimensions, n = 2-5, reading from
the bottom to the top. Redundancies L” () and R” () are plotted as L”(t)/(n — 1) and R"(t)/(n — 1), respectively. (c)
R*(1), n = 2 (lower curve), 3 (upper curve), for the surrogate data of the filtered temperature series, (d) R" (1), n = 2
(lower curve), 3 (upper curve), for the filtered temperature senes.

to those for the above Prague series. Therefore, we
can conclude that the analysis of the recordings of the
geopotential heights did not yield any argument to
reject the linear stochastic explanation.

Temperature The results of the analysis of the sur-
face atmospheric temperature record (65536 samples
- days) are presented in Fig. 2. The qualitative anal-
ysis of the data (Figs. 2a, 2b) brought no substantial
difference between R"(7) and L"(7), n = 2-5, 1 =
10-1500 days (Figs 2a, 2b). (Analyzed, but not pre-
sented, were also short-time dependences for 7 = 1-
250 days. ) In the quantitative analysis, the differences
obtained were not higher than 1.6 SDs. After filtering
out the one-year periodicity, the quantitative analy-
s1s brought no significant results, like the analysis be-
fore the filtration. In the qualitative analysis (Figs. 2c,
2d: we present R" (7) computed from the data and 1ts

surrogate, this comparison is equivalent to those of
R"(7) and L"(7) from the data [18,23,25]) we can
see, that the redundancies of the filtered temperature
series decrease until the lag of about 80 days and then
fluctuate about the same (low) level. Similarly, hke
n the case of the geopotential heights data, the hy-
pothesis of an IID process was rejected, however, all
those dependences were found consistent with a hin-
ear stochastic explanation.

The above analysis of the temperature record
brought no arguments to reject the null hypothesis of
a linear stochastic process.

Pressure The results of the analysis of the surface
atmospheric pressure record (65536 samples - days)
are presented 1n Fig. 3. The qualitative analysis of the
data (Figs. 3a, 3b) shows some differences between
L"(7) and R"(7), namely the half-year peaks are not
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Fig 3 (a) Linear redundancy L"(7), (b) redundancy R"(7), computed from the surface atmospheric pressure series (c)
Linear redundancy L"(t), (d) redundancy R” (1), computed from the filtered surface atmospheric pressure series The three
different curves 1n each picture are the redundancies for different embedding dimensions, n = 2-4, reading from the bottom
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so clearly pronounced 1n L"(7) as in R"(t), the one-
year periodicity, however, 1s apparent in both L" (1)
and R" (). Clearer results were obtained by the quan-
titative analysis: while no significant differences were
detected on the linear level, 1 e., by the statistic based
on L"(t), the nonlinear statistic (based on R"*(1))
brought sigmificant differences of values between 5
and 15 SDs The results of the analysis of the filtered
pressure series are even more 1llustrative. The results
of the quantitative analysis did not change after the fil-
tration, 1 €., evidence for nonhnearity, safe from spu-
rious effects of differences on the linear level, was de-
tected. In the qualitative comparison (Figs 3c, 3d),
we can see that R" (1) decreased after the filtration,
1¢, the linear contribution to the dependence struc-
tures 1n the data (reflected 1n nonlinear R” (1) as well)
was removed by the filtration, while the character of
the time-lag dependence of R” (1) 1s almost the same

as in R"(7) computed from the original data, 1 ¢ , prin-
cipal one-year peaks and smaller half-year peaks were
detected On the other hand, hnear redundancy L" (1)
of the filtered data does not reveal these structures
The latter 1s also evidence that the filtration was well
done. If the periodicity was due to a peak in the spec-
trum, 1t would be detected by the linear redundancy as
well (An example of a numerically generated nonlin-
ear series, in which a periodic structure was detected
only by the redundancy R" () and not by the linear
redundancy L" (1), can be found in Refs [23,25] )

Thus, we can conclude, that the results of both the
qualitative and quantitative methods show that a hin-
ear stochastic explanation of the pressure series 1s not
adequate and the data contains an important nonlin-
ear component

The indiscermibility of the geopotential heights
and the temperature series from linear stochastic
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processes, demonstrated above, supposes that the de-
tections of low dimensionality in similar studies were
probably spurious On the other hand, our results
cannot be understood as evidence that the nature of
corresponding atmospheric processes 1s indeed lin-
ear stochastic. Even 1f the dynamics of a particular
process, or a particular atmospheric subsystem, 1s
nonlinear and deterministic, as many physical models
propose, 1ts numerous interactions with other subsys-
tems and disturbances of various origins and scales,
can influence a particular measurement 1n such a way,
that the best explanation of particular data, based
on 1ts analysis, 1s as a linear stochastic process. Sim-
ulation experiments, involving networks of coupled
dynamical systems, related to the models studied 1n
the atmospheric physics, could be of interest here.

In the case of the pressure series, an important
nonlinear component was detected. In our estimates
of the correlation dimension, however, no satura-
tion was observed up to embedding dimension 12
Also, no specific features of low-dimensional chaos
were observed 1n the analysis based on the marginal
redundancy technique [23]. Thus we can conclude
that the daily recording of the surface atmospheric
pressure has nonlinear dynamics, but 1t 1s not a case
of low-dimensional chaos. An explanation by a high-
dimensional, deterministic, nonlinear, and maybe
chaotic process 1s possible, however, the hypothesis
of a nonlinear stochastic process 1s, at least formally,
equivalent, due to the practical impossibility to dis-
tingwish the two by the recent method of nonlinear
time series analysis.
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