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COHOMOLOGY OF MODULAR FORM CONNECTIONS ON

COMPLEX CURVES

A. ZUEVSKY

Abstract. We consider reduction cohomology of modular functions defined on

complex curves via generalizations of holomorphic connections. The cohomology
is explicitly found in terms of higher genus counterparts of elliptic functions as

analytic continuations of solutions for functional equations. Examples of modular

functions on various genera are provided.

1. Introduction

The natural problem of computation of continuous cohomologies for non-commutative
structures on manifolds has proven to be a subject of great geometrical interest
[BS, Kaw, PT, Fei, Fuks, Wag]. As it was demonstrated in [Fei, Wag], the ordi-
nary Gelfand-Fuks cohomology of the Lie algebra of holomorphic vector fields on
complex manifolds turns to be not the most effective and general one. For Riemann
surfaces, and even for higher dimension complex manifolds, the classical cohomol-
ogy of vector fields becomes trivial [Kaw]. The Lie algebra of holomorphic vector
fields does not always work for cohomology. For example, it is zero for a compact
Riemann surface of genus greater than one. In [Fei] Feigin obtained various results
concerning (co)-homology of the Lie algebra cosimplicial objects of holomorphic vec-
tor fields LiepMq. Inspite of results in previous approaches, it is desirable to find a
way to enrich cohomological structures. This motivates constructions of more refined
cohomology description for non-commutative algebraic structures. In [BS], it have
been proven that the Gelfand-Fuks cohomology H˚pV ectpMqq of vector fields on a
smooth compact manifold M is isomorphic to the singular cohomology of the space
of continuous cross sections of a certain fibre bundle over M .

The main aim of this paper is to introduce and compute the reduction cohomology
of modular functions on complex curves [FK, Bo, Gu, A]. Due to structure of modular
forms [FMS, BKT, Fo] and reduction relations [Y, Zhu, MTZ, GT, TW] among them,
one can form chain complexes of n-point modular forms that are fine enough to
describe local geometry of complex curves. In contrast to more geometrical methods,
e.g., of ordinary cosimplicial cohomology for Lie algebras [Fei, Wag], the reduction
cohomology pays more attention to the analytical and modular structure of elements
of chain complex spaces. Computational methods involving reduction formulas proved
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2 A. ZUEVSKY

their effectiveness in conformal field theory, geometrical descriptions of intertwined
modules for Lie algebras, and differential geometry of integrable models.

In section 2 we give the definition of the reduction cohomology as well as lemma
relating it to the cohomology of generalized connections on M . The main proposi-
tion explicitly expressing the reduction cohomology in terms of spaces of generalized
elliptic functions on M is proven. In Appendix 3 we provide examples of reduction for-
mulas for various modular functions. Results of this paper are useful for cosimplisial
cohomology theory of smooth manifolds, generalizations of the Bott-Segal theorem,
and have their consequences in conformal field theory [Fei, Wag], deformation theory,
non-commutative geometry, modular forms, and the theory of foliations.

2. The chain complex and cohomology

2.1. Chain complex spaces of n-variable modular forms. In this section we
introduce the chain complex spaces for modular functions on complex curves [EZ,
Zag, Zhu, Miy, Miy1, MTZ, GT, TW]. Mark n points pn “ pp1, . . . , pnq on a compact
complex curve M of genus g. Denote by zn “ pz1, . . . , znq local coordinates around
pn PM . On genus g complex curves an n-point modular function Z pzn, µq has certain
specific form depending on g, M (cf. [Y]) and kind of modular form. In addition to
that, it depends on a set of moduli parameters µ PM where we denote by M a subset
of the moduli space of genus g complex curve M .

Definition 1. On a complex curve M of genus g, we consider the spaces of n-point
modular forms with moduli parameters µ.

Cnpµq “ tZ pzn, µq , n ě 0u , (2.1)

that possess reduction formulas.

The co-boundary operator δnpzn`1q on Cnpµq-space is defined according to the
reduction formulas for µ-modular functions (cf. particular examples in Appendix
3, [Fo, Zhu, MTZ, GT, TW]).

Definition 2. For n ě 0, and any zn`1 P C, define

δn : Cnpµq Ñ Cn`1pµq, (2.2)

given by

δnpzn`1q Z pzn, µq “
lpgq
ÿ

l“1

n
ÿ

k“0

ÿ

mě0

fk,l,m pzn`1, l, µq Tl,k,mpµq.Zn pzn, µq ,(2.3)

where lpgq ě 0 is a constant depending on g, and the meaning of indexes 1 ď k ď n,
1 ď l ď lpgq, m ě 0 explained below.

For each particular genus g ě 0 of M and type of modular form defined by the mod-
uli parameter µ, known operator-valued functions fk,l,mpzn`1, µqTk,l,mpµq. change the
k-argument of Z pzn, µq by changing µ. The reduction formulas have the form:

Z pzn`1, µq “ δnpzn`1q.Z pzn, µq . (2.4)
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For n ě 0, let us denote by Zn the domain of all zn P Cn, such that the chain condition

δn`1pzn`1q δpznq.Z pzn, µq “ 0, (2.5)

for the coboundary operators (2.3) for spaces Cnpµq is satisfied. Explicitly, the
chain condition (2.5) leads to an infinite n ě 0 set of equations involving functions
fk,l,m pzn`1, µq and Z pzn, µq:
lpgq
ÿ

l1“1
l“1

n`1
n
ÿ

k1

k“1

ÿ

m1

mě0

fk1,l1,m1 pzn`2, µq fk,m,l pzn`1, µqTk1,l1,m1pµqTk,l,mpµq.Z pzn, µq “ 0. (2.6)

Definition 3. The spaces with conditions (2.6) constitute a chain complex

0 ÝÑ C0 δ0

ÝÑ C1 δ1

ÝÑ . . .
δn´2

ÝÑ Cn´1 δn´1

ÝÑ Cn ÝÑ . . . . (2.7)

For n ě 1, we call corresponding cohomology

Hnpµq “ Ker δnpzn`1q{Im δn´1pznq, (2.8)

the n-th reduction cohomology of µ-modular forms on a complex curve M .

Remark 1. Note that the reduction cohomology can be defined as soon as for a type
of modular functions there exist reduction formulas (2.4).

Operators Tk,l,mpµq, 0 ď l ď lpgq, m ě 0, 1 ď k ď n, form a set of generators
of an infinite-dimensional continual Lie algebra gpµq endowed with a natural grading
indexed l, m. Indeed, we set the space of functions Zpzn, µq as the base algebra
[Sav, SV1, SV2, V] for the continual Lie algebra gpµq, and the generators as

Xk,l,m pZ pzn, µqq “ Tk,l,mpµq.Z pzn, µq , (2.9)

for 0 ď l ď lpgq, m ě 0, 1 ď k ď n. Then the commutation relations for non-
commutative operators Tk,l,m. 1 ď k ď n inside Zpzn, µq represent the commutation
relations of the continual Lie algebra gpµq. Jacobi identities for gpµq follow from
Jacobi identities of the Lie algebra of operators Tk,l,m.

2.2. Geometrical meaning of reduction formulas and conditions (2.6). In this
section we show that the reduction formulas have the form of multipoint connections
generalizing ordinary holomorphic connections on complex curves [Gu]. Let us define
the notion of a multipoint connection which will be useful for identifying reduction
cohomology in section 2.3. Motivated by the definition of a holomorphic connection
for a holomorphic bundle [Gu] over a smooth complex curve M , we introduce the
definition of a multiple point connection over M .

Definition 4. Let V be a holomorphic vector bundle on M , and M0 Ă M be its
subdomain. Denote by SV the space of sections of V. A multi-point connection G on
V is a C-multi-linear map

G : Mn Ñ C,
such that for any holomorphic function f , and two sections φppq and ψpp1q of V at
points p and p1 on M0 ĂM correspondingly, we have

ÿ

q,q1PM0ĂM

G
`

fpψpqqq.φpq1q
˘

“ fpψpp1qq G pφppqq ` fpφppqq G
`

ψpp1q
˘

, (2.10)
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where the summation on left hand side is performed over locuses of points q, q1 on
M0. We denote by Conn the space of n-point connections defined over M .

Geometrically, for a vector bundle V defined over M , a multi-point connection
(2.10) relates two sections φ and ψ at points p and p1 with a number of sections on
M0 ĂM .

Definition 5. We call

Gpφ, ψq “ fpφppqq G
`

ψpp1q
˘

`fpψpp1qq G pφppqq´
ÿ

q,q1PM0ĂX
G
`

fpψpq1qq.φpqq
˘

, (2.11)

the form of a n-point connection G. The space of n-point connection forms will be
denoted by Gn.

Here we prove the following

Lemma 1. n-point modular functions of the space tZ pzn, µq , n ě 0u form n-point
connections. For n ě 0, the reduction cohomology of a compact complex curve of
genus g is

Hnpµq “ Conn{Gn´1. (2.12)

Proof. For non-vanishing fpφppqq let us write set

G “ Z pzn, µq , (2.13)

ψpp1q “ pzn`1, µq ,

φppq “ pzn, µq ,

G
`

fpψpqqq.φpq1q
˘

“ T
pgq
k,l,mpµq.Z pzn, µq ,

´
fpψpp1qq

fpφppqq
G pφppqq “

lpgq
ÿ

l“1

f0,l,m pzn`1, µq T0,l,m.Z pzn, µq ,

1

fpφppqq

ÿ

qn,q1nP
X0ĂM

G
`

fpψpqqq.φpq1q
˘

“

n
ÿ

k“1

ÿ

mě0

fk,l,m pzn`1, µqTk,l,mpµq.Z pzn, µq .

Thus, the formula (2.13) gives (2.4). �

The geometrical meaning of (2.6) consists in the following. Due to modular prop-
erties of n-point functions Zpzn, µq, (2.6) is also interpreted as relations among mod-
ular forms. The condition (2.4) defines a complex variety in zn P Cn. As most
identities (e.g., trisecant identity [Fa, Mu] and triple product identity [MTZ]) for
n-point functions (2.6) has its algebraic-geometrical meaning. The condition (2.6)
relates finite series of modular functions on M with rational function coefficients (at
genus g “ 0) [Zhu], or (deformed) elliptic functions (at genus g “ 1) [Zhu, MTZ], or
generalizations of classical elliptic functions (at genus g ě 2) [GT, TW].

2.3. Cohomology. In this section we compute the reduction cohomology defined by
(2.7)–(2.8). The main result of this paper is the following
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Proposition 1. The n-th reduction cohomology of the spaces Cnpµq (2.1) of modular
forms Zpzn, µq is the space of recursively generated (by reduction formulas (2.4))
functions with zi R Zi, for 1 ď i ď n, satisfying the condition

lpgq
ÿ

l“1

n
ÿ

k“1

ÿ

mě0

fk,l,m pzn`1, µq Tl,k,m.Z pzn, µq “ 0. (2.14)

Remark 2. The first cohomology is given by the space of transversal (i.e., with vanish-
ing sum over q, q1) one-point connections Z px1, µq provided by coefficients in terms of
series of special functions. The second cohomology is given by a space of generalized
higher genus complex kernels corresponding to M .

Proof. By definition (2.8), the n-th reduction cohomology is defined by the subspace
of Cnpµq of functions Z pzn, µq satisfying (2.14) modulo the subspace of Cnpµq n-point
modular functions Z pz1n, µq resulting from:

Z
`

z1n, µ
˘

“

lpgq
ÿ

l“1

n´1
ÿ

k“1

ÿ

mě0

fk,l,m
`

z1n, µ
˘

Tk,l,m. Z
`

z1n´1, µ
˘

. (2.15)

We assume that, subject to other fixed µ-parameters, n-point modular functions are
completely determined by all choices zn P Cn. Thus, the reduction cohomology can
be treated as depending on set of zn only with appropriate action of endomorphisms
generated by zn`1. Consider a non-vanishing solution Z pzn, µq to (2.14) for some zn.
Let us use the reduction formulas (2.4) recursively for each zi, 1 ď i ď n of zn in
order to express Z pzn, µq in terms of nul-point modular form Z pµq, i.e., we obtain

Z pzn, µq “ Dpzn, µqZ pµq , (2.16)

as in [MTZ]. It is clear that zi R Zi for 1 ď i ď n, i.e., at each stage of the recursion
procedure towards (2.16), otherwise Z pzn, µq would be zero. Thus, Z pzn, µq is ex-
plicitly known and is repsented as a series of auxiliary functions Dpznq depending on
moduli space parameters µ. Consider now Z pz1nq given by (2.15). It is either vanishes
when zn´i P Zn´i, 2 ď i ď n, or given by (2.16) with z1n arguments. The general idea
of deriving reduction formulas is to consider the double integration of Z pznq along
small circles around two auxiliary variables with the action of reproduction kernels
inserted. Then, these procedure leads to recursion formulas relating Zpzn`1, µq and
Zpzn, µq with functional coefficients depending on the nature of corresponding mod-
ular functions, and M . In [Y, MTZ] formulas to n-point modular functions in various
specific examples were explicitely and recursively obtained. In terms of zn`1, we are
able to transfer in (2.14) the action of Tk,l,m-operators into an analytical continuation
of Z pzn, µq multi-valued holomorphic functions to domains Dn Ă M with zi ‰ zj
for i ‰ j. Namely, in (2.14), the operators Tk,l,m shift the formal parameters zn by
zn`1, i.e., z1n “ zn`zn`1. Thus, the n-th reduction cohomology is given by the space
of analytical continuations of n-point modular functions Z pzn, µq with zn´1 R Zn´1

that are solutions of (2.14). �
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3. Appendix: Examples

The reduction cohomology depends on the kind of modular forms (via moduli
parameters which we denote µ) and genus of M . Modular functions we consider in
this section satisfy certain modular properties with respect to corresponding groups
[Zhu, MTZ, GT, TW]. As it was shown in [Miy, KMI, KMII], existence of reduction
formulas is related in some sense to modularity.

3.1. Rational case. In (cf., e.g., [Zhu]) we find for the rational case n-point func-
tions, the reduction formulas

Zpzn`1, µq “
n
ÿ

k“0

ÿ

mě0

fk,mpzn`1, zkq Tk,m. Zpzn, µq, (3.1)

where fk,mpz, wq is a rational function defined by

fn,mpz, wq “
z´n

m!

ˆ

d

dw

˙m
wn

z ´ w
,

ιz,wfn,mpz, wq “
ÿ

jPN

ˆ

n` j

m

˙

z´n´j´1wn`j´1.

Let us take zn`1 as the variable of expansion. Then the n-th reduction cohomology
Hnpµq is given by the space of rational functions recursively generated by (2.4) with
zn R Zn, satisfying (2.14) with rational function coefficients fk,mpzn`1, zkq, and mod-
ulo the space of n-point functions obtained by the recursion procedure, not given by
δn´1Zpzn´1, µq. It is possible to rewrite (2.14), in the form

˜

Bzn`1
`

n
ÿ

k“1

rf
p0q
k,mpzn`1, zkq

¸

Zpzn ` pzn`1qk, µq “ 0, (3.2)

which is an equation for an analytical continuation of Zpzn`pzn`1qk, µq with different

functions rfk,m. Using the reduction formulas (2.4) we obtain

Zpzn ` pzn`1qk, µq “ Dpzn`1, µq,

where Dpzn`1, µq is given by the series of rational-valued functions in zn`1 R Zn re-
sulting from the recursive procedure starting from n-point function to the partition
function. Thus, in this example, the n-th cohomology is the space of analytic ex-
tensions of rational function solutions to the equation (2.14) with rational function
coefficients.
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3.2. Modular and elliptic functions. For a variable x, set Dx “
1

2πiBx, and qx “

e2πix. Define for m P N “ t` P Z : ` ą 0u, the elliptic Weierstrass functions

P1pw, τq “ ´
ř

nPZzt0u
qnw

1´qn ´
1
2 , (3.3)

Pm`1pw, τq “
p´1qm

m! Dm
w pP1pw, τqq “

p´1qm`1

m!

ř

nPZzt0u
nmqnw
1´qn . (3.4)

Next, we have

Definition 6. The modular Eisenstein series Ekpτq, defined by Ek “ 0 for k for odd
and k ě 2 even

Ekpτq “ ´
Bk
k!
`

2

pk ´ 1q!

ÿ

ně1

nk´1qn

1´ qn
,

where Bk is the k-th Bernoulli number defined by

pez ´ 1q´1 “
ÿ

kě0

Bk
k!
zk´1.

It is convenient to define E0 “ ´1. Ek is a modular form for k ą 2 and a quasi-
modular form for k “ 2. Therefore,

Ekpγτq “ pcτ ` dq
kEkpτq ´ δk,2

cpcτ ` dq

2πi
.

Definition 7. For w, z P C, and τ P H let us define

rP1pw, z, τq “ ´
ÿ

nPZ

qnw
1´ qzqn

.

We also have

Definition 8.

rPm`1pw, z, τq “
p´1qm

m!
Dm
w

´

rP1pw, z, τq
¯

“
p´1qm`1

m!

ÿ

nPZ

nmqnw
1´ qzqn

. (3.5)

It is thus useful to give

Definition 9. For m P N0, let

Pm`1,λ pw, τq “
p´1qm`1

m!

ÿ

nPZzt´λu

nmqnw
1´ qn`λ

. (3.6)

On notes that
P1,λ pw, τq “ q´λw pP1pw, τq ` 1{2q,

with

Pm`1,λ pw, τq “
p´1qm

m!
Dm
w pP1,λ pw, τqq .

We also consider the expansion

P1,λpw, τq “
1

2πiw
´

ÿ

kě1

Ek,λpτqp2πiwq
k´1,
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where we find [Zag]

Ek,λpτq “
k
ÿ

j“0

λj

j!
Ek´jpτq. (3.7)

Definition 10. We define another generating set rEkpz, τq for k ě 1 together with
E2pτq given by [Ob]

rP1pw, z, τq “
1

2πiw
´

ÿ

kě1

rEkpz, τqp2πiwq
k´1, (3.8)

where we find that for k ě 1,

rEkpz, τq “ ´ δk,1
qz

qz ´ 1
´
Bk
k!
`

1

pk ´ 1q!

ÿ

m,ně1

`

nk´1qmz ` p´1qknk´1q´mz
˘

qmn,

(3.9)

and rE0pz, τq “ ´1.

3.3. Elliptic case. Let q “ e2πiτ , qi “ ezi , where τ is the torus modular parameter.
Then the genus one Zhu recursion formula is given by the following [Zhu]

Zpzn`1, µ, τq “ Z pzn, µ0, τq `
n
ÿ

k“1

ÿ

mě0

Pm`1pzn`1 ´ zk, τq Zpzn, µk,m, τq. (3.10)

Here Pmpz, τq denote higher Weierstrass functions defined by

Pmpz, τq “
p´1qm

pm´ 1q!

ÿ

nPZ‰0

nm´1qnz
1´ qn

.

3.4. Case of deformed elliptic functions. Let wn`1 P R and define φ P Up1q by

φ “ expp2πi wn`1q. (3.11)

For some θ P Up1q, we obtain the following generalization of Zhu’s Proposition 4.3.2
[Zhu] for the n-point function [MTZ]:

Theorem 1. Let θ and φ be as as above. Then for any zn P C
n we have

Z pxn`1, µ, τq “ δθ,1δφ,1Z pxn, µ0, τq

`

n
ÿ

k“1
mě0

ppn, kq Pm`1

„

θ
φ



pzn`1 ´ zk, τq Zpzn;µk,m, τq.(3.12)

The deformed Weierstrass function is defined as follows [MTZ]. Let pθ, φq P Up1qˆ
Up1q denote a pair of modulus one complex parameters with φ “ expp2πiλq for
0 ď λ ă 1. For z P C and τ P H we define deformed Weierstrass functions for k ě 1,

Pk

„

θ
φ



pz, τq “
p´1qk

pk ´ 1q!

1
ÿ

nPZ`λ

nk´1qnz
1´ θ´1qn

,

for q “ q2πiτ where
1
ř

means we omit n “ 0 if pθ, φq “ p1, 1q.



COHOMOLOGY OF MODULAR FORM CONNECTIONS ON COMPLEX CURVES 9

3.5. Reduction formulas for Jacobi n-point functions. In this subsection we
recall the reduction formulas derived in [MTZ, BKT]. For α P C, we now provide the
following reduction formula for formal Jacobi n-point functions.

Proposition 2. Let zn`1 P Cn`1, α P C. For αz R Zτ ` Z, we have

Z pzn`1, µ, τq “
n
ÿ

k“1

ÿ

mě0

rPm`1

ˆ

zn`1 ´ zk
2πi

, αz, τ

˙

Z pzn, µk,m, τq . (3.13)

Recall the definition of rP .

Proposition 3. For αz “ λτ ` µ P Zτ ` Z, we have

Z pzn`1, µ, τq

“ e´zn`1λZ pzn, µ0,λ, τq `
n
ÿ

k“1

ÿ

mě0

Pm`1,λ

ˆ

zn`1 ´ zk
2πi

, τ

˙

Z pzn, µk,m, τq ,

(3.14)

with Pm`1,λ pw, τq defined in (3.6).

Next we provide the reduction formula for Jacobi n-point functions.

Proposition 4. For l ě 1 and αz R Zτ ` Z, we have

Z pzn`1q, µ1,´l, τq

“
ÿ

mě0

p´1qm`1

ˆ

m` l ´ 1

m

˙

rGm`lpαz, τqZ pzn;µ1,mτq

`

n
ÿ

k“2

ÿ

mě0

p´1ql`1

ˆ

m` l ´ 1

m

˙

rPm`l

ˆ

z1 ´ zk
2πi

, αz, τ

˙

Z pzn, µk,m, τq . (3.15)

Propositions 3 and 4 imply the next result [BKT]:

Proposition 5. For l ě 1 and αz “ λτ ` µ P Zτ ` Z, we have

Z pzn`1, µ1,´lq;Bq

“ p´1ql`1 λl´1

pl ´ 1q!
Z pzn`1, µ0,´1, τq

`
ÿ

mě0

p´1qm`1

ˆ

m` l ´ 1

m

˙

Em`l,λpτq Z pzn, µ1,m, τq

`

n
ÿ

k“2

ÿ

mě0

p´1ql`1

ˆ

m` l ´ 1

m

˙

Pm`l,λ

ˆ

x1 ´ xk
2πi

, τ

˙

Z pzn, µk,m, τq ,

for Ek,λ given in (3.7).
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3.6. Multiparameter Jacobi forms. For multiparameter Jacobi forms [EZ, Zag,
KMI, KMII, BKT], the reduction formulas are found using an analysis that is similar
to that in [Zhu, MTZ]. The following two lemmas reduce any n-point multiparameter
Jacobi function to a linear combination of pn´1q-point Jacobi functions with modular
coefficients.

Lemma 2. For each 1 ď j ď m we have

Zpzn`1, µ, τq

“ δzn¨pαqn,Z Zpzn, pαqn, µpmqq (3.16)

`

n
ÿ

s“1

ÿ

kě0

P̃k`1pzs ´ z, zn ¨ pαnq, τq Zpzn, µs,kτq,

where δz¨pµqn,Z is 1 if zn ¨ pµqn P Z and is 0 otherwise.

Lemma 3. Let the assumptions be the same as in the previous lemma. Then for
p ě 1,

Zpzn`1, µ1,´p, τq

“ δzn¨pαqn,Z δp,1 Zpzn, µ0, τq

` p´1qp`1
ÿ

kě0

ˆ

k ` p´ 1

p´ 1

˙

Ẽk`ppτ, zn ¨ pαqnq Zpzn, µ1,k, τq

` p´1qp`1
n
ÿ

s“2

ÿ

kě0

ˆ

k ` p´ 1

p´ 1

˙

P̃k`ppzs ´ z1, τ, zn ¨ pαqnq Zpznµs,k, τq.

Remark 3. The difference of a minus sign between these equations and those found
in [MTZ] can be attributed to the minus sign difference in our definitions of the
functions Pk

“

ζ
1

‰

pw, τq and the action of SL2pZq.

3.7. Genus two counterparts of Weierstrass functions. In this subsection we
recall the definition of genus two Weierstrass functions [GT]. For m, n ě 1, we first
define a number of infinite matrices and row and column vectors:

Γpm,nq “ δm,´n`2p´2,

∆pm,nq “ δm,n`2p´2. (3.17)

We also define the projection matrix

Π “ Γ2 “

«

12p´1 0

0
. . .

ff

, (3.18)

where Id2p´3 denotes the 2p ´ 3 dimensional identity matrix and Id´1 “ 0. Let Λa
for a P t1, 2u be the matrix with components

Λapm,n; τa, εq “ εpm`nq{2p´1qn`1

ˆ

m` n´ 1

n

˙

Em`npτaq. (3.19)

Note that

Λa “ SAaS
´1, (3.20)



COHOMOLOGY OF MODULAR FORM CONNECTIONS ON COMPLEX CURVES 11

for Aa given by

Aa “ Aapk, l, τa, εq “
p´1qk`1εpk`lq{2

?
kl

pk ` l ´ 1q!

pk ´ 1q!pl ´ 1q!
Ek`lpτaq.

introduce the infinite dimensional matrices for S a diagonal matrix with components

Spm,nq “
?
mδmn. (3.21)

Let Rpxq for x on the torus be the row vector with components

Rpx;mq “ ε
m
2 Pm`1px, τaq, (3.22)

for a P t1, 2u. Let Xa be the column vector with components

X1pmq “ X1 pm; zn`1, zn;µq

“ ε´m{2
ÿ

uPV

Z pzk, µk,m, τ1q Z
`

xk`1,n, µ
1, τ2

˘

,

X2pmq “ X2 pm; zn`1, zn;µq

“ ε´m{2
ÿ

uPV

Z pxk, µ, τ1qZ pxn´k, µn´k,m, τ2q . (3.23)

Introduce also Qpp;xq an infinite row vector defined by

Qpp;xq “ Rpxq∆
´

1´ rΛarΛa

¯´1

, (3.24)

for x on the torus. Notice that
rΛa “ Λa∆.

One introduces

Pj`1pxq “
p´1qj

j!
P1pxq,

and j ě 0, is the column with components

Pj`1px;mq “ ε
m
2

ˆ

m` j ´ 1

j

˙

pPj`mpx, τaq ´ δj0Empτaqq . (3.25)

Definition 11. One defines

P1pp;x, yq “ P1pp;x, y; τ1, τ2, εq,

for p ě 1 by

P1pp;x, yq “ P1px´ y, τaq ´ P1px, τaq

´ Qpp;xqrΛa P1pyq ´ p1´ δp1q pQpp;xqΛaq p2p´ 2q,

for x, y on the torus, and

P1pp;x, yq “ p´1qp`1
”

Qpp;xqP1pyq ` p1´ δp1qε
p´1P2p´1pxq

` p1´ δp1q
´

Qpp;xqrΛaΛa

¯

p2p´ 2q
ı

,

for x and y on two torai.
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For j ą 0, define

Pj`1pp;x, yq “
1

j!
Bjy pP1pp;x, yqq ,

Pj`1pp;x, yq “ δa,āPj`1px´ yq ` p´1qj`1.Qpp;xq
´

rΛa

¯δa,ā

Pj`1pyq. (3.26)

Definition 12. One calls Pj`1pp;x, yq the genus two generalized Weierstrass func-
tions.

3.8. Genus two case. In this subsection we recall [GT] the construction and reduc-
tion formulas for modular funcitons defined on genus two complex curve. In particular,
we use the geometric construction developed in [Y].

Definition 13. For a complex parameter ε “ z1z2, the null-point modular form is
defined on a genus two complex curve by

Z pµq “
ÿ

rě0

εrZpz1, µ1τ1q Zpz2, µ2, τ2q, (3.27)

where parameters µ1 and µ2 are related.

We then recall [GT] the formal genus two reduction formulas for n-point modular
functions.

Definition 14. Let xn`1, yk and y1l be inserted on two torai. We consider the genus
two n-point modular function

Z
`

zn`1, zk; z1l, µq
˘

“
ÿ

rě0

εrZ pzn`1,xk, µ1, τ1q Z
`

x1l, µ2, τ2
˘

, (3.28)

where the sum as in (3.27).

First, one defines the functions Zn,a for a P t1, 2u, via elliptic quasi-modular forms

Zn,1 pzn`1;µq “
ÿ

rě0

εrZpzn`1, zkµ0, τq Zn´k
`

xk`1,n, µ
1, τ2

˘

,

Zn,2 pzn`1;µq “
ÿ

rě0

εrZk
`

xk, µ
1, τ1

˘

Z pzn`1q, zk`1,nq ,

Zn,3 pzn`1;µq “ XΠ
1 ,

of (3.23). We also define

Definition 15. Let f
p2q
a pp; zn`1q, for p ě 1, and a “ 1, 2 be given by

f p2qa pp; zn`1q “ 1δba ` p´1qpδbaε1{2
ˆ

Qpp; zn`1q

´

rΛa

¯δba
˙

p1q, (3.29)

for zn`1 P pΣ
p1q
b . Let f

p2q
3 pp; zn`1q, for zn`1 P Σ

p1q
a be an infinite row vector given by

f
p2q
3 pp; zn`1q “

´

Rpzn`1q `Qpp; zn`1q

´

rΛaΛa ` ΛaΓ
¯¯

Π. (3.30)
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In [GT] it is proven that the genus two n “ k ` l-point function inserted at xn´k,
yk on two torai has the following reduction formula

Zpxn`1, µq “

3
ÿ

l“1

flpp; zn`1q Zn,l pzn`1;µq ,

“

n
ÿ

i“1

ÿ

jě0

Pj`1pp; zn`1, ziq Z pzn;µi,jq , (3.31)

where p is some parameter. with Pj`1pp;x, yq of (3.26).

3.9. Genus g generalizations of elliptic functions. For purposes of the formula
(3.54) we recall here certain definitions [TW]. Define a column vector

X “ pXapmqq,

indexed by m ě 0 and a P I with components

Xapmq “ ρ
´m

2
a

ÿ

µa,m

Zp. . . ;wa, µa,m; . . .q, (3.32)

and a row vector

ppxq “ ppapx,mqq,

for m ě 0, a P I with components

papx,mq “ ρ
m
2
a B

p0,mqψp0qp px,waq. (3.33)

Introduce the column vector

G “ pGapmqq,

for m ě 0, a P I, given by

G “
n
ÿ

k“1

ÿ

jě0

B
pjq
k qpykq Zpzn, µk,jq,

where qpyq “ pqapy;mqq, for m ě 0, a P I, is a column vector with components

qapy;mq “ p´1qpρ
m`1

2
a Bpm,0qψp0qp pw´a, yq, (3.34)

and

R “ pRabpm,nqq,

for m, n ě 0 and a, b P I is a doubly indexed matrix with components

Rabpm,nq “

$

&

%

p´1qpρ
m`1

2
a ρ

n
2

b B
pm,nqψ

p0q
p pw´a, wbq, a ‰ ´b,

p´1qpρ
m`n`1

2
a Enmpw´aq, a “ ´b,

(3.35)

where

Enmpyq “
2p´2
ÿ

`“0

Bpmqf`pyq B
pnqy`, (3.36)
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ψp0qp px, yq “
1

x´ y
`

2p´2
ÿ

`“0

f`pxqy
`, (3.37)

for any Laurent series f`pxq for ` “ 0, . . . , 2p ´ 2. Define the doubly indexed matrix
∆ “ p∆abpm,nqq by

∆abpm,nq “ δm,n`2p´1δab. (3.38)

Denote by
rR “ R∆,

and the formal inverse pI ´ rRq´1 is given by
´

I ´ rR
¯´1

“
ÿ

kě0

rR k. (3.39)

Define χpxq “ pχapx; `qq and

opyk, µ0q “ poapyk;µ0, `qq,

are finite row and column vectors indexed by a P I, 0 ď ` ď 2p´ 2 with

χapx; `q “ ρ
´ `

2
a pppxq ` rppxqpI ´ rRq´1Rqap`q, (3.40)

oap`q “ oapyk, µ0, `q “ ρ
`
2
aXap`q, (3.41)

and where

rppxq “ ppxq∆.

ψppx, yq is defined by

ψppx, yq “ ψp0qp px, yq ` rppxqpI ´ rRq´1qpyq. (3.42)

For each a P I` we define a vector

θapxq “ pθapx; `qq,

indexed by 0 ď ` ď 2p´ 2 with components

θapx; `q “ χapx; `q ` p´1qpρp´1´`
a χ´apx; 2p´ 2´ `q. (3.43)

Now define the following vectors of formal differential forms

P pxq “ ppxq dxp,

Qpyq “ qpyq dy1´p, (3.44)

with
rP pxq “ P pxq∆.

Then with

Ψppx, yq “ ψppx, yq dx
p dy1´p, (3.45)

we have

Ψppx, yq “ Ψp0qp px, yq `
rP pxqpI ´ rRq´1Qpyq. (3.46)

Defining

Θapx; `q “ θapx; `q dxp, (3.47)
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and

Oapyk, µ0, `q “ oapyk, µ0, `q dy
β
k , (3.48)

for some parameter β.

3.10. Genus g Schottky case. In this subsection we recall [TW, T2] the construc-
tion and reduction relations for n-point modular functions defined on a genus g Rie-
mann surface M formed in the Schottky parameterization. All expressions here are
functions of formal variables w˘a, ρa P C. Then we recall the genus g reduction for-
mula with universal coefficients that have a geometrical meaning and are meromorphic
on M . These coefficients are generalizations of the elliptic Weierstrass functions [L].
For a 2g local coordinates

w2g “ pw´1, w1; . . . ;w´g, wgq,

of 2g points pp´1, p1; . . . ; p´g, pgq on the Riemann sphere, consider the genus zero
2g-point function

Zpw2g, µq “Zpw´1, w1; . . . ;w´g, wg, µq

“
ź

aPI`

ρβa
a Zpw´1, w1; . . . ;w´g, wg, µq,

where I` “ t1, 2, . . . , gu, and βa are certain parameters related to µ. Let us denote

z` “ pz1, . . . , zgq,

z´ “ pz´1, . . . , z´gq.

Let wa for a P I be 2g formal variables. One identify them with the canonical Schottky
parameters (for details of the Schottky construction, see [TW, T2]). One can define
the genus g null-point modular function as

Z “ pw2g,ρ2g, µq “
ÿ

z`

Zpz2g,w2g, µq, (3.49)

for

pw2g,ρ2gq “ pw˘1, ρ1; . . . ;w˘g, ρgq.

Now we recall the formal reduction formulas for all genus g Schottky n-point functions.
One defines the genus g formal n-point modular function for yn by

Zpyn, µq “ Zpyn;w2g,ρ2g, µq “
ÿ

z`

Zpyn;w2g, µq, (3.50)

where

Zpyn;w2g, µq “ Zpyn;w´1,g, µq.

Zpyn, µq “
ÿ

z`Pαg

Zpyn;w2g, µq, (3.51)

where here the sum is over a basis α. It follows that

Zpyn, µq “
ÿ

αgPA

Zpgqαg
pyn, µq, (3.52)



16 A. ZUEVSKY

where the sum ranges over α “ pα1, . . . , αgq P A, for A “ Abg. Finally, one defines
corresponding formal n-point correlation differential forms

Zpyn, µq “ Zpyn, µq dyβn ,

Zαg
pyn, µq “ Zαpyn, µq dyβn , (3.53)

where

dyβn “
n
ź

k“1

dyβk

k .

In [TW] they prove that the genus g pn`1q-point formal modular differential Zpx;y, µq,
for xn`1, and point p0, with the coordinate yn`1, and pn with coordinates yn satisfies
the recursive identity for zn “ pyq

Z pxn`1, zn, µq “

g
ÿ

a“1

Θapyn`1q O
Wα
a pzn`1; znq

“

n
ÿ

k“1

ÿ

jě0

Bp0,jq Ψppyn`1, ykq Z pxn, µk,jq dy
j
k

Here Bp0,jq is given by
Bpi,jqfpx, yq “ Bpiqx B

pjq
y fpx, yq,

for a function fpx, yq, and Bp0,jq denotes partial derivatives with respect to x and yj .

The forms Ψppyn`1, ykq dy
j
k given by (3.45), Θapxq is of (3.47), and OWαa pzn`1, zn, µq

of (3.48).
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