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BIGRADED DIFFERENTIAL ALGEBRA FOR VERTEX ALGEBRA

COMPLEXES

A. ZUEVSKY

Abstract. For the bicomplex structure of grading-restricted vertex algebra co-

homology defined in [6], we show that the orthogonality and double grading con-
ditions applied endow it with the structure of a bigraded differential algebra with

respect to a natural multiplication. The generators and commutation relations

of the bigraded differential algebra form a continual Lie algebra G(V ) with the
root space provided by a grading-restricted vertex algebra V . We prove that the

differential algebra generates non-vanishing cohomological invariants associated

to a vertex algebra V . Finaly, we provide examples associated to various choices
of the vertex algebra bicomplex subspaces.

AMS Classification: 53C12, 57R20, 17B69

1. Introduction

The cohomology theory for vertex operator algebras is an important and attractive
theme for studies. In [6] the cohomology theory for a grading-restricted vertex alge-
bra [9] was introduced. The definition of bicomplex spaces and coboundary operators
uses an interpretation of vertex algebras in terms of rational functions constructed
from matrix elements [8] for a grading-restricted vertex algebra [4]. The notion of
composability (see Section 3.1) of bicomplex space elements with a number of vertex
operators is essentially involved in the formulation. The cohomology of such com-
plexes defines a cohomology of a grading-restricted vertex algebras in the standard
way. In this paper we develop ideas concerning algebraic structures following from the
cohomology construction [6] for grading-restricted vertex algebras. We show that the
orthogonality and double grading conditions applied to the bicomplex associated to a
grading-restricted vertex algebra brings about the structure of the bigraded differen-
tial algebra with respect the commutator of bicomplex mappings. We show that the
orthogonality being applied to the bicomplex spaces leads to relations among map-
pings and actions of coboundary operators. Using this condition we then find further
explicit examples of continual Lie algebras [12] associated to vertex algebras. We de-
rive also the simplest cohomological classes for the bicomplex for a grading-restricted
vertex algebra. Such cohomological classes are non-vanishing and independent of the
choice of the bicomplex space elements.

As for possible applications of the material presented in this paper, we would
like to mention computations of higher cohomologies for grading-restricted vertex

Key words and phrases. Vertex algebras; cohomological invariants; cohomology classes; bi-

differential algebras; continual Lie algebras.
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2 A. ZUEVSKY

algebras [7], search for more complicated cohomological invariants, and applications
to differential geometry. In particular, since vertex algebras is a useful computational
tool, it would be interesting to study possible relations to cohomology of manifolds.
One can show that such cohomological invariants possess analytical (with respect
to the notion of composability) as well as geometrical meaning. In addition to the
natural orthogonality condition, ona can consider variations of multiplications defined
for bicomplex spaces, and, therefore, more advanced examples of graded differential
algebras. In differential geometry there exist various approaches to the construction
of cohomological classes (cf., in particular, [11]). We hope to use these techniques to
derive counterparts in the cohomology theory of vertex algebras.

2. The grading-restricted vertex algebra

In this section, we recall [6] properties of grading-restricted vertex algebras and
their grading-restricted generalized modules over the base field C of complex numbers.
A vertex algebra (V, YV ,1V ), cf. [9], consists of a Z-graded complex vector space

V =
⊕
n∈Z

V(n),

dimV(n) <∞,
for each n ∈ Z, and linear map

YV : V → End (V )[[z, z−1]],

for a formal parameter z and a distinguished vector 1V ∈ V . The evaluation of YV
on v ∈ V is the vertex operator

YV (v, z) =
∑
n∈Z

v(n)z−n−1,

with components

(YV (v))n = v(n) ∈ End (V ),

where

YV (v, z)1 = v +O(z).

A grading-restricted vertex algebra [6], defining is subject to the following conditions:

(1) Grading-restriction condition: V(n) is finite dimensional for all n ∈ Z, and
V(n) = 0, for n� 0.

(2) Lower-truncation condition: For u, v ∈ V , YV (u, z)v contains only finitely
many negative power terms, i.e., YV (u, z)v ∈ V ((z)) (the space of formal
Laurent series in z with coefficients in V ).

(3) Identity property: Let IdV be the identity operator on V . Then

YV (1V , z) = IdV .

(4) Creation property: For u ∈ V , YV (u, z)1V ∈ V [[z]], and

lim
z→0

YV (u, z)1V = u.



BIGRADED DIFFERENTIAL ALGEBRA FOR VERTEX ALGEBRA COMPLEXES 3

(5) Duality: For u1, u2, v ∈ V , v′ ∈ V ′ =
∐
n∈Z V

∗
(n) (V ∗(n) denotes the dual

vector space to V(n) and 〈 ., .〉 the evaluation pairing V ′ ⊗ V → C), the series
〈v′, YV (u2, z2)YV (u1, z1)v〉, and 〈v′, YV (YV (u1, z1−z2)u2, z2)v〉, are absolutely
convergent in the regions |z1| > |z2| > 0, |z2| > |z1| > 0, |z2| > |z1 − z2| > 0,
respectively, to a common rational function in z1 and z2 with the only possible
poles at z1 = 0 = z2 and z1 = z2.

One assumes the existence of Virasoro vector ω ∈ V : its vertex operator

Y (ω, z) =
∑
n∈Z

L(n)z−n−2,

is determined by Virasoro operators L(n) : V → V fulfilling

[L(m), L(n)] = (m− n)L(m+ n) +
c

12
(m3 −m) δm+b,0 IdV,

(c is called the central charge of V ). The grading operator is given by

L(0)u = nu, u ∈ V(n),

(n is called the weight of u and denoted by wt (u)).
(6) LV (0)-bracket formula: Let LV (0) : V → V be defined by LV (0)v = nv for

v ∈ V(n). Then

[LV (0), YV (v, z)] = YV (LV (0)v, z) + z
d

dz
YV (v, z),

for v ∈ V .
(7) LV (−1)-derivative property: Let LV (−1) : V → V be the operator given by

LV (−1)v = Reszz
−2YV (v, z)1 = Y(−2)(v)1,

for v ∈ V . Then for v ∈ V ,

d

dz
YV (u, z) = YV (LV (−1)u, z) = [LV (−1), YV (u, z)].

A grading-restricted generalized V -module is a vector space W equipped with a vertex
operator map

YW : V ⊗W →W [[z, z−1]],

u⊗ w 7→ YW (u,w) ≡ YW (u, z)w =
∑
n∈Z

(YW )n(u,w)z−n−1,

and linear operators LW (0) and LW (−1) on W , satisfying conditions similar as in the
definition for a grading-restricted vertex algebra. In particular,

(1) Grading-restriction condition: The vector space W is C-graded, i.e., W =∐
α∈CW(α), such that W(α) = 0 when the real part of α is sufficiently negative.

(2) Lower-truncation condition: For u ∈ V and w ∈W , YW (u, z)w contains only
finitely many negative power terms, i.e., YW (u, z)w ∈W ((z)).

(3) Identity property: Let IdW be the identity operator on W , YW (1V , z) = IdW .
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(4) Duality: For u1, u2 ∈ V , w ∈ W , w′ ∈ W ′ =
∐
n∈ZW

∗
(n) (W ′ is the dual V -

module toW ), the series 〈w′, YW (u1, z1)YW (u2, z2)w〉, 〈w′, YW (u2, z2)YW (u1, z1)w〉,
and 〈w′, YW (YV (u1, z1−z2)u2, z2)w〉, are absolutely convergent in the regions
|z1| > |z2| > 0, |z2| > |z1| > 0, |z2| > |z1 − z2| > 0, respectively, to a common
rational function in z1 and z2 with the only possible poles at z1 = 0 = z2 and
z1 = z2.

(5) LW (0)-bracket formula: For v ∈ V , [LW (0), YW (v, z)] = YW (L(0)v, z) +
z d
dzYW (v, z).

(6) LW (0)-grading property: For w ∈ W(α), there exists N ∈ Z+ such that

(LW (0)− α)Nw = 0.
(7) LW (−1)-derivative property: For v ∈ V , d

dzYW (u, z) = YW (LV (−1)u, z) =
[LW (−1), YW (u, z)].

A unique symmetric invertible invariant bilinear form 〈., .〉 with normalization

〈1V ,1V 〉 = 1,

where [2, 10]

〈Y †(a, z) b, c〉 = 〈b, Y (a, z)c〉 , (2.1)

for

Y †(a, z) =
∑
n∈Z

a†(n)z−n−1

= Y
(
ezLV (1)

(
−z−2

)LV (0)
a, z−1

)
. (2.2)

3. W -valued rational functions over torsors

Let us recall the notion of multiple torsors to formulate definitions of chain-cochain
double complex structure associated to grading-restricted vertex algebras. First, we
recall here the general definition of ordinary torsors [1]. Let G be a group, and S a
non–empty set. Then S is called a G-torsor, if it is equipped with a simply transitive
right action of G, i.e., given x, y ∈ S, there exists a unique g ∈ G such that

y = x · g,

where the right action is given by

x · (gh) = (x · g) · h.

The choice of any x ∈ S allows us to identify S with G by sending x · g to g.
Let V be a grading-restricted vertex algebra, and W a grading-restricted general-

ized V -module. One defines the configuration spaces [6]:

FnC = {(z1, . . . , zn) ∈ Cn | zi 6= zj , i 6= j},

for n ∈ Z+. Let V be a grading-restricted vertex algebra, and W a grading-restricted
generalized V -module. By W we denote the algebraic completion of W ,

W =
∏
n∈C

W(n) = (W ′)∗.
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A W -valued rational function in (z1, . . . , zn) with the only possible poles at zi = zj ,
i 6= j, is a map

f : FnC → W,

(z1, . . . , zn) 7→ f(z1, . . . , zn),

such that for any w′ ∈W ′,
〈w′, f(z1, . . . , zn)〉, (3.1)

is a rational function in (z1, . . . , zn) with the only possible poles at zi = zj , i 6= j. Such

map one calls W -valued rational function in (z1, . . . , zn) with possible other poles.
Denote the space of all W -valued rational functions in (z1, . . . , zn) by W z1,...,zn . One

defines a left action of Sn on W z1,...,zn by

(σ(f))(z1, . . . , zn) = f(zσ(1), . . . , zσ(n)),

for f ∈W z1,...,zn .
The idea to use torsors [1] is to represent the action of an element ρ of the group of

automorphism of a set of formal variables (z1, . . . , zn). by action of V -operators on a
set of vertex algebra element v ∈ V . In particular, one consider a vector (vi, z1, . . . , zn)
with vi ∈ V . Then the same vector equals(

R−1 (ρ) vi, w1, . . . , wn
)
,

i.e., it is identified with

R−1 (ρ) vi ∈ V,
using the transformed formal parameters (w1, . . . , wn). Here R (ρ) is an operator
representing transformation of zi → wi, as an action on V . Therefore if we have an
operator which is equal to a torsor S of the group of automorphism of (z1, . . . , zn).
Then this operator equals

R (ρ) S R−1 (ρ) .

Thus, in terms of the coordinates (vi, z1, . . . , zn), the differential YW (vi, wi) dw
wt (vi)
i

becomes

YW (vi, zi) dz
wt (vi)
i = R(ρ) YW (vi, ρ(z1, . . . , zn)) R−1(ρ) dw

wt (vi)
i .

In what follows, we will use corresponding formalism of multiple torsors, i.e., we con-
sider vectors (v1⊗. . .⊗vn)(z1, . . . , zn) for vi ∈ V , 1 ≤ i ≤ n. Then, W -valued function
Φ are multiple element vi ∈ V torsors with respect to to group of automorphisms of
(z1, . . . , zn).

For w ∈W , the W -valued function [8] E
(n)
W (v1 ⊗ · · · ⊗ vn;w) is given by

E
(n)
W (v1 ⊗ · · · ⊗ vn;w)(z1, . . . , zn) = E(YW (v1, z1) · · ·YW (vn, zn)w),

where an element E(.) ∈W is given by

〈w′, E(.)〉 = R(〈w′, .〉),

and R(.) denotes the rationalization in the sense of [6]. Namely, if a meromorphic
function f(z1, . . . , zn) on a region in Cn can be analytically extended to a rational
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function in (z1, . . . , zn), then the notation R(f(z1, . . . , zn)) is used to denote such
rational function. One defines

E
W ;(n)
WV (w; v1 ⊗ · · · ⊗ vn) = E

(n)
W (v1 ⊗ · · · ⊗ vn;w),

where E
W ;(n)
WV (w; v1 ⊗ · · · ⊗ vn) is an element of W z1,...,zn . One defines

Φ ◦
(
E

(l1)
V ; 1 ⊗ · · · ⊗ E

(ln)
V ; 1

)
: V ⊗m+n →W z1,...,zm+n

,

by

(Φ ◦ (E
(l1)
V ; 1 ⊗ · · · ⊗ E

(ln)
V ; 1))(v1 ⊗ · · · ⊗ vm+n−1)

= E(Φ(E
(l1)
V ;1(v1 ⊗ · · · ⊗ vl1)⊗ · · ·E(ln)

V ;1 (vl1+···+ln−1+1 ⊗ · · · ⊗ vl1+···+ln−1+ln))),

and

E
(m)
W ◦m+1 Φ : V ⊗m+n →W z1,...,zm+n−1

,

is given by

(E
(m)
W ◦m+1 Φ)(v1 ⊗ · · · ⊗ vm+n) = E(E

(m)
W (v1 ⊗ · · · ⊗ vm; Φ(vm+1 ⊗ · · · ⊗ vm+n))).

Finally,

E
W ;(m)
WV ◦0 Φ : V ⊗m+n →W z1,...,zm+n−1

,

is defined by

(E
W ;(m)
WV ◦0 Φ)(v1 ⊗ · · · ⊗ vm+n) = E(E

W ;(m)
WV (Φ(v1 ⊗ · · · ⊗ vn); vn+1 ⊗ · · · ⊗ vn+m)).

In the case that

l1 = · · · = li−1 = li+1 = 1,

li = m− n− 1,

for some 1 ≤ i ≤ n, we will use Φ ◦i E(li)
V ; 1 to denote Φ ◦ (E

(l1)
V ; 1 ⊗ · · · ⊗ E

(ln)
V ; 1).

One defines an action of Sn on the space Hom(V ⊗n,W z1,...,zn) of linear maps from

V ⊗n to W z1,...,zn by

(σ(Φ))(v1 ⊗ · · · ⊗ vn) = σ(Φ(vσ(1) ⊗ · · · ⊗ vσ(n))),

for σ ∈ Sn and v1, . . . , vn ∈ V . We will use the notation σi1,...,in ∈ Sn, to denote the
the permutation given by σi1,...,in(j) = ij , for j = 1, . . . , n. In [6] one finds:

Proposition 1. The subspace of Hom(V ⊗n,W z1,...,zn) consisting of linear maps hav-
ing the L(−1)-derivative property, having the L(0)-conjugation property or being com-
posable with m vertex operators is invariant under the action of Sn.
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3.1. Maps composable with vertex operators. For a V -module

W =
∐
n∈C

W(n),

and m ∈ C, let
Pm : W →W(m),

be the projection from W to W(m). Let

Φ : V ⊗n →W z1,...,zn ,

be a linear map. For m ∈ N, Φ is said [6, 4] to be composable with m vertex operators
if the following conditions are satisfied:

(1) Let l1, . . . , ln ∈ Z+ such that

l1 + · · ·+ ln = m+ n,

v1, . . . , vm+n ∈ V and w′ ∈W ′. Introduce

Ψi = E
(li)
V (vk1 ⊗ · · · ⊗ vki ;1V )(zk1 , . . . , zki),

where

k1 = l1 + · · ·+ li−1 + 1, ..., vki = l1 + · · ·+ li−1 + li,

for i = 1, . . . , n.
Then there exist positive integers Nn

m(vi, vj) depending only on vi and vj
for i, j = 1, . . . , k, i 6= j such that the series∑

r1,...,rn∈Z
〈w′, (Φ(Pr1Ψ1 ⊗ · · · ⊗ PrnΨn))(ζ1, . . . , ζn)〉,

is absolutely convergent when

|zl1+···+li−1+p − ζi|+ |zl1+···+lj−1+q − ζi| < |ζi − ζj |,
for i, j = 1, . . . , k, i 6= j, and for p = 1, . . . , li and q = 1, . . . , lj . The sum must
be analytically extended to a rational function in (z1, . . . , zm+n), independent
of (ζ1, . . . , ζn), with the only possible poles at zi = zj , of order less than or
equal to Nn

m(vi, vj), for i, j = 1, . . . , k, i 6= j.

(2) For v1, . . . , vm+n ∈ V , there exist positive integers Nn
m(vi, vj), depending only

on vi and vj , for i, j = 1, . . . , k, i 6= j, such that for w′ ∈W ′, and

vn,m = (v1+m ⊗ · · · ⊗ vn+m),

zn,m = (z1+m, . . . , zn+m),

such that∑
q∈C
〈w′, (E(m)

W (v1 ⊗ · · · ⊗ vm;Pq((Φ(vn,m))(zn,m)))〉,

is absolutely convergent when zi 6= zj , i 6= j |zi| > |zk| > 0 for i = 1, . . . ,m,
and k = m + 1, . . . ,m + n, and the sum can be analytically extended to a
rational function in (z1, . . . , zm+n) with the only possible poles at zi = zj , of
orders less than or equal to Nn

m(vi, vj), for i, j = 1, . . . , k, i 6= j,.
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A linear map
Φ : V ⊗n →W z1,...,zn ,

is said to have the L(0)-conjugation property if for (v1, . . . , vn) ∈ V , w′ ∈ W ′,
(z1, . . . , zn) ∈ FnC and z ∈ C×, so that (zz1, . . . , zzn) ∈ FnC,

〈w′, zLW (0)(Φ(v1 ⊗ · · · ⊗ vn))(z1, . . . , zn)〉
= 〈w′, (Φ(zL(0)v1 ⊗ · · · ⊗ zL(0)vn))(zz1, . . . , zzn)〉. (3.2)

For n ∈ Z+, a linear map

Φ : V ⊗n →W z1,...,zn ,

is said to have the L(−1)-derivative property if (i)

∂

∂zi
〈w′, (Φ(v1 ⊗ · · · ⊗ vn))(z1, . . . , zn)〉

= 〈w′, (Φ(v1 ⊗ · · · ⊗ vi−1 ⊗ LV (−1)vi ⊗ vi+1 ⊗ · · · ⊗ vn))(z1, . . . , zn)〉, (3.3)

for i = 1, . . . , n, (v1, . . . , vn) ∈ V , and w′ ∈W ′ and (ii)(
∂

∂z1
+ · · ·+ ∂

∂zn

)
〈w′, (Φ(v1 ⊗ · · · ⊗ vn))(z1, . . . , zn)〉

= 〈w′, LW (−1)(Φ(v1 ⊗ · · · ⊗ vn))(z1, . . . , zn)〉, (3.4)

and (v1, . . . , vn) ∈ V , w′ ∈W ′.

4. Vertex algebra bicomplexes

Let us recall [6] here the definition of shuffles. For l ∈ N and 1 ≤ s ≤ l− 1, let Jl;s
be the set of elements of Sl which preserve the order of the first s numbers and the
order of the last l − s numbers, i.e.,

Jl,s = {σ ∈ Sl | σ(1) < · · · < σ(s), σ(s+ 1) < · · · < σ(l)}.
The elements of Jl;s are called shuffles. Let

J−1l;s = {σ | σ ∈ Jl;s}.

Let V be a vertex operator algebra and W a V -module. For n ∈ Z+, let Cn0 (V,W )
be the vector space of all linear maps from V ⊗n to W z1,...,zn satisfying the L(−1)-
derivative property and the L(0)-conjugation property. For m, n ∈ Z+, let Cnm(V,W )
be the vector spaces of all linear maps from V ⊗n to W z1,...,zn composable with m
vertex operators, and satisfying the L(−1)-derivative property, the L(0)-conjugation
property, and such that∑

σ∈J−1
l;s

(−1)|σ|σ
(
Φ(vσ(1) ⊗ · · · ⊗ vσ(l))

)
= 0. (4.1)

We also find in [6]

Proposition 2. Let C0
m(V,W ) = W . Then we have

Cnm(V,W ) ⊂ Cnm−1(V,W ),

for m ∈ Z+.
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In [6] the coboundary operator for the bicomplex spaces Cnm(V,W ) was introduced:

δnm : Cnm(V,W )→ Cn+1
m−1(V,W ). (4.2)

For Φ ∈ Cnm(V,W ), it is given by

δnm(Φ) = E
(1)
W ◦2 Φ +

n∑
i=1

(−1)iΦ ◦i E(2)
V ;1 + (−1)n+1σn+1,1,...,n(E

(1)
W ◦2 Φ), (4.3)

where ◦i is defined in Section 1. Explicitly, for v1, . . . , vn+1 ∈ V , w′ ∈ W ′ and
(z1, . . . , zn+1) ∈ Fn+1C,

〈w′, ((δnm(Φ))(v1 ⊗ · · · ⊗ vn+1))(z1, . . . , zn+1)〉
= R(〈w′, YW (v1, z1)(Φ(v2 ⊗ · · · ⊗ vn+1))(z2, . . . , zn+1)〉)

+
n∑
i=1

(−1)iR(〈w′, (Φ(v1 ⊗ · · · ⊗ vi−1 ⊗ YV (vi, zi − zi+1)vi+1

⊗ · · · ⊗ vn+1))(z1, . . . , zi−1, zi+1, . . . , zn+1)〉)
+(−1)n+1R(〈w′, YW (vn+1, zn+1)(Φ(v1 ⊗ · · · ⊗ vn))(z1, . . . , zn)〉).

In the case n = 2, there is a subspace of C2
0 (V,W ) containing C2

m(V,W ) for all
m ∈ Z+ such that δ2m is still defined on this subspace. Let C2

1
2

(V,W ) be the subspace

of C2
0 (V,W ) consisting of elements Φ such that for v1, v2, v3 ∈ V , w′ ∈W ′,∑

r∈C

(
〈w′, E(1)

W (v1;Pr((Φ(v2 ⊗ v3))(z2 − ζ, z3 − ζ)))(z1, ζ)〉

+〈w′, (Φ(v1 ⊗ Pr((E(2)
V (v2 ⊗ v3;1))(z2 − ζ, z3 − ζ))))(z1, ζ)〉

)
,∑

r∈C

(
〈w′, (Φ(Pr((E

(2)
V (v1 ⊗ v2;1))(z1 − ζ, z2 − ζ))⊗ v3))(ζ, z3)〉

+〈w′, EW ;(1)
WV (Pr((Φ(v1 ⊗ v2))(z1 − ζ, z2 − ζ)); v3))(ζ, z3)〉

)
,

are absolutely convergent in the regions

|z1 − ζ| > |z2 − ζ|,

|z2 − ζ| > 0,

|ζ − z3| > |z1 − ζ|,

|z2 − ζ| > 0,

respectively, and can be analytically extended to rational functions in z1 and z2 with
the only possible poles at z1, z2 = 0 and z1 = z2. It is clear that

C2
m(V,W ) ⊂ C2

1
2
(V,W ),

for m ∈ Z+. The coboundary operator

δ21
2

: C2
1
2
(V,W )→ C3

0 (V,W ), (4.4)
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is defined in [6] by

δ21
2
(Φ) = E

(1)
W ◦2 Φ +

2∑
i=1

(−1)iE
(2)
V,1V

◦i Φ + E
W ;(1)
WV ◦2 Φ, (4.5)

〈w′, ((δ21
2
(Φ))(v1 ⊗ v2 ⊗ v3))(z1, z2, z3)〉

= R(〈w′, (E(1)
W (v1; Φ(v2 ⊗ v3))(z1, z2, z3)〉

+〈w′, (Φ(v1 ⊗ E(2)
V (v2 ⊗ v3;1)))(z1, z2, z3)〉)

−R(〈w′, (Φ(E
(2)
V (v1 ⊗ v2;1))⊗ v3))(z1, z2, z3)〉

+〈w′, (EW ;(1)
WV (Φ(v1 ⊗ v2); v3))(z1, z2, z3)〉)

for w′ ∈W ′, Φ ∈ C2
1
2

(V,W ), v1, v2, v3 ∈ V and (z1, z2, z3) ∈ F3C.

Using the operators δnm and δ21
2

, for m ∈ Z+ and n ∈ N, one introduces [6] the n-th

cohomology Hn
m(V,W ) of a grading-restricted vertex algebra V with coefficient in W ,

and composable with m vertex operators to be

Hn
m(V,W ) = ker δnm/im δn−1m+1,

H2
1
2
(V,W ) = ker δ21

2
/im δ12 ,

Then one has [6]

Proposition 3. For n ∈ N and m ∈ Z+ + 1, the coboundary operators (4.3) and
(4.5) satisfy the cochain complex conditions, i.e.,

δn+1
m−1 ◦ δnm = 0,

δ21
2
◦ δ12 = 0.

By Proposition 3, we have complexes for m ≥ 0,

0 −→ C0
m(V,W )

δ0m−→ C1
m−1(V,W )

δ1m−1−→ · · ·
δm−1
1−→ Cm0 (V,W ) −→ 0, (4.6)

0 −→ C0
3 (V,W )

δ03−→ C1
2 (V,W )

δ12−→ C2
1
2
(V,W )

δ21
2−→ C3

0 (V,W ) −→ 0. (4.7)

The first and last mappings are trivial embeddings and projections. For simplicity,

we call derivatives the actions of δmn and δ
1
2
2 on the mappings.

5. Bigraded differential algebras associated to a vertex algebra

A natural task now is to introduce an appropriate multiplication on bicomplex
spaces of (4.6) and (4.7), and derived an analogue of Leibniz formula. Let us consider
two mappings

Φ(v1 ⊗ . . .⊗ vn)(z1, . . . , zn) ∈ Cnm(V,W ),

Ψ(vn+1 ⊗ . . .⊗ vn+n′)(zn+1, . . . , zn+n′) ∈ Cn
′

m′(V,W ),
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which have r common vertex algebra elements and formal variables, and t common
vertex operators that mappings Φ and Ψ are composable with. Note that when
applying the coboundary operators (4.3) and (4.5) to a map

χ(v1 ⊗ . . .⊗ vn)(z1, . . . , zn) ∈ Cnm(V,W ),

δnm : χ(v1 ⊗ . . .⊗ vn)(z1, . . . , zn)→ χ(v′1 ⊗ . . .⊗ v′n)(z′1, . . . , z
′
n+1) ∈ Cn+1

m−1(V,W ),

one does not necessary assume that we keep the same set of vertex algebra elements
and formal parameters, as well as the set of vertex operators composable with for
δnmΦ, though it might happen that some of them could be common with Φ.

For our particular purposes of introduction of a bigraded differential structure
associated to double chain-cochain complexes (4.3) and (4.5), we define the product
of Φ and Ψ above as

Φ ·Ψ : V ⊗(n+n
′) → Cn+n

′−r
m+m′−t(V,W ), (5.1)

Φ ·Ψ = [Φ,Ψ] = Φ ∗Ψ−Ψ ∗ Φ, (5.2)

where brackets mean the commutator with respect to the geometrically defined prod-
uct ∗ of elements of the spaces Cnm(V,W ) and Cn

′

m′(V,W ), introduced in Appendix 8.
In the case

Ψ(vn+1 ⊗ . . .⊗ vn+n′)(zn+1, . . . , zn+n′) = Φ(v1 ⊗ . . .⊗ vn)(z1, . . . , zn),

we obtain from (5.2) that

Φ(v1 ⊗ . . .⊗ vn)(z1, . . . , zn) · Φ(v1 ⊗ . . .⊗ vn)(z1, . . . , zn) = 0. (5.3)

The coboundary operators δnm and δ21
2

possess a variation of Leibniz law with respect

to the product (5.2).
In Appendix 8 we prove the following

Proposition 4. For arbitrary w′ ∈W ′ one has

R
(
〈w′, δn+n

′−r
m+m′−t (Φ ·Ψ)〉

)
= R (〈w′, δnm (Φ) ·Ψ〉)+(−1)nR

(
〈w′,Φ · δn

′

m′ (Ψ)〉
)
. (5.4)

In this section we provide the main results of the paper by deriving relations for
the double graded differential algebras and the cohomological invariants associated to
bicomplexes (4.6) and (4.7) for a grading-restricted vertex algebra. Let us give first
some further definitions. In this section we skip the dependence on vertex algebra
elements and formal parameters in notations for elements of Cmn (V,W ). In analogy
with differential forms, we call a map Φ ∈ Cnm(V,W ) closed if

δnmΦ = 0.

For m ≥ 1, we call Φ ∈ Cnm(V,W ) exact if there exists Ψ ∈ Cn−1m+1(V,W ) such that

Ψ = δnmΦ.

For Φ ∈ Cnm(V,W ) we call the cohomology class of mappings [Φ] the set of all closed
forms that differs from Φ by an exact mapping, i.e., for χ ∈ Cn−1m+1,

[Φ] = Φ + δn−1m+1χ,
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where it is assumed that both parts of the last formula belongs to the same space
Cnm(V,W ).

Under a natural extra condition, the bicomplexes (4.6) and (4.7) allow us to es-
tablish relations among elements of bicomplex spaces. By analogy with the notion of
integrability for differential forms [5], we introduce here the notion of orthogonality
for spaces of a complex. Suppose we consider a complex given by

0 −→ C0
δ0−→ C1

δ1−→ C2
δ2−→ · · · δn−1−→ Cn

δn−→ · · · (5.5)

In particular, let us require that for a pair of a bicomplex spaces Ci and Cj , i, j ≥ 0.
there exist subspaces C ′i ⊂ Ci and such that for Φi ∈ C ′i and Φj ∈ C ′j ,

Φi · δjΦj = 0, (5.6)

namely, Φi supposed to be orthogonal to δjΦj (i.e., commutative with respect to the
product (5.2)). We call this the orthogonality condition for mappings of a complex.

It is easy to see that the assumption to belong to the same bicomplex space for
both sides of equations following from orthogonality condition applies the double
grading condition on bicomplex spaces. Note that in the case of differential forms
considered on a smooth manifold, the Frobenius theorem for a distribution provides
the orthogonality condition. In this Section we derive algebraic relations occurring
from the orthogonality condition on the bicomplex (4.6).

We formulate the first main result of this paper:

Proposition 5. The orthogonality condition for the bicomplexes (4.6) and (4.7)
brings about the structure of a double graded differential algebra with respect to the
multiplication (5.2).

Proof. Let us consider the most general case. For non-negative n0, n, n1, m0, m,
m1, let χ ∈ Cn0

m0
(V,W ), Φ ∈ Cnm(V,W ), and α ∈ Cn1

m1
(V,W ). For Φ and α, let r0 be

the number of common vertex algebra elements (and formal parameters), and t0 be
the number of common vertex operators Φ and α are composable to. Note that we
assume n, n1 ≥ r0, m, m1 ≥ t0. Applying the ortogonality condition

Φ · δn0
m0
χ = 0,

implies that there exist α1 ∈ Cn1
m1

(V,W ), such that

δn0
m0
χ = Φ · α1.

From the last equations we obtain

n0 + 1 = n+ n1 − r0,

m0 − 1 = m+m1 − t0.
Note that we have extra conditions following from the last identities: n0 + 1 ≥ 0,
m0 − 1 ≥ 0. The conditions above for indexes express the double grading condition
for the bicomplexes (4.6) and (4.7). As a result, we have a system in integer vari-
ables satisfying the grading conditions above. Consequently applying corresponding
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derivatives we obtain the full structure of differential relations

Φ · δn0
m0
χ = 0,

δn0
m0
χ = Φ · α1,

0 = δnmΦ · α1 + (−1)nΦ · δn1
m1
α1,

0 = δnmΦ · δn0
m0
χ,

δn0
m0
χ = δnmΦ · α2,

0 = δnmΦ · δni
mi
αi,

δni
mi
αi = δnmΦ · αi+1, i ≥ 2, (5.7)

where αi ∈ Cni
mi

(V,W ), and ni, mi, i ≥ 2 satisfy relations

ni = n+ ni+1 − ri+1,

mi = m+mi+1 − ti+1.

The sequence of relations (5.7) does not cancel until the conditions on indeces given
above fullfil. �

Thus, we see that the orthogonality condition for the bicomplexes (4.6) and (4.7)
together with the action of coboundary operators δnm and δ21

2

, and the multiplication

formulas (5.2)–(5.4), define a differential algebra depending on vertex algebra elements
and formal parameters. In particular, in that way we obtain the generators and
commutation relations for a continual Lie algebra G(V ) (a generalization of ordinary
Lie algebras with continual space of roots, c.f. [12]) with the continual root space
represented by a grading-restricted vertex algebra V .

Proposition 6. For the bicomplex (4.6) the generators

{χ ,Φ, αi, δn0
m0
χ, δn1

m1
Φ, δni

mi
αi,

}
,

with i ≥ 0, and commutation relations (5.7) form a continual Lie algebra G(V ) with
a root space provided by the grading-restricted vertex algebra V .

Proof. With the redefinition (we suppress here the dependence on vertex algebra
elements and formal parameters),

H0 = δ03χ,

H∗0 = χ,

X+1 = Φ,

X−i = αi,

Y+1 = δ12Φ,

Y−i = δ1tαi,
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we arrive at the commutation relations:

[H0, X+1] = 0,

[X+1, X−1] = H0,

[Y+1, X−1] = (−1)n [Y−1, X+1] ,

[Y+1, X−2] = 0,

[Y+1, Y−i] = 0,[
Y+1, X−(i+1)

]
= Y−i.

One easily checks Jacobi identities for generators. �

From the above proposition we see that, under the orthogonality and grading con-
ditions, the bicomplexes (4.6) and (4.7) provide the set of relations among mappings
and their derivatives.

Proposition 7. The set of commutation relations generates a sequence of non-
vanishing cohomological classes:[(

δn0
m0
χ
)
· χ
]
, [(δnmΦ) · Φ] ,

[(
δni
ni
αi
)
· αi
]
,

for i = 1, . . . , L, for some L ∈ N, with non-vanishing
(
δn0
m0
χ
)
· χ, (δnmΦ) · Φ, and(

δni
mi
αi
)
· αi. These classes are independent on the choices of χ ∈ Cn0

m0
(V,W ), Φ ∈

Cnm(V,W ), and αi ∈ Cni
mi

(V,W ).

Proof. Let φ be one of generators χ,Φ, αi, β, 1 ≤ i ≤ L. Let us show now the
non-vanishing property of

((
δ12φ
)
· φ
)
. Indeed, suppose

(δnmφ) · φ = 0.

Then there exists γ ∈ Cn′m′(V,W ), such that

δnmφ = γ · φ.

Both sides of the last equality should belong to the same bicomplex space but one
can see that it is not possible since we obtain m′ = t− 1, i.e., the number of common
vertex operators for the last equation is greater than for one of multipliers. Thus,
(δnmφ) · φ is non-vanishing.

Now let us show that [(δnmφ) · φ] is invariant, i.e., it does not depend on the choice
of Φ ∈ Cnm(V,W ). Substitute φ by (φ+ η) ∈ Cnm(V,W ). We have

(δnm (φ+ η)) · (φ+ η) = (δnmφ) · φ+ ((δnmφ) · η − φ · δnmη)

+ (φ · δnmη + δnmη · φ) + (δnmη) · η. (5.8)

Since

(φ · δnmη + (δnmη) · φ) = φδnmη − (δnmη)φ+ (δnmη)φ− φ δnmη = 0,

then (5.8) represents the same cohomology class [(δnmφ) · φ]. �
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6. Examples

In this section we consider particularly interesting examples of algebras described
in Proposition 6. The orthogonality condition for a bicomplex sequence (4.7), together
with the action of coboundary operators δnm and δ21

2

, and the multiplication formulas

(5.2)–(5.4), define a differential bigraded algebra depending on vertex algebra elements
and formal parameters. In particular, for the bicomplex (4.6), we obtain in this
way the generators and commutation relations for a continual Lie algebra G(V ) (a
generalization of ordinary Lie algebras with continual space of roots, c.f. [12]) with
the continual root space represented by a grading-restricted vertex algebra V .

6.1. Invariants associated with C2
1
2

(V,W ). Due to non-trivial action of the deriv-

ative
δ21

2
: C2

1
2
(V,W )→ C3

0 (V,W ),

the case when Φ ∈ C2
1
2

is exceptional among the relations coming from the double

grading condition for a vertex algebra bicomplex, and allow to reconstruct classical
invariants. Let us consider this case. Let Φ ∈ C2

1
2

(V,W ), and χ ∈ Cnm(V,W ). Then

we require the orthogonality:
χ · δ21

2
Φ = 0.

Thus there exist β ∈ Cn′m′(V,W ) such that

δ21
2
Φ = χ · β.

We then get
3 = n+ n′ − r,
0 = m+m′ − t,

Let n = r+α, 0 ≤ α ≤ 3, n′ = 3−α; m′ = t−m ≥ 0, i.e., t = m, thus m = t = m′ = 0.
Thus, χ ∈ Cr+α0 (V,W ), β ∈ C3−α

0 (V,W ). For r + α = 3 − α = 2 we obtain α = 1,
r = 1. If we require χ = Φ ∈ C2

k(V,W ) ⊂ C2
1
2

(V,W ), k > 0, then the equation

δ21
2
Φ = Φ · β,

corresponds to a generalization of Gadbillon-Vey invariant [5] for differential forms.
In general, we obtain the commutations

[H,X+2] = 0,

[H,Y−] = X+2,

[X−2, X+2] = H,

[Y+, H0] = X+2,

for generators
H = χ,

X+1 = Φ,

X+2 = δ21
2
Φ,

Y− = β.
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It is easy to see that since all mappings have zero operators composable with, then
all further actions of the derivatives vanish. Nevertheless, recall that

C2
k(V,W ) ⊂ C2

1
2
(V,W ),

k > 0, thus we can consider the most general case when χ ∈ Cr+αm0
(V,W ), Φ ∈

C2
m1

(V,W ), β ∈ C3−α
m2

(V,W ). Then the grading condition requires m1 − 1 = m0 +
m2 − t′, where t′ is the number of common vertex operators for χ ∈ Cr+αm0

(V,W )

and β ∈ C3−α
m2

(V,W ). Thus on applying derivatives we obtain further commutation
relations of the form (5.7).

6.2. Algebra associated with the short bicomplex (4.7). One can also develop
another example associated to the bicomplex (4.7). Consider χ ∈ C0

3 (V,W ), Φ ∈
C1

2 (V,W ). The orthogonality condition gives

Φ · δ03χ = 0.

Thus, there exists α ∈ Cnm(V,W ), such that

δ03χ = Φ · α,
which gives α ∈ C1

t (V,W ). For the short sequence (4.7) we get a continual Lie algebra
G(V ) with generators{

Φ(v1), χ, α(v2), δ12Φ(v1) , δ03χ, δ
1
tα(v2), 0 ≤ t ≤ 2} ,

and commutation relations for a continual Lie algebra G(V )

Φ · δ1tα = α · δ12Φ 6= 0,

δ03χ = Φ · α.
With the redefinition

H = δ03χ,

H∗ = χ,

X+(v1) = Φ(v1),

X−(v2) = α(v2),

Y+(v1) = δ12Φ(v1),

Y−(v2) = δ1tα(v2),

the commutation relations become:

[X+(v1), X−(v2)] = H,

[X+(v1), Y−(v1)] = [X−(v2), Y+(v1)] ,

i.e., the orthogonality condition brings about a representation of an affinization [9] of
continual counterpart of the Lie algebra sl2. We prove here that that the cohomolog-
ical classes: [(

δ12Φ
)
· Φ
]
,
[(
δ03χ
)
· χ
]
,
[(
δ1tα
)
· α
]
,

for 0 ≤ t ≤ 2, with non-vanishing
(
δ12Φ

)
·Φ,

(
δ03χ
)
· χ, and

(
δ1tα
)
· α, are independent

on the choice of Φ ∈ C1
2 (V,W ), χ ∈ C0

3 (V,W ), and α ∈ C1
t (V,W ). Vertex algebra

elements play the role of roots belonging to continual non-commutative root space
given by a vertex algebra V .
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7. Appendix: Continual Lie algebras

Continual Lie algebras were introduced in [12] and then studied in [13, 14]. Suppose
E is an associative algebra (which we call the base algebra) over R or C, and

K0, K±, K0,0 : E × E → E ,

are bilinear mappings. The local Lie part of a continual Lie algebra is defined as

Ĝ = G−1 ⊕ G0 ⊕ G+1,

where Gi, i = 0,±1, are isomorphic to E and parametrized by its elements. The
subspaces Gi consist of the elements

{Xi(φ), φ ∈ E} , i = 0,±1.

The generators Xi(φ) are subject to the commutation relations

[X0(φ), X0(ψ)] = X0(K0,0(φ, ψ)),

[X0(φ), X±1(ψ)] = X±1(K±(φ, ψ)),

[X+1(φ), X−1(ψ)] = X0(K0(φ, ψ)),

for all φ, ψ ∈ E . It is also assumed that Jacobi identities are satisfied. Then the
conditions on mappings K0,0, K0, ± follow:

K±(K0,0(φ, ψ), χ) = K±(φ,K±(ψ, χ))−K±(ψ,K±(φ, χ)),

K0,0(ψ,K0(φ, χ)) = K0(K+(ψ, φ), χ)) +K0(φ,K−(ψ, χ)),

for all φ, ψ, χ ∈ E . An infinite dimensional algebra

G(E ;K) = G′(E ;K)/J,

is called a continual contragredient Lie algebra, where G′(E ;K) is a Lie algebra freely

generated by Ĝ, and J is the largest homogeneous ideal with trivial intersection with
G0 (consideration of the quotient is equivalent to imposing the Serre relations in an
ordinary Lie algebra case) [13, 14].

8. Appendix: a multiplication of Cnm(V,W )-spaces

In this appendix we recall the definition of the simplest variant of multiplication ∗
of elements of two double complex spaces with the image in another double complex
space coherent with respect to the original differential (4.2), and satisfying the sym-
metry (4.1), LV (0)-conjugation (3.2), and LV (−1)-derivative (3.3)–(3.4) properties
described in Section 1. We prove also an analogue of Leibniz formula (5.4).
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8.1. Geometrical products of Cnm(V,W )-spaces. Let us first clarify the geomet-
rical origin of the multiplication. The structure of Cnm(V,W )-spaces is quite compli-
cated and it is difficult to introduce algebraically a product of its elements. In order
to define an appropriate product of two Cnm(V,W )-spaces we first have to interpret
them geometrically. Basically, a Cnm(V,W )-space must be associated with a certain
model space, the algebraic W -language should be transferred to a geometrical one,
two model spaces should be ”connected” appropriately, and, finally, a product should
be defined.

For two spaces Ckm(V,W ) and Cnm′(V,W ) we first associate formal complex param-
eters in the sets (x1, . . . , xk) and (y1, . . . , yn) to parameters of two auxiliary spaces.
Then we describe a geometric procedure to form a resulting model space by combining
two original model spaces. Formal parameters of Wz1,...,zk+n

should be then identified
with parameters of the resulting space.

Note that according to our assumption, (x1, . . . , xk) ∈ FkC, and (y1, . . . , yn) ∈
FnC. As it follows from the definition of the configuration space FnC in Subsection 1,
in the case of coincidence of two formal parameters they are excluded from Fk+nC. In
general, it may happen that a number r of formal parameters (x1, . . . , xk) of Ckm(V,W )
coincides with r formal parameters (y1, . . . , yn) of Cnm′(V,W ) on the whole C (or on
a domain of definition). Then, we exclude one formal parameter from each coinciding
pair. We require that the set of formal parameters

(z1, . . . , zk+n−r) = (x1, . . . , xil , . . . xk; y1, . . . , ŷil , . . . , yn), (8.1)

for 1 ≤ i ≤ r, where .̂ denotes the exclusion of corresponding formal parameter for
xil = yjl , 1 ≤ l ≤ r, for the resulting model space would belong to Fk+n−rC. We
denote this operation of formal parameters exclusion by

R̂ Φ(v1 ⊗ . . .⊗ vk; v′1 ⊗ . . .⊗ v′n)(x1, . . . , xk; y1, . . . , yn).

8.2. Product of matrix elements. The simplest possible product of elements of
two Cnm(V,W )-spaces is defined by products of matrix elements of the form (3.1)
summed over a V(l)-basis for l ∈ Z. In geometrical language it corresponds to sewing
of two Riemann spheres associated to Cnm(V,W )-spaces. We have the following defini-
tion. For Φ(v1⊗ . . .⊗ vk)(x1, . . . , xk) ∈ Ckm(V,W ), and Ψ(v′1⊗ . . .⊗ v′n)(y1, . . . , yn) ∈
Cnm′(V,W ), the product

Φ(v1 ⊗ . . .⊗ vk)(x1, . . . , xk) ∗Ψ(v′1 ⊗ . . .⊗ v′n)(y1, . . . , yn)

7→ R̂ Θ (v1 ⊗ . . .⊗ vk ⊗ v′1 ⊗ . . .⊗ v′n) (x1, . . . , xk; y1, . . . , yn) ,(8.2)

is a W z1,...,zk+n−r
-valued rational form

〈w′, R̂ Θ (v1 ⊗ . . .⊗ vk ⊗ v′1 ⊗ . . .⊗ v′n) (x1, . . . , xk; y1, . . . , yn)〉
=
∑
l∈Z

εl
∑

ul∈V(l)

〈w′, YWWV (Φ(v1 ⊗ . . .⊗ vk)(x1, . . . , xk), ζ1) ul〉

〈w′, YWWV (Ψ(v′1 ⊗ . . .⊗ v′i1 ⊗ . . . v′jr ⊗ . . .⊗ v′n)

(y1 ⊗ . . .⊗ yi1 ⊗ . . . yjr ⊗ . . .⊗ yn), ζ2) ul〉, (8.3)
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parametrized by ζ1, ζ2 ∈ C. The sum is taken over any Vl-basis {ul}, where ul is the
dual of ul with respect to a non-degenerate bilinear form 〈. , .〉, (2.1) over V . The

operation R̂ eliminates r formal parameters from Θ from the set (y1, . . . , yn) coinciding
with r formal parameter of the set (x1, . . . , xk), and excludes all monomials (xil−yjl),
1 ≤ l ≤ r, from (8.3). By the standard reasoning [2, 18], (8.3) does not depend on the
choice of a basis of u ∈ Vl, l ∈ Z. The form of the product defined above is natural
in terms of the theory of charaters for vertex operator algebras [15, 3, 18]. Due to
the symmetry of the geometrical interpretation described above, we could exclude r
formal parameters from the set (x1, . . . , xk) in (8.3) which belong to coinciding pairs
resulting to the same definition of the ∗-product.

We define the action of an element σ ∈ Sk+n−r on the product of Φ(v1 ⊗ . . . ⊗
vk)(x1, . . . , xk) ∈ Ckm(V,W ) and Ψ(v′1 ⊗ . . .⊗ v′n)(y1, . . . , yn) ∈ Cnm′(V,W ), as

〈w′, σ(R̂ F)(v1 ⊗ . . .⊗ vk ⊗ v′1 ⊗ . . .⊗ v′n)(x1, . . . , xk; y1, . . . , yn))〉
= 〈w′,Θ(ṽσ(1) ⊗ . . .⊗ ṽσ(k+n−r))(zσ(1), . . . , zσ(k+n−r))〉

=
∑
l∈Z

∑
ul∈V(l)

〈w′, YWWV

(
Φ(ṽσ(1) ⊗ . . .⊗ ṽσ(k))(zσ(1), . . . , zσ(k)), ζ1

)
ul〉

〈w′, YWWV

(
Ψ(ṽσ(k+1) ⊗ . . .⊗ ṽσ(k+n−r))zσ(k+1), . . . , zσ(k+n−r)), ζ2

)
ul〉,

(8.4)

where by (ṽσ(1), . . . , ṽσ(k+n−r)) we denote a permutation of

(ṽ1, . . . , ṽk+n−r) = (v1, . . . ; vk; v′1, . . . , v̂
′
j1 , . . . , v̂

′
jr , . . . , v

′
n). (8.5)

Let t be the number of common vertex operators the mappings Φ(v1⊗. . . vk)(x1, . . .,
xk) ∈ Ckm(V,W ) and Ψ(v′1⊗ . . . ,⊗v′n)(y1, . . . , yn) ∈ Cnm′(V,W ), are composable with.
Using the definition of Cnm(V,W )-space and the definition of mappings composable
with vertex operators, we then have

Proposition 8. For Φ(v1 ⊗ . . . ⊗ vk)(x1, . . . , xk) ∈ Ckm(V,W ) and Ψ(v′1 ⊗ . . . ⊗
v′n)(y1, . . . , yn) ∈ Cnm′(V,W ), the product

R̂ Θ (v1 ⊗ . . .⊗ vk ⊗ v′1 ⊗ . . .⊗ v′n) (x1, . . . , xk; y1, . . . , yn) ,

(8.3) belongs to the space Ck+n−rm+m′−t(V,W ), i.e.,

∗ : Ckm(V,W )× Cnm′(V,W )→ Ck+n−rm+m′−t(V,W ). (8.6)

The proof of this proposition is as follows. Using the geometrical construction
of sewing two Riemann spheres to form another Riemann sphere, we prove that the
product (8.3) belongs to the space Ck+n−rm+m′−t(V,W ). We show that (8.3) converges to

a W -valued rational function defined on the configuration space FCk+n−r, for formal
variables with only possible poles at

(z1, . . . , zk+n−r) = (x1, . . . , xk; y1, . . . , ŷil , . . . , yn),

satisfies (4.1), LV (0)-symmetry (3.2), and LV (−1)-derivative (3.3)–(3.4) conditions,
and composable with m+m′ − t vertex operators.

In order to prove convergence of a product of elements of two spaces Ckm(V,W )
and Cnm′(V,W ) we use a geometrical interpretation [8, 17]. Recall that a Ckm(V,W )



20 A. ZUEVSKY

-space is defined by means of matrix elements [2] of the form (3.1), and satisfying
L(0)-conjugation, L(−1)-derivsative conditions, (4.1), and composable with m vertex
operators. For a vertex algebra V , and it module W , satisying certain extra conditions
[16], one associate elements of a space Ckm(V,W ) with the data on the Riemann sphere.
In particular, formal parameters of Ckm(V,W )-elements and vertex operators they are
composable to, are identified with local coordinates of marked points on a sphere.
For a pair of spaces Ckm(V,W ) and Cnm′(V,W ), we consider data on two Riemann
spheres. Two extra points are chosen for centers of annuli used in order to sew
spheres [17, 8] to obtain another sphere. The resulting product (8.3) represents a sum
of products of matrix elements originated from two original Riemann spheres. Two
complex parameters ζ1, ζ2 of (8.3) are identified with coordinates on annuli. After
identification of annuli r coinciding coordinates may occur. This takes into account
case of coinciding formal parameters.

The sewing parameter condition is [17] ζ1ζ2 = ε. In two sphere ε-sewing formula-
tion, the complex parameters ζa, a = 1, 2 are coordinates inside identified annuluses,
and |ζa| ≤ ra. The product (8.3) converges for various cases of V and W . In partic-
ular, it is converges in case of a vertex algebra decomposable into Heisenberg vertex
operator algebras [16]. Some further converging examples of V and it modules W will
be considered elsewhere. The matrix elements in (8.3) are absolutely convergent in
powers of ε with some radii of convergence Ra ≤ ra, with |ζa| ≤ Ra. By expanding
the product (8.3) as power series in ε for |ζa| ≤ Ra, where |ε| ≤ r for r < r1r2.
By applying Cauchy’s inequality to coefficients for x- and y-depending parts of the
product we find that (8.3) is absolute convergent as a formal series in ε is defined for
|ζa| ≤ ra, and |ε| ≤ r for r < r1r2, with extra poles only at zi, 1 ≤ i ≤ k + n− r.

When (8.3) is convergent, using geometrical procedure [8, 17] of sewing of two
Riemann spheres, we prove that the limiting function is analytically extendable to a
W -valued function defined on the configuration space

FCk+n−r = {(z1, ..., zk+n−r) : zi 6= zj , i 6= j} .

Element Φ ∈ Ckm(V,W ) and Ψ ∈ Cnm′(V,W ) are defined on the configuration spaces
FCk and FCn correspondingly. Due to the construction of the product (8.3), for every
ul ∈ V(l), each summand in (8.3) defines a rational function on the configuration space
FCk+n−r. Recall the sewing relation ζ1ζ2 = ε for two Riemann spheres.

By construction, it is assumed that annular regions are not intersecting. After the
identification of annular regions the analytic extension of the limiting function of (8.3)
is given by the the sewing geometrical procedure of [8, 17]. The extension is from
two original Riemann spheres to the sphere formed by sewing. The construction of
(8.3) provides that it gives the W -valued rational function on the configuration space
FCk+n−r. Similar, the construction of the product (8.3) provides that the limiting
function is a W -valued rational function with the only possible poles at zi = zj ,
1 ≤ i < j ≤ k + n− r.

We define the action of

∂p = ∂zp = ∂/∂zp ,
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for 1 ≤ p ≤ k + n− r, the differentiation of

Θ(v1 ⊗ . . .⊗ vk ⊗ v′1 ⊗ . . .⊗ v̂′il ⊗ . . .⊗ v
′
n)(x1, . . . , xk; y1, . . . ; ŷil , . . . , yn),

for 1 ≤ l ≤ r, with respect to the p-th entry of (x1, . . . , xk; y1, . . . , ŷil , . . . , yn) as
follows

〈w′, ∂pΘ(v1 ⊗ . . .⊗ vk ⊗ v′1 ⊗ . . .⊗ v̂′il ⊗ . . .⊗ v
′
n)

(x1, . . . , xk; y1, . . . , ŷil , . . . , yn)〉
=
∑
q∈Z

εq
∑
uq∈Vq

〈w′, ∂δp,ixi
YWWV (Φ(v1 ⊗ . . .⊗ vk)(x1, . . . , xk), ζ1) uq〉

〈w′, ∂δp,jyj YWWV

(
Φ(v′1 ⊗ . . .⊗ v̂′il ⊗ . . .⊗ v

′
n)(y1, . . . , ŷil , . . . , yn), ζ2

)
uq〉.
(8.7)

By direct substitution we prove that the product (8.3) satisfies the LV (−1)-derivative
(3.3)–(3.4) and LV (0)-conjugation (3.2) properties. Using the definition of the action
of an element σ ∈ Sk+n−r on the product (8.3), we prove (4.1) for (8.3).

Next, we show that (8.3) is composable with m+m′ − t vertex operators. Recall
that Φ(v1 ⊗ . . .⊗ vk)(x1, . . . , xk) is composable with m vertex operators, and Ψ(v′1 ⊗
. . .⊗ v′n)(y1, . . . , yn) is composable with m′ vertex operators. Let us consider the first
condition of composability for the product (8.3) with a number of vertex operators.
We redefine the notations for the set

(v′′1 , . . . , v
′′
k ; v′′k+1, . . . , v

′′
k+m; v′′k+m+1, . . . , v

′′
k+n−r+m+m′−t; v

′′
n−r+1, . . . , v

′′
n−r+m′−t)

= (v1, . . . , vk; vk+1, . . . , vk+m; v′1, . . . , v
′
n; v′n−r+1, . . . , v

′
n−r+m′−t),

(z1, . . . , zk; zk+1, . . . , zk+n−r) = (x1, . . . , xk; y1, . . . , ŷil . . . , yn),

of vertex algebra V elements. Introduce l′′1 , . . . , l
′′
k+n−r ∈ Z+, such that l′′1 + . . . +

l′′k+n−r = k + n− r +m+m′ − t. Define

Ψ′′i = E
(l′′

i′′ )

V (v′′k′′1 ⊗ . . .⊗ v
′′
k′′
i′′

;1V )(zk′′1 − ζ
′′
i′′ , . . . , zk′′i′′ − ζ

′′
i′′), (8.8)

where

k′′1 = l′′1 + . . .+ l′′i′′−1 + 1, . . . , k′′i′′ = l′′1 + . . .+ l′′i′′−1 + l′′i′′ , (8.9)

for i′′ = 1, . . . , k + n− r, and we take

(ζ ′′1 , . . . , ζ
′′
k+n−r) = (ζ1, . . . , ζk; ζ ′1, . . . , ζ

′
n).

Then we consider

Ik+n−rm+m′−t(R̂ Θ) =
∑

r′′1 ,...,r
′′
k+n−r∈Z

〈w′, R̂ Θ(Pr′′1 Ψ′′1 ⊗ . . .⊗ Pr′′k+n−r
Ψ′′k+n−r)

(ζ ′′1 , . . . , ζ
′′
k+n−r)〉, (8.10)

and prove it is absolutely convergent with some conditions. The condition

|zl′′1 +...+l′′i−1+p
′′ − ζ ′′i |+ |zl′′1 +...+l′′j−1+q

′′ − ζ ′′i | < |ζ ′′i − ζ ′′j |, (8.11)
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of absolute convergence for (8.10) for i′′, j′′ = 1, . . . , k + n − r, i 6= j and for p′′ =
1, . . . , l′′i and q′′ = 1, . . . , l′′j , follows from corresponding conditions for Φ and Ψ. We
obtain ∣∣∣Ik+n−rm+m′−t(R̂ Θ)

∣∣∣ ≤ ∣∣Ikm(Φ)
∣∣ |Inm′(Ψ)| .

Thus, we infer that (8.10) is absolutely convergent. Recall that the maximal orders
of possible poles of (8.10) are Nk

m(vi, vj), N
n
m′(v

′
i′ , v
′
j′) at xi = xj , yi′ = yj′ . From

the last expression we deduce that there exist positive integers Nk+n−r
m+m′−t(v

′′
i′′ , v

′′
j′′) for

i, j = 1, . . . , k, i 6= j, i′, j′ = 1, . . . , n, i′ 6= j, depending only on v′′i′′ and v′′j′′ for i′′,

j′′ = 1, . . . , k + n, i′′ 6= j′′ such that the series (8.10) can be analytically extended to
a rational function in (x1, . . . , xk; y1, . . . , yn), independent of (ζ ′′1 , . . . , ζ

′′
k+n−r), with

extra possible poles at and xi = yj , of order less than or equal to Nk+n−r
m+m′−t(v

′′
i′′ , v

′′
j′′),

for i′′, j′′ = 1, . . . , n, i′′ 6= j′′.
Let us proceed with the second condition of composability. For the product (8.3)

we obtain (v′′1 , . . . , v
′′
k+n−r+m+m′−t) ∈ V , and (z1, . . . , zk+n−r+m+m′−t) ∈ C, we

find positive integers Nk+n−r
m+m′−t(v

′
i, v
′
j), depending only on v′i and v′′j , for i′′, j′′ =

1, . . . , k + n− r, i′′ 6= j′′, such that for arbitrary w′ ∈W ′. Under conditions

zi′′ 6= zj′′ , i′′ 6= j′′,

|zi′′ | > |zk′′′ | > 0, (8.12)

for i′′ = 1, . . . ,m+m′ − t, and k′′′ = m+m′ − t+ 1, . . . ,m+m′ − t+ k + n− r, let
us introduce

J k+n−rm+m′−t(R̂ Θ) =
∑
q∈C
〈w′, E(m+m′−t)

W

(
v′′1 ⊗ . . .⊗ v′′m+m′−t;

Pq(R̂ Θ(v′′m+m′−t+1 ⊗ . . .⊗ v′′m+m′−t+k+n−r)

(zm+m′−t+1, . . . , zm+m′−t+k+n−r))
)

(z1, . . . , zm+m′−t)〉. (8.13)

We then obtain

|J k+nm+m′(R̂ Θ)| ≤
∣∣J km(Φ)

∣∣ |J nm′(Ψ)| ,
where we have used the invariance of (8.3) with respect to σ ∈ Sm+m′−t+k+n−r.
J km(Φ) and J nm′(Ψ) in the last expression are absolute convergent. Thus, we infer that

J k+n−rm+m′−t(R̂ Θ) is absolutely convergent, and the sum (8.10) is analytically extendable
to a rational function in (z1, . . . , zk+n−r+m+m′−t) with the only possible poles at
xi = xj , yi′ = yj′ , and at xi = yj′ , i.e., the only possible poles at zi′′ = zj′′ , of orders

less than or equal to Nk+n−r
m+m′−t(v

′′
i′′ , v

′′
j′′), for i′′, j′′ = 1, . . . , k′′′, i′′ 6= j′′. This finishes

the proof of the proposition.

8.3. Coboundary operator acting on the product space. The product admits
the action ot the differential operator δk+n−rm+m′−t defined in (4.3) and (4.5) where r is
the number of common formal parameters, and t the number of commpon composable
vertex operators for Φ ∈ Ckm(V,W ) and Ψ ∈ Cnm′(V,W ). The co-boundary operators
(4.3) and (4.5) possesse a variation of Leibniz law with respect to the ∗-product. By
direct computation we check
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Proposition 9. For Φ(v1⊗. . .⊗vk)(x1 . . . xk) ∈ Ckm(V,W ) and Ψ(v′1⊗. . .⊗v′n)(y1, . . . , yn) ∈
Cnm′(V,W ), the action of δk+n−rm+m′−t on their product (8.3) is given by

δk+n−rm+m′−t(Φ(v1 ⊗ . . .⊗ vk)(x1, . . . , xk) ∗Ψ(v′1 ⊗ . . .⊗ v′n)(y1, . . . , yn))

=
(
δkmΦ(ṽ1 ⊗ . . .⊗ ṽk)(z1, . . . , zk)

)
∗Ψ(ṽk+1 ⊗ . . .⊗ ṽk+n−r)(zk+1, . . . , zk+n−r)

+(−1)kΦ(ṽ1 ⊗ . . .⊗ ṽk)(z1, . . . , zk)

∗
(
δn−rm′−tΨ(ṽ1 ⊗ . . .⊗ ṽk+n−r)(zk+1, . . . , zk+n−r)

)
. (8.14)

�

Finally, we have the following

Corollary 1. The multiplication (8.3) extends the chain-cochain complex structure
of Proposition 3 to all products Ckm(V,W )× Cnm′(V,W ), k, n ≥ 0, m, m′ ≥ 0. �

For elements of the spaces C2
ex(V,W ) we have the following

Corollary 2. The product of elements of the spaces C2
ex(V,W ) and Cnm(V,W ) is

given by (8.3),

∗ : C2
ex(V,W )× Cnm(V,W )→ Cn+2−r

m (V,W ), (8.15)

and, in particular,

∗ : C2
ex(V,W )× C2

ex(V,W )→ C4−r
0 (V,W ).

�
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