1. Introduction
2. Data and Methods
2.1. SSW Parameters and Geomagnetic Situation
2.2. Digisonde Derived Parameters
2.3. Maps of TEC and Rate of TEC Index (ROTI)
3. Results
3.1. SSW 2009 (19 January—Early March)
3.2. SSW 2018 (9 February—3 March)
3.3. SSW 2018/2019 (18 December 2018–29 January 2019)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Directograms
Appendix B. TEC Maps
Appendix C. Peak Height of E Layer
References
- Schwenn, R. Space weather: The solar perspective. Living Rev. Sol. Phys. 2006, 3, 2. [Google Scholar] [CrossRef]
- Laštovička, J. Forcing of the ionosphere by waves from below. J. Atmos. Sol.-Terr. Phys. 2016, 68, 479–497. [Google Scholar] [CrossRef]
- Yigit, E.; Koucká Knížová, P.; Georgieva, K.; Ward, W. A review of vertical coupling in the atmosphere-ionosphere system: Effects of waves; sudden stratospheric warmings; space weather; and of solar activity. J. Atmos. Sol.-Terr. Phys. 2016, 141, 1–12. [Google Scholar] [CrossRef]
- Yiğit, E.; Medvedev, A.S. Role of gravity waves in vertical coupling during sudden stratospheric warmings. Geosci. Lett. 2016, 3, 1–13. [Google Scholar] [CrossRef]
- Butler, A.H.; Seidel, D.J.; Hardiman, S.C.; Butchart, N.; Birner, T.; Match, A. Defining Sudden Stratospheric Warmings. B. Am. Meteorol. Soc. 2015, 96, 1913–1928. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Ayarzagüena, B.; Birner, T.; Butchart, N.; Butler, A.H.; Charlton-Perez, A.J.; Domeisen, D.I.V.; Garfinkel, C.I.; Garny, H.; Gerber, E.P.; et al. Sudden stratospheric warmings. Rev. Geophys. 2021, 59, 1–37. [Google Scholar] [CrossRef]
- Laštovička, J.; de la Morena, B.A. The response of the lower ionosphere in Central and Southern Europe to anomalous stratospheric conditions. Phys. Scripta. 1987, 35, 902–905. [Google Scholar]
- Fejer, B.G.; Olson, M.E.; Chau, J.L.; Stolle, C.; Lühr, H.; Goncharenko, L.P.; Yumoto, K.; Nagatsuma, T. Lunar dependent equatorial ionospheric electrodynamic effects during sudden stratospheric warmings. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Goncharenko, L.P.; Chau, J.L.; Liu, H.L.; Coster, A.J. Unexpected connections between the stratosphere and ionosphere. Geophys. Res. Lett. 2010, 37, 1–6. [Google Scholar] [CrossRef]
- Patra, A.K.; Pavan Chaitanya, P.; Sripathi, S.; Alex, S. Ionospheric variability over Indian low latitude linked with the 2009 sudden stratospheric warming. J. Geophys. Res. Space Physics 2014, 119, 4044–4061. [Google Scholar] [CrossRef]
- Chau, J.L.; Goncharenko, L.P.; Fejer, B.G.; Liu, H.L. Equatorial and low latitude ionospheric effects during sudden stratospheric warming events. Space Sci. Rev. 2012, 168, 385–417. [Google Scholar] [CrossRef]
- Fang, T.W.; Fuller Rowell, T.; Akmaev, R.; Wu, F.; Wang, H.; Anderson, D. Longitudinal variation of ionospheric vertical drifts during the 2009 sudden stratospheric warming. J. Geophys. Res. 2012, 117, A03324. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, D.H.; Hao, Y.Q.; Xiao, Z. The comparison of lunar tidal characteristics in the low-latitudinal ionosphere between East Asian and American sectors during stratospheric sudden warming events. J. Geophys. Res. Space Phys. 2019, 124, 7013–7033. [Google Scholar] [CrossRef]
- De Jesus, R.; Batista, I.S.; Jonah, O.F.; Abreu, A.J.; Fagundes, P.R.; Venkatesh, K.; Denardini, C.M. An investigation of the ionospheric disturbances due to the 2014 sudden stratospheric warming events over Brazilian sector. J. Geophys. Res. Space. Phys. 2017, 122, 11,698–11,715. [Google Scholar] [CrossRef]
- De Jesus, R.; Batista, I.S.; de Abreu, A.J.; Fagundes, P.R.; Venkatesh, K.; Denardini, C.M. Observed effects in the equatorial and low-latitude ionosphere in the South American and African sectors during the 2012 minor sudden stratospheric warming. J. Atmos. Sol. Terr. Phys. 2017, 157–158, 78–89. [Google Scholar] [CrossRef]
- Vieira, F.; Fagundes, P.R.; Venkatesh, K.; Goncharenko, L.P.; Pillat, V.G. Total electron content disturbances during minor sudden stratospheric warming; over the Brazilian region: A case study during January 2012. J. Geophys. Res. Space. Phys. 2017, 122, 2119–2135. [Google Scholar] [CrossRef]
- Liu, H.; Doornbos, E.; Yamamoto, M.; Tulasi Ram, S. Strong thermospheric cooling during the 2009 major stratosphere warming. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Siddiqui, T.A.; Yamazaki, Y.; Stolle, C.; Lühr, H.; Matzka, J.; Maute, A.; Pedatella, N. Dependence of lunar tide of the equatorial electrojet on the wintertime polar vortex, solar flux, and QBO. Geophys. Res. Lett. 2018, 45, 3801–3810. [Google Scholar] [CrossRef]
- Yadav, S.; Vineeth, C.; Kumar, K.K.; Choudhary, R.K.; Pant, T.K.; Sunda, S. The role of the phase of QBO in modulating the influence of the SSW effect on the equatorial ionosphere. J. Geophys. Res. Space Phys. 2019, 124, 6047–6063. [Google Scholar] [CrossRef]
- Forbes, J.M.; Zhang, X. Lunar tide amplification during the January 2009 stratosphere warming event: Observations and theory. J. Geophys. Res. 2012, 117, A12312. [Google Scholar] [CrossRef]
- Sridharan, S. Variabilities of low-latitude migrating and non-migrating tides in GPS-TEC and TIMED-SABER temperatures during the sudden stratospheric warming event of 2013. J. Geophys. Res. Space Phys. 2017, 122, 10748–10761. [Google Scholar] [CrossRef]
- Pedatella, N.M.; Liu, H.L. The influence of atmospheric tide and planetary wave variability during sudden stratosphere warmings on the low latitude ionosphere. J. Geophys. Res. Space Phys. 2013, 118, 5333–5347. [Google Scholar] [CrossRef]
- Pedatella, N.M. Impact of the lower atmosphere on the ionosphere response to a geomagnetic superstorm. Geophys. Res. Lett. 2016, 43, 9383–9389. [Google Scholar] [CrossRef]
- Klimenko, M.V.; Klimenko, V.V.; Bessarab, F.S.; Sukhodolov, T.V.; Vasilev, P.A.; Karpov, I.V.; Korenkov, Y.N.; Zakharenkova, I.E.; Funke, B.; Rozanov, E.V. Identification of the mechanisms responsible for anomalies in the tropical lower thermosphere/ionosphere caused by the January 2009 sudden stratospheric warming. J. Space Weather Space Clim. 2019, 9. [Google Scholar] [CrossRef]
- Korenkov, Y.N.; Klimenko, V.V.; Klimenko, M.V.; Bessarab, F.S.; Korenkova, N.A.; Ratovsky, K.G.; Chernigovskaya, M.A.; Shcherbakov, A.A.; Sahai, Y.; Fagundes, P.R.; et al. The global thermospheric and ionospheric response to the 2008 minor sudden stratospheric warming event. J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef]
- Liu, G.; Huang, W.; Shen, H.; Aa, E.; Li, M.; Liu, S.; Luo, B. Ionospheric response to the 2018 sudden stratospheric warming event at middle- and low-latitude stations over China sector. Space Weather 2019, 17, 1230–1240. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Matthias, V.; Miyoshi, Y.; Stolle, C.; Siddiqui, T.; Kervalishvili, G.; Laštovička, J.; Kozubek, M.; Ward, W.; Themens, D.R.; et al. September 2019 Antarctic sudden stratospheric warming: Quasi-6-day wave burst and ionospheric effects. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef]
- Goncharenko, L.P.; Harvey, V.L.; Greer, K.R.; Zhang, S.R.; Coster, A.J. Longitudinally dependent low-latitude ionospheric disturbances linked to the Antarctic sudden stratospheric warming of September 2019. J. Geophys. Res. Space Phys. 2020, 125. [Google Scholar] [CrossRef]
- Goncharenko, L.P.; Hsu, V.W.; Brum, C.G.M.; Zhang, S.R.; Fentzke, J.T. Wave signatures in the midlatitude ionosphere during a sudden stratospheric warming of January 2010. J. Geophys. Res. Space Phys. 2013, 118, 472–487. [Google Scholar] [CrossRef]
- Polyakova, A.S.; Chernigovskaya, M.A.; Perevalova, N.P. Ionospheric effects of sudden stratospheric warmings in eastern Siberia region. J. Atmos. Sol.-Terr. Phys. 2014, 120, 15–23. [Google Scholar] [CrossRef]
- Xiong, J.; Wan, W.; Ding, F.; Liu, L.; Ning, B.; Niu, X. Coupling between mesosphere and ionosphere over Beijing through semidiurnal tides during the 2009 sudden stratospheric warming. J. Geophys. Res. Space Phys. 2013, 118, 2511–2521. [Google Scholar] [CrossRef]
- Medvedeva, I.; Ratovsky, K. Effects of the 2016 February minor sudden stratospheric warming on the MLT and ionosphere over Eastern Siberia. J. Atmos. Sol.-Terr. Phys. 2018, 180, 116–125. [Google Scholar] [CrossRef]
- Goncharenko, L.P.; Coster, A.J.; Zhang, S.R.; Erickson, P.J.; Benkovitch, L.; Aponte, N.; Harvey, V.L.; Reinisch, B.W.; Galkin, I.; Spraggs, M.; et al. Deep ionospheric hole created by sudden stratospheric warming in the nighttime ionosphere. J. Geophys. Res. Space Phys. 2018, 123, 7621–7633. [Google Scholar] [CrossRef]
- Pedatella, N.M.; Maute, A. Impact of the semidiurnal lunar tide on the midlatitude thermospheric wind and ionosphere during sudden stratosphere warmings. J. Geophys. Res. Space Phys. 2015, 120, 10,740–10,753. [Google Scholar] [CrossRef]
- Yasyukevich, A.S. Variations of ionospheric peak electron density during sudden stratospheric warmings in the Arctic region. J. Geophys. Res. Space Phys. 2018, 123, 3027–3038. [Google Scholar] [CrossRef]
- Bessarab, F.S.; Korenkov, Y.N.; Klimenko, M.V.; Klimenko, V.V.; Karpov, I.V.; Ratovsky, K.G.; Chernigovskaya, M.A. Modeling the effect of sudden stratospheric warming within the thermosphere–ionosphere system. J. Atmos. Sol.-Terr. Phys. 2012, 90, 77–85. [Google Scholar] [CrossRef]
- Pancheva, D.; Mukhtarov, P. Stratospheric warmings: The atmosphere–ionosphere coupling paradigm. J. Atmos. Sol. Terr. Phys. 2011, 73, 1697–1702. [Google Scholar] [CrossRef]
- Shpynev, B.G.; Kurkin, V.I.; Ratovsky, K.G.; Chernigovskaya, M.A.; Belinskaya, A.Y.; Grigorieva, S.A.; Stepanov, A.E.; Bychkov, V.V.; Pancheva, D.; Mukhtarov, P. High-midlatitude ionosphere response to major stratospheric warming. Earth Planets Space 2015, 67, 1–10. [Google Scholar] [CrossRef]
- Prölss, G.W. Physics of the Earth’s Space Environment; Springer: Berlin, Germany, 2004; pp. 1–513. [Google Scholar]
- Mikhailov, A.V.; Forster, M.; Skoblin, M.G. Neutral gas composition changes and ExB vertical plasma drift contribution to the daytime equatorial F2-region storm effects. Ann. Geophys. 1994, 12, 226–231. [Google Scholar] [CrossRef]
- Ratovsky, K.G.; Klimenko, M.V.; Yasyukevich, Y.V.; Klimenko, V.V.; Vesnin, A.M. Statistical analysis and interpretation of high-, mid-and low-latitude responses in regional electron content to geomagnetic storms. Atmosphere 2020, 11, 1308. [Google Scholar] [CrossRef]
- Danilov, A.D. Ionospheric F-region response to geomagnetic disturbances. Adv. Space Res. 2013, 52, 343–366. [Google Scholar] [CrossRef]
- Maruyama, N.; Richmond, A.D.; Fuller-Rowell, T.J.; Codrescu, M.V.; Sazykin, S.; Toffoletto, F.R.; Spiro, R.W.; Millward, G.H. Interaction between direct penetration and disturbance dynamo electric fields in the storm-time equatorial ionosphere. Geophys. Res. Lett. 2005, 32, L17105. [Google Scholar] [CrossRef]
- Sun, S.J.; Ban, P.P.; Chen, C.; Xu, Z.W.; Zhao, Z.W. On the vertical drift of ionospheric F layer during disturbance time: Results from ionosondes. J. Geophys. Res. 2012, 117, A01303. [Google Scholar] [CrossRef]
- McInturff, R.M. Stratospheric Warmings: Synoptic; Dynamic and General-Circulation Aspects. Available online: https://ntrs.nasa.gov/api/citations/19780010687/downloads/19780010687.pdf (accessed on 4 May 2021).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. Roy. Met. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Rao, J.; Ren, R.; Chen, H.; Yu, Y.; Zhou, Y. The stratospheric sudden warming event in February 2018 and its prediction by a climate system model. J. Geophys. Res. Atmos. 2018, 123, 13,332–13,345. [Google Scholar] [CrossRef]
- Karpechko, A.Y.; Charlton-Perez, A.; Balmaseda, M.; Tyrrell, N.; Vitart, F. Predicting sudden stratospheric warming 2018 and its climate impacts with a multimodel ensemble. Geophys. Res. Lett. 2018, 45, 13,538–13,546. [Google Scholar] [CrossRef]
- Manney, G.L.; Schwartz, M.J.; Krüger, K.; Santee, M.L.; Pawson, S.; Lee, J.N.; Daffer, W.H.; Fuller, R.A.; Livesey, N.J. Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Oberheide, J.; Pedatella, N.M.; Gan, Q.; Kumari, K.; Burns, A.G.; Eastes, R. Thermospheric composition O/N2 response to an altered meridional mean circulation during Sudden Stratospheric Warming. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef]
- Reinisch, B.; Huang, X.; Galkin, I.; Paznukhov, V.; Kozlov, A. Recent advances in real-time analysis of ionograms and ionospheric drift measurements with Digisondes. J. Atmos. Sol.-Terr. Phys. 2005, 67, 1054–1062. [Google Scholar] [CrossRef]
- Kouba, D.; Koucká Knížová, P. Analysis of Digisonde drift measurements quality. J. Atmos. Sol.-Terr. Phys. 2012, 90–91, 212–221. [Google Scholar] [CrossRef]
- Koucká Knížová, P.; Podolská, K.; Potužníková, K.; Kouba, D.; Mošna, Z.; Boška, J.; Kozubek, M. Evidence of vertical coupling: Meteorological storm Fabienne on 23 September 2018 and its related effects observed up to the ionosphere. Ann. Geophys. 2020, 38, 73–93. [Google Scholar] [CrossRef]
- Kouba, D.; Koucká Knížová, P. Ionospheric vertical drift response at a mid-latitude station. Adv. Space Res. 2016, 58, 108–116. [Google Scholar] [CrossRef]
- Davies, K. Ionospheric Radio; Peter Peregrinus Ltd.: London, UK, 1990. [Google Scholar]
- Cherniak, I.; Krankowski, A.; Zakharenkova, I. ROTI Maps: A new IGS ionospheric product characterizing the ionospheric irregularities occurrence. GPS Solut. 2018, 22, 69. [Google Scholar] [CrossRef]
- Liu, H.L.; Bardeen, C.G.; Foster, B.T.; Lauritzen, P.; Liu, J.; Lu, G.; Marsh, D.R.; Maute, A.; McInerney, J.M.; Pedatella, N.M.; et al. Development and validation of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM-X 2.0). J. Adv. Model Earth Syst. 2018, 10, 381–402. [Google Scholar] [CrossRef]
- Siddiqui, T.A.; Yamazaki, Y.; Stolle, C.; Maute, A.; Lastovicka, J.; Edemskiy, I.K.; Mosna, Z. Understanding the total electron content variability over Europe during 2009 and 2019 SSWs. J. Geophys. Res. Space Phys. 2021, In submitted.
- Buresova, D.; Lastovicka, J.; Hejda, P.; Bochnicek, J. Ionospheric disturbances under low solar activity conditions. Adv. Space Res. 2014, 54, 185–196. [Google Scholar] [CrossRef]
- Klimenko, M.V.; Klimenko, V.V.; Zakharenkova, I.E.; Ratovsky, K.G.; Korenkova, N.A.; Yasyukevich, Y.V.; Mylnikova, A.A.; Cherniak, I.V. Similarity and differences in morphology and mechanisms of the foF2 and TEC disturbances during the geomagnetic storms on 26–30 September 2011. Ann. Geophys. 2017, 35, 923–938. [Google Scholar] [CrossRef]
- Polekh, N.M.; Chernigovskaya, M.A.; Yakovleva, O.A. On the formation of the F1 layer during sudden stratospheric warming events. Sol. Terr. Phys. 2019, 5, 117–127. [Google Scholar]
- Kozubek, M.; Krizan, P.; Lastovicka, J. Homogeneity of the Temperature Data Series from ERA5 and MERRA2 and Temperature Trends. Atmosphere. 2020, 11, 235. [Google Scholar] [CrossRef]
- Roux, S.G.; Koucká Knížová, P.; Mošna, Z.; Abry, P. Ionosphere fluctuations and global indices: A scale dependent wavelet-based cross-correlation analysis. J. Atmos. Sol.-Terr. Phys. 2012, 90–91, 186–197. [Google Scholar] [CrossRef]
- Bowman, G.G. The nature of ionospheric spread-F irregularities in mid-latitude regions. J. Atmos. Terr. Phys. 1981, 43, 65–79. [Google Scholar] [CrossRef]
- Bencze, P.; Bakki, P. On the origin of mid-latitude spread-F. Acta Geod. Geoph. Hung. 2002, 37, 409–417. [Google Scholar] [CrossRef]
- Yu, S.; Xiao, Z.; Aa, E.; Hao, Y.; Zhang, D. Observational investigation of the possible correlation between medium-scale TIDs and mid-latitude spread F. Adv. Space Res. 2016, 58, 349–357. [Google Scholar] [CrossRef]
- Koucká Knížová, P.; Laštovička, J.; Kouba, D.; Mošna, Z.; Podolská, K.; Potužníková, K.; Šindelářová, T.; Chum, J.; Rusz, J. Ionosphere Influenced From Lower-Lying Atmospheric Regions. Front. Astron. Space Sci. 2021, 8, 651445. [Google Scholar] [CrossRef]
- Buonsanto, M.J. Ionospheric Storms: A Review. Space Sci. Rev. 1999, 88, 563–601. [Google Scholar] [CrossRef]
Start Date | Tmax (K) | Date of Tmax | End date | Type |
---|---|---|---|---|
19 January 2009 | 270 | 23 January 2009 | Early March 2009 | Split |
9 February 2018 | 244 | 17 February 2018 | 3 March 2018 | Split |
18 December 2018 | 265 | 28 December 2018 | 29 January 2019 | Split |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).