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FORMAL SERIES COHOMOLOGY OF COMPLEX CURVES

A. ZUEVSKY

Abstract. We introduce and study the local cohomology of a complex curve in

terms of formal series with non-commutative coefficients. This includes a way to

characterize a complex curve in terms of connections. Particular examples of a
vertex algebra cohomologies on a complex curve are considered.

1. Introduction

The theory of cohomologies of complex curves is represented by a few approaches [2,
3,6–9,18]. In this paper we study the formal series cohomology with non-commutative
coefficients defined for a complex curve in particular example of a grading-restricted
vertex algebra [12]. Vertex algebras, generalizations of ordinary Lie algebras, consti-
tute an algebraic language of conformal field theory. The geometric side of vertex
algebra characters is in associating their formal parameters with local coordinates on
a complex curve. Depending on geometry, one can obtain various consequences for a
vertex algebra and its space of characters, and vice-versa, one can study geometrical
property of a manifold by using algebraic nature of a vertex algebra attached. Let
W be the algebraic complection of a vertex algebra V module W . We consider a
cohomology of W -valued rational functions with sets of formal parameters appropri-
ately identified with local coordinates on sets of open domains on a complex curve
M. Manifolds of arbitrary dimensions will be considered elsewhere. It would be also
important to establish relations to chiral de Rham complex theory on a smooth man-
ifold introduced in [16]. In many cases it is useful to express cohomology in terms of
connections. Connections numerously appear in conformal field theory [1, 5, 19].

In Section 2 we recall definition of W-valued rational functions. In Section 3 we
define the formal series cohomology of a complex curve associated to a quasi-conformal
grading-restricted vertex algebra. The Section 4 discusses examples of vertex algebra
cohomologies of a complex curve. In Appendixes we provide the material needed
for construction of the vertex algebra cohomology of a complex curve. In Appendix
5 we recall the notion of a quasi-conformal grading-restricted vertex algebra and
its modules. In Appendix 6 we describe the approach to cohomology in terms of
connections. In Appendix 7 non-emptiness and canonicity of the construction is
proved. In Appendix 8 we recall the notion of cohomology classes associated to
vertex algebras and propose ways to characterize complex curves.

Key words and phrases. Complex curves; vertex operator algebras; cohomology; characteristic

functions.
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2. W-valued rational functions

Recall the definition of shuffles. Let Sq be the permutation group. For l ∈ N and
1 ≤ s ≤ l− 1, let Jl;s be the set of elements of Sl which preserve the order of the first
s numbers and the order of the last l − s numbers, that is,

Jl,s = {σ ∈ Sl | σ(1) < · · · < σ(s), σ(s+ 1) < · · · < σ(l)}.

The elements of Jl;s are called shuffles, and we use the notation

J−1
l;s = {σ | σ ∈ Jl;s}.

We define the configuration spaces:

FnC = {(z1, . . . , zn) ∈ Cn | zi 6= zj , i 6= j},

for n ∈ Z+. Let V be a grading-restricted vertex algebra (cf. Appendix 5), and W a
a grading-restricted generalized V -module. By W we denote the algebraic completion
of W ,

W =
∏
n∈C

W(n) = (W ′)∗.

Definition 1. A W -valued rational function in (z1, . . . , zn) with the only possible
poles at zi = zj , i 6= j, is a map

f : FnC → W,

(z1, . . . , zn) 7→ f(z1, . . . , zn),

such that for any w′ ∈W ′,

Rf (z1, . . . , zn) = R(〈w′, f(z1, . . . , zn)〉), (2.1)

is a rational function in (z1, . . . , zn) with the only possible poles at zi = zj , i 6= j.

In this paper, such a map is called W -valued rational function in (z1, . . . , zn) with
possible other poles. The space ofW -valued rational functions is denoted byW z1,...,zn .

When we write Φ ∈W z1,...,zn we will always assume RΦ(z1, . . . , zn) (2.1).

For

RΦ(v1,...,vn)(z1, . . . , zn) = R(〈w′,Φ(v1, z1; . . . ; vn, zn)〉), (2.2)

one defines an action of Sn on the space Hom(V ⊗n,W z1,...,zn) of linear maps from

V ⊗n to W z1,...,zn by

Rσ(Φ)(v1,...,vn)(z1, . . . , zn) = RΦ(vσ(1),...,vσ(n))(zσ(1), . . . , zσ(n)),

for σ ∈ Sn, and v1, . . . , vn ∈ V . We will use the notation σi1,...,in ∈ Sn, to denote the
the permutation given by σi1,...,in(j) = ij , for j = 1, . . . , n. In [12] it is proven that

the subspace of Hom(V ⊗n,W z1,...,zn) consisting of linear maps having the L(−1)-
derivative property, having the L(0)-conjugation property or being composable with
m vertex operators is invariant under the action of Sn.

Let us introduce another definition:
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Definition 2. We define the space Wz1,...,zn of W z1,...,zn -valued rational forms Φ
with each vertex algebra element entry vi, 1 ≤ i ≤ n of a quasi-conformal grading-
restricted vertex algebra V tensored with power wt (vi)-differential of corresponding
formal parameter zi, i.e.,

Φ
(
dz

wt (v1)
1 ⊗ v1, z1; . . . ; dzwt (vn)

n ⊗ vn, zn
)
∈ Wz1,...,zn . (2.3)

We assume also that (2.3) satisfy LV (−1)-derivative (2.5), LV (0)-conjugation (2.10)
properties, and the symmetry property with respect to action of the symmetric group
Sn: ∑

σ∈J−1
l;s

(−1)|σ|RΦ(vσ(1),...,vσ(n))

(
zσ(l), . . . , zσ(n))

)
= 0. (2.4)

In Section 3 we prove that (2.3) is invariant with respect to changes of formal
parameters (z1, . . . , zn).

2.1. Properties of matrix elements for a grading-restricted vertex algebra.
Let V be a grading-restricted vertex algebra and W a grading-restricted generalized
V -module. Let us recall some definitions and facts about matrix elements for a
grading-restricted vertex algebra [12]. If a meromorphic function f(z1, . . . , zn) on a
domain in Cn is analytically extendable to a rational function in z1, . . . , zn, we denote
this rational function by R(f(z1, . . . , zn)).

Definition 3. For n ∈ Z+, a linear map

Φ(v1, z1; . . . ; vn, zn) = V ⊗n →Wz1,...,zn ,

with associated rational function (2.2), is said to have the L(−1)-derivative property
if

R∂ziΦ(v1,...,zn)(z1, . . . , zn) = RΦ(v1,...,LV (−1)vi,...,vn)(z1, . . . , zn), (2.5)

for i = 1, . . . , n, v1, . . . , vn ∈ V , w′ ∈W , and
n∑
i=1

∂ziRΦ(v1,...,vn)(z1, . . . , zn) = RLW (−1).Φ(v1,...,vn)(z1, . . . , zn), (2.6)

with some action . of LW (−1) on Φ(v1, z1; . . . ; vn, zn), and and v1, . . . , vn ∈ V .

Note that since LW (−1) is a weight-one operator on W , for any z ∈ C, ezLW (−1)

is a well-defined linear operator on W . In [12] we find the following

Proposition 1. Let Φ be a linear map having the L(−1)-derivative property. Then
for v1, . . . , vn ∈ V , w′ ∈W ′, (z1, . . . , zn) ∈ FnC, z ∈ C such that (z1 +z, . . . , zn+z) ∈
FnC,

RezLW (−1)Φ(v1,...,vn)(z1, . . . , zn) = RΦ(v1,...,vn)(z1 + z, . . . , zn + z), (2.7)

and for v1, . . . , vn ∈ V , w′ ∈W ′, (z1, . . . , zn) ∈ FnC, z ∈ C, and 1 ≤ i ≤ n such that

(z1, . . . , zi−1, zi + z, zi+1, . . . , zn) ∈ FnC,
the power series expansion of

RΦ(v1,...,vn)(z1, . . . , zi−1, zi + z, zi+1; . . . , zn), (2.8)
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in z is equal to the power series

RΦ(v1,...,vi−1,ezL(−1)vi,vi+1,...,vn)(z1, . . . , zn), (2.9)

in z. In particular, the power series (2.9) in z is absolutely convergent to (2.8) in the
disk |z| < mini6=j{|zi − zj |}.

Finally, we have

Definition 4. A linear map

Φ : V ⊗n →Wz1,...,zn

has the L(0)-conjugation property if for v1, . . . , vn ∈ V , w′ ∈ W ′, (z1, . . . , zn) ∈ FnC
and z ∈ C× so that (zz1, . . . , zzn) ∈ FnC,

RzLW (0)Φ(v1,...,vn) (z1, . . . , zn) = RΦ(zL(0)v1,...,zL(0)vn)(zz1, . . . , zzn). (2.10)

2.2. Composability of W maps. Let us recall the definition of maps composable
with a number of vertex operators [12].

Definition 5. For a V -module

W =
∐
n∈C

W(n),

and m ∈ C, let

Pm : W →W(m),

be the projection from W to W(m). Let

Φ : V ⊗n →Wz1,...,zn ,

be a linear map. For m ∈ N, Φ is called [12, 17] to be composable with m vertex
operators if the following conditions are satisfied:

1) Let l1, . . . , ln ∈ Z+ such that l1 + · · · + ln = m + n, v1, . . . , vm+n ∈ V and
w′ ∈W ′. Set

Ψi = RYW ... YW (vk1
,...,vki )

(zk1
− ζi, . . . , zki − ζi), (2.11)

where

k1 = l1 + · · ·+ li−1 + 1, . . . , ki = l1 + · · ·+ li−1 + li, (2.12)

m1 = n1 + · · ·+ ni−1 + 1, . . . , mi = n1 + · · ·+ ni−1 + ni, (2.13)

for i = 1, . . . , n. Then there exist positive integers Nn
m(vi, vj) depending only on vi

and vj for i, j = 1, . . . , k, i 6= j such that the series

Inm(Φ) =
∑

r1,...,rn∈Z
RΦ(Pr1Ψ1,...,PrnΨn)(ζ1, . . . , ζn), (2.14)

is absolutely convergent when

|zl1+···+li−1+p − ζi|+ |zl1+···+lj−1+q − ζi| < |ζi − ζj |, (2.15)

for i, j = 1, . . . , k, i 6= j and for p = 1, . . . , li and q = 1, . . . , lj . The sum must be ana-
lytically extended to a rational function in (z1, . . . , zm+n), independent of (ζ1, . . . , ζn),
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with the only possible poles at zi = zj , of order less than or equal to Nn
m(vi, vj), for

i, j = 1, . . . , k, i 6= j.

2) For v1, . . . , vm+n ∈ V , there exist positive integers Nn
m(vi, vj), depending only

on vi and vj , for i, j = 1, . . . , k, i 6= j, such that for w′ ∈W ′, and

J nm(Φ) =
∑
q∈C

RYW ...YWPq(Φ)(v1,...,vn)(z1, . . . , zn), (2.16)

is absolutely convergent when

zi 6= zj , i 6= j,

|zi| > |zk| > 0, (2.17)

for i = 1, . . . ,m, and k = m+ 1, . . . ,m+n, and the sum can be analytically extended
to a rational function in (z1, . . . , zm+n) with the only possible poles at zi = zj , of
orders less than or equal to Nn

m(vi, vj), for i, j = 1, . . . , k, i 6= j,.

In [12], we the following useful proposition is proven:

Proposition 2. Let Φ : V ⊗n → W z1,...,zn be composable with m vertex operators.
Then we have:

(1) For p ≤ m, Φ is composable with p vertex operators and for p, q ∈ Z+ such
that p+ q ≤ m and l1, . . . , ln ∈ Z+ such that l1 + · · ·+ ln = p+ n,

R Φ(YV ...YV )...(YV ...YV )(v1,...,vl1 ) ... (vlk1
,...,vlkn

)(z1, . . . , zn+m−1),

RYW ...YW Φ(v1,...,vn+p)(z1, . . . , zn+p),

are composable with q vertex operators.
(2) For p, q ∈ Z+ such that p+q ≤ m, l1, . . . , ln ∈ Z+ such that l1+· · ·+ln = p+n

and k1, . . . , kp+n ∈ Z+ such that n1 + · · ·+ np+n = q + p+ n, we have

R
( Φ(YV ...YV ) ) (YV ...YV )

(
(v1,...,vl1 )...(vlk1

,...,vlkn
)
) (

(v1,...,vmp1
) ... (vnm1

,...,vnmn+p
)
)

(z1, . . . , zn+p+m−1)

= R
Φ
(

(vl1 ,...,vk1
), ..., (vnm1

,...,vnmn+p
)
) (z1, . . . , zn+p+m−1).

(3) For p, q ∈ Z+ such that p+q ≤ m and l1, . . . , ln ∈ Z+ such that l1 + · · ·+ ln =
p+ n, we have

R(YW ...YW ) (Φ)((v1,...,vq)(v1,...,vlk1
),...,(vlk1

,...,vlkn
))(z, . . . , zn+q−1)

= R((YW ...YW ) Φ)((v1,...,vq)(v1,...,vlk1
),...,(vlk1

,...,vlkn
))(z, . . . , zn+q−1). (2.18)

(4) For p, q ∈ Z+ such that p+ q ≤ m, we have

RYW ...YW (YW ...YW Φ(v1,...vp+n+q))(z1, . . . zp+n+q)

= RYW ...YW Φ(v1,...vn+p+q)(z1, . . . zn+p+q). (2.19)

In the construction of double complexes in Section 3.2 we would like to use linear
maps from tensor powers of V to the space Wz1,...,zn to define cochains in vertex
algebra cohomology theory. For that purpose, in particular, to define the coboundary
operator, we have to compose cochains with vertex operators. However, as mentioned
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in [12], the images of vertex operator maps in general do not belong to algebras or
their modules. They belong to corresponding algebraic completions which constitute
one of the most subtle features of the theory of vertex algebras. Because of this,
we might not be able to compose vertex operators directly. In order to overcome
this problem [14], we first write a series by projecting an element of the algebraic
completion of an algebra or a module to its homogeneous components. Then we
compose these homogeneous components with vertex operators, and take formal sums.
If such formal sums are absolutely convergent, then these operators can be composed
and can be used in constructions. Another question that appears is the question of
associativity. Compositions of maps are usually associative. But for compositions
of maps defined by sums of absolutely convergent series the existence of does not
provide associativity in general. Nevertheless, the requirement of analyticity provides
the associativity [12].

3. Cohomology associated to formal series

In this section we define the formal series cohomology for a grading-restricted vertex
algebra cohomology on a complex curve. A consideration of cohomology of smooth
manifolds of arbitrary dimension will be given elsewhere.

3.1. Cnm(V,W,U,M)-spaces. Let U be a family of intersecting open domains onM.
We assume that there exist homology embedding maps hi, i = 1, . . . , k − 1, relating
domains U1, . . . , Uk ∈ U.

Definition 6. If α is a path between two points p1 and p2 on M and if U1 and
U2 are domains centered at p1 and p2, then α defines a transport along M from
a neighborhood of p1 in U1 to a neighborhood of p2 in U2, and hence a germ of a
diffeomorphism

hol(α) : (U1, p1) ↪→ (U2, p2),

called the holonomy of the path α. Two homotopic paths always define the same
holonomy.

Definition 7. If the above transport along α is defined in all of U1 and embeds U1 into
U2, this embedding h : U1 ↪→ U2 will be denoted by hol(α) : U1 ↪→ U2. Embeddings
of this form we call the holonomy embeddings. The composition of paths also induces
an operation of composition on those holonomy embeddings.

We consider set of k points pk on M, k ≥ 0, and a sequence of corresponding
overlapping open domains Uk surrounding each pk, such that there exist holonomy
embeddings hi as described above. We assume that each domain Ui is endowed
with a local coordinate c(pi) centered at pi. For association of formal parameters of
mappings and vertex operators with points of M we will use in what follows their
local coordinates c(pi) in domains Ui on M.

For a set of n elements of a grading-restricted vertex algebra V

(v1, . . . , vn) , (3.1)

we consider linear maps
Φ : V ⊗n →Wz1,...,zn (3.2)



FORMAL SERIES COHOMOLOGY OF COMPLEX CURVES 7

(see Subsection 2 for the definition of a Wz1,...,zn space),

Φ
(
dzwt v1

1 ⊗ v1, z1; . . . ; dzwt vn
n ⊗ vn, zn

)
, (3.3)

where we identify, as it is usual in the theory of characters for vertex operator al-
gebras on curves [14, 19–21], n formal parameters z1, . . . , zn of Wz1,...,zn , with local
coordinates ci(pi) in vicinities of points pi, 0 ≤ i ≤ n, on M. The construction of
vertex algebra cohomology of a smooth complex curve M in terms of connections is
parallel to ideas of [2]. Such a relation will be explained elsewhere. Note that similar
to [1] (3.3) can be treated as

(
Autp1

O(1) × . . .×Autpn O(1)
)
-torsor of the product

of groups of coordinate transformations. In what follows, according to definitions of
Section 2, when we write an element Φ of the spaceWz1,...,zn , we actually have in mind
corresponding matrix element 〈w′,Φ〉 that absolutely converges (on certain domain)
to a rational form-valued function RΦ = R(〈w′,Φ〉). Quite frequently we will write
〈w′,Φ〉 which would denote a rational W-valued form. In notations, we would keep
tensor products of vertex algebra elements with wt -powers of z-differentials when it
is inevitable only.

Later in this section we prove, that for arbitrary vi ∈ V , 1 ≤ i ≤ n, points pi
with local coordinates ci(pi) on Ui ∈ U of M, an element (3.3) as well as the vertex
operators

ωW

(
dci(pi)

wt (vi) ⊗ vi, ci(p1)
)

= Y
(
d(ci(pi))

wt (vi) ⊗ vi, ci(pi)
)
, (3.4)

are invariant with respect to the action of the group
(
Autp1

O(1) × . . .×Autpn O(1)
)
.

In (3.4) we mean the ordinary vertex operator (as defined in Appendix 5) not affecting
the tensor product with corresponding differential. We assume that the maps (3.2) are
composable (according to Definition (5) of Subsection 2.2), with k vertex operators
ωW (vi, ci(pi)), 1 ≤ i ≤ k for any choice of k vertex algebra elements from (3.1), and
corresponding formal parameters associated with local coordinates on k domains Ui
of U, i = 1, . . . , k for pi.

The composability of a map Φ with a number of vertex operators consists of two
conditions on Φ. The first requires the existence of positive integers Nn

m(vi, vj) de-
pending just on vi, vj , and the second restricts orders of poles of corresponding sums
(2.14) and (2.16). Taking into account these conditions, we will see that the construc-
tion of the space (3.6) does depend on the choice of vertex algebra elements (3.1). In
this subsection we construct the spaces for a double complex defined for a complex
curve M, and associated to a grading-restricted vertex algebra.

In order to define vertex algebra cohomology of M, mappings Φ are supposed to
be composable with a number of vertex operators with a number of vertex algebra
elements, and formal parameters identified with local coordinates of points p1, . . . , pk
on each of k elements Uj , 1 ≤ j ≤ k. The above setup is considered for a set of vertex
algebra elements, which could be varied accordingly. We first introduce

Definition 8. Let p1, . . . , pn be points taken on domains Uj ∈ U, j ≥ 1. Assuming
k ≥ 0, n ≥ 0, we denote by Cn(V,W,M)(Uj), 0 ≤ j ≤ k, the space of all linear maps
(3.2)

Φ : V ⊗n →Wc1(p1),...,cn(pn), (3.5)
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composable with a k of vertex operators (3.4) with formal parameters identified with
local coordinates cj(pj) functions around points pj on each of domains Uj , 1 ≤ j ≤ k.

The set of vertex algebra elements (3.1) plays the role of parameters in our further
construction of the vertex algebra cohomology on a smooth curve M. A holonomy
embedding maps a domain of U and a coordinate chart into a domain and coordinate
chart on another domain of U. Let us now introduce the following spaces:

Definition 9. For n ≥ 0, and m ≥ 0, we define the space

Cnm(V,W,U,M) =
⋂

U1
h1
↪→...

hm−1
↪→ Um

1≤j≤m

Cn(V,W,M)(Uj), (3.6)

where the intersection ranges over all possible m-tuples of holonomy embeddings hi,
i ∈ {1, . . . ,m− 1}, between domains

U1
h1
↪→ . . .

hm−1

↪→ Um,

of U on M (for m = 0 there is no a sequence of embeddings above).

Remark 1. Since m can be sent to infinity, (3.6) still works for infinite sequences of
overlapping open domains on non-compact M.

First, we have the following

Lemma 1. (3.6) is non-empty.

The main statement of this section is contained in the following

Proposition 3. For a quasi-conformal grading-restricted vertex algebra V and its
module W , the construction (3.6) is canonical, i.e., does not depend on the choice of
local coordinates ci(pi), i = 1, . . . ,m, on Ui ∈ U.

The proofs of Lemma 1 and Proposition 3 are contained in Appendix 7.

Remark 2. The condition of quasi-conformality is necessary in the proof of invariance
of elements of the space Wz1,...,zn with respect to a vertex algebraic representation

(cf. Appendix 5) of the group
(
Autp1 O(1) × . . .×Autpn O(1)

)
. In what follows,

when it concerns the spaces (3.6) we will always assume the quasi-conformality of
V . Generalizations of Lemma 1, and Proposition 3 proofs for the case of a arbitrary
n-dimensional smooth manifold will be given elsewhere.

Let W be a grading-restricted V module. Since for n = 0, Φ does not include
variables, and due to Definition 5 of the composability, we can put:

C0
m(V,W,M) = W, (3.7)

for m ≥ 0. Nevertheless, according to our Definition 3.6, mappings that belong to
(3.7) are assumed to be composable with a number of vertex operators with depending
on local coordinates of m points pi, i = 1, . . . ,m on m open domains of U. Since V ,
W and M are fixed in our construction we will omit them in what follows. We then
have
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Lemma 2.

Cnm(U) ⊂ Cnm−1(U). (3.8)

The proof of this Lemma is contained in Appendix 7.

3.2. Coboundary operators. For the double complex spaces (3.6), the coboundary
operator δnm is defined as the form of a multi-point vertex algebra connection (cf.
Definition 6.1 in Appendix 6, cf. [12]):

RδnmΦ(v1,...,vn)(p1, . . . , pn) = G(p1, . . . , pn+1), (3.9)

where

G(p1, . . . , pn+1) = R∑n
i=1(−1)i Φ(ωV (vi,vi+1))(pi − pi+1)

+ R ωW Φ(v1,...,vn)(p1, . . . , pn)

+ R (−1)n+1ωW Φ(vn+1,v1,...,vn)(pn+1, p1, . . . , pn).

Note that it is assumed that the coboundary operator does not affect dci(pi)
wt (vi)-

tensor multipliers in Φ. Inspecting construction of the double complex spaces (3.6)
we see that the action (3.9) of the δnm on an element of Cnm(U) provides a coupling (in
terms of Wz1,...,zn -valued rational functions) of vertex operators taken at some of the
points pj , j = 1, . . . ,m with local coordinates cj(zpj ) at the vicinities of pi in Uj ∈ U
with elements Φ of Cnm−1(U) taken at remaining points among pi, 1 ≤ i ≤ n. Then
we have

Proposition 4. The operator (3.9) provides the chain-cochain complex

δnm : Cnm(U)→ Cn+1
m−1(U), (3.10)

δn+1
m−1 ◦ δnm = 0, (3.11)

0 −→ C0
m(U)

δ0
m−→ C1

m−1(U)
δ1
m−1−→ · · ·

δm−1
1−→ Cm0 (U) −→ 0. (3.12)

The proof of this proposition follows from the construction (3.9) of the coboundary
operator, and from Proposition 2.

3.3. Cohomology. Recall definitions of vertex algebra connections and their forms
given in Appendix 6. In this subsection we define the formal series cohomology for
U, as well as the formal series cohomology of whole complex curve M associated to
a grading-restricted vertex algebra V .

Definition 10. We define the n-th cohomology Hn
m(U) of U with coefficients in

Wz1,...,zn (containing maps composable with m vertex operators defined on domains of
U) to be the factor space of closed multi-point connections by the space of connection
forms:

Hn
k (U) = Connk; cl(U)/Gn−1

k+1(U). (3.13)

Note that due to (3.9), (4.18), and Definitions 6.1 and 6.2 (cf. Section 3.2), it is
easy to see that (3.13) is equivalent to the standard cohomology definition

Hn
k (U) = ker δnk |U/im δn−1

k+1 |U. (3.14)
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According to the construction of (3.6), the cohomology (3.14) has a local manner, i.e.,
it depends on U. In the next section we provide applications and examples of (3.14).
Up to now, the geometrical picture used to define the spaces Cnm(U) was local. Now
let us formulate

Definition 11. Let U =
⋃
M

U be the covering of wholeM performed by sets of open

domains U. Define corresponding chain complex(
Cnm (U ,M) , δ̃nm

)
, (3.15)

with

Cnm (U ,M) =
⋃

U∈M

CnmU
(U),

and

δ̃nm = (δnmU
)|U ,

where δnmU
acts separately on each element U of U , and each individual mU is chosen

suitable to individual U.

Definition 12. We define the cohomology of U as cohomology

Hn
m(U) = ker δ̃nm/im δ̃n−1

m+1,

of the complex (3.15).

Under a refinement V of U by subdomains U = (U1, . . . , Um) U i ⊂ Ui such that
new V minimally covers the whole complex curve M., we obtain a map suitable for
the construction of a cohomology of whole M. U i ⊂ Ui such that new V minimally
covers the whole complex curve M. Let

Hn
m(U)→ Hn

m(V),

be the map of cohomologies under a refinement. Then we define

Hn(M) = lim−→
U
Hn

m(U).

by the direct limit of this system. In what follows we consider local cohomologies
associated to a grading-restricted vertex algebra.

4. Examples

In this section we consider examples of lower formal series cohomologies and char-
acterization of U.

4.1. Fixed point double compexes. For our further purposes we have to define
spaces suitable for the definition of a double complex with a fixed point. Such double
complex will be needed for the construction of first vertex algebra cohomologies, in
particular, for H1

m(U), m ≥ 0 (see Section 3.2).
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Definition 13. Let us fix a point pr and a domain Ur ∈ U, r ≥ 1. Assuming k ≥ 0,
n ≥ 0, consider the space Cn(pr)(Ur), of linear mappings

Φ : V ⊗n →Wc1(p1),...,cn(pn), (4.1)

composable with k vertex operators with formal parameters identified with local co-
ordinates {c1(p1), . . . , cr(pr)|pr , . . . , cn(pk)}, on each of k domains of U.

The holonomy embeddings hj provide a map of local coordinate functions

hj : cj(pj)→ cj+1(pj+1),

and we have a sequence of mappings

h = p1
h1→ . . .

hr−1→ pr
hr→ . . .

hm−1→ pm. (4.2)

Let us now introduce the following spaces:

Definition 14. For n ≥ 0, and m ≥ 0, consider the space

Cnm(pr; U) =
⋂

h, j∈{1,...,m}

Cn(pr)(Uj), (4.3)

where the intersection is taken over all possible m − 1-sequences (4.2) of holonomy
mappings hi, i ∈ {1, . . . ,m− 1} among points on domains of U with the fixed point
pr.

Then we have the following

Lemma 3. The double complex (Cnk (pr; U), δnk |pr ) is a subcomplex of double chain-
cochain complex (Cnk (U), δnk ).

Proof. We assume that in the construction of (3.6), the points {pj}, 1 ≤ r − 1, r+1 ≤
k in sequences (4.2) of holonomy mappings can be shifted all over corresponding
domains {Uj} ∈ U. In Definition (3.6) of Cnk (U, ), the points {pj}, 1 ≤ r − 1,
r + 1 ≤ k exhaust domains {Uj} of U. Thus,

Cnk (pr; U) ⊂ Cnk (U).

It is clear that the operator δnk |pr is a reduction of δnk , and satisfies the chain-cochain
property as in Proposition (4). �

4.2. Fixed point cohomology. Here we formulate

Definition 15. Let Ur, r ≥ 1, be a domain of U, and pr ∈ Ur be a fixed point. We
define the fixed point cohomology as

Hn
k (U) = Connp; k; cl|U/Gn−1

p; k+1|U, (4.4)

which is equivalent to

Hn
k (pr; U) = Ker δnk |pr,U/Im δnk |pr,U.

From Lemma 3 it follows

Lemma 4. The cohomology Hn
m (p; U) is given by

Hn
m (U) =

⋃
p′r∈Ur

Hn
m (pr; U) .
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4.3. Computation of the cohomologies H1
m(U). In [13], lower cohomologies for

a grading-restricted vertex algebra were computed. In this paper we determine the
first grading-restricted vertex algebra cohomologies H1

m(U) of U on a complex curve
M. Let us first consider one-variable reduction of multi-point connections (which is
called in the derivation [12]). We introduce the following definition of the derivation
applicable to maps from V to W.

Definition 16. Let V be a grading-restricted vertex algebra and W a V -module. A
grading-preserving linear map

g : V →W,

is called a derivation if

g (ωV (u, z)v, 0) = ezLW (−1)ωW (v,−z) g(u, 0) + ωW (u, z) g(v, 0)

= ωWWV (g(u, 0), z)v + ωW (u, z) g(v, 0),

for u, v ∈ V , where ωWWV (v, z) is the intertwiner-valued vertex operator in accordance
with notaions of (3.4). We use Der (V,W) to denote the space of all such derivations.
It is clear that

g(v, 0) = G(v, 0).

As we see from the definition of the derivation over V , it depends on one element
of V only. The space of one V -element two point holomorphic connections reduces to
the space of derivations over W [12]. In [13] it is proven the following

Lemma 5. Let g(v, 0) : V →W be a derivation. Then g(1V , 0) = 0.

We will need another statement proven in [13]

Lemma 6. Let
Φ : V →Wz,

be an element of C1
m(U) satisfying

δ1
mΦ = 0.

Then Φ(v, 0) is a grading-preserving linear map from V to W, i.e.,

zL(0)Φ(v, 0) = Φ(zL(0)v, 0) = znΦ(v, 0).

In [13], the first cohomologies H1
M (V,W ) of a grading-restricted vertex algebra

were related to the space of derivations Der(V,W ). We find the following

Proposition 5. Let V be a grading-restricted vertex algebra and W a V -module.
Then H1

m(V,W ) is linearly isomorphic to the space Der (V,W ) of derivations from V
to W for any m ∈ Z+.

In the case of a complex curve we have the following identifications in (6.4)

G(φ(p)) = G(v, c(p)) = Φ(v, c(p)),

f(ψ(p)) = ω(v, c(p)),

φ(p) = (u, p),

f(ψ(p′)).φ(p) = ω(v, c(p′)− c(p))u, (4.5)
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and a multi-point holomorphic connection G on U, is a C-linear map

G : V ⊗
n

→Wz1,...,zn .

Thus, the multi-point holomorphic connection has the form∑
q,q′∈M

Φ (ωV (vq, c(q)− c(q′))u, q) = ωW (u, c(p′)) Φ (v, c(p))+ωW (v, c(p)) Φ (u, c(p′)) .

(4.6)

Remark 3. Due to Proposition 3, the definition of the multi-point holomorphic con-
nection on (4.6) does not depend on the choice of coordinates on U.

The meaning of the name of a transversal holmophic connection (6.5) is clear when
we consider elements of the space Wz1,...,zn for M,

G(p, p′) = ωW (u, c(p′)) G(v, c(p)) + ωW (u, c(p′)) G(u, c(p′)) = 0,

with formal parameters associated to local coordinates c(p). This type of connections
will appear in considerations of the second vertex algebra cohomology H2

ex(U) in
Subsection 3.2. In what follows, to shortcut notations, we will denote by p the origin
of a local coordinate c(p) at p, i.e., c(p)|p = 0. Let us introduce another

Definition 17. A one fixed-point p′ holomorphic connection for the space (4.3) is
defined by∑

q,q′∈M
Φ (ωV (vq, c(q)− c(q′))u, q) = ωW (u, p′) Φ (v, c(p)) + ωW (v, c(p)) Φ (u, p′) .

(4.7)

In particular, for the space C1
m(pr; U) we obtain

Φ (ωV (v, p′ − c(p))u, c(p)) = ωW (u, p′) Φ (v, c(p)) + ωW (v, c(p)) Φ (u, p′) . (4.8)

We denote the space of such connections with a fixed point p as Conp′(m; U). Above,
we have introduced the notion (Definition 15) of a fixed-point cohomology Hn

m (p; U).
In particular, for n = 1,

H1
m (pr; U) = Ker δ1

m|pr,U/Im δ0
m+1|pr,U,

for a point pr ∈ Ur in the set of domains U. The result of this subsection is in the
following

Proposition 6. The vertex algebra first cohomologies H1
m(U), m ≥ 0, of U on a

complex curve M are isomorphic to the space Conpr (m,U), for all pr ∈ Ur, 1 ≤ r ≤
m, of holomorphic fixed point two point connections with mappings composable with
m vertex operators on domains of U.

Proof. Let us fix a point pr with the local coordinate cr(pr) on the domain Ur with
origin at pr, i.e., cr(pr)|pr = 0. According to Proposition 5 (cf. (1.1) in [13]), the
cohomologies H1

m(V,W ) of V are given by the space of derivations. In terms of
Definition 30, it coincides with the space of fixed point holomorphic connections, i.e.,
Der(V,W) = Conpr (V,W ). Note that, for any

Φ(v, cr(pr)|pr ) ∈ C1
m(pr; U),
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such that

Rδ1
mΦ(v, pr) = 〈w′, G2 (pr, p2)〉 = 0,

i.e., results in an element of the space Conpr (U) of one fixed point pr holomorphic
connections. In addition, by direct computation for any Φ′ ∈ C0

m(pr; U), we find

Im δ0
m+1Φ′ = {0}.

Conversely, for any element g(v, 0) of Conpr (U), and v ∈ V , let us consider

Φg = g(ωV (v, z)1V , pr) = ωWWV (g(v, pr), z)1V , (4.9)

where we have used Lemma 5. We had to express (4.9) in terms of intertwining
operator in order to show that (4.9) is indeed composable with m vertex operators
and belong to the space C1

m(pr; U) with a fixed point pr. As it follows from [4], the
map from V to Wz given by

v 7→ ωWWV (Φg(v, pr), z1)1V ,

is composable with m vertex operators for any m ∈ N. Thus, Φg ∈ C1
m(U) for any

m ∈ N. For v1, v2 ∈ V , and w′ ∈ W ′, by using (5.8), we find by direct computation
that

Rδ1
mΦg (v1, p1; v2, p2)

= −RωWWV g ωV (v1,v2)(pr, p1, p2) +RωW ωWWV g(v2,v1)(p2, pr, p1).

By using Theorem 5.6.2 in [4], we see that (4.10) vanishes. Therefore we obtain a
linear map

g(v, pr) 7→ Φg,

from the space

Conpr (U) = Der (U)→ H1
m(U) = C1

m(pr; U).

Thus, we find, that

H1
m(pr; U) = Conpr (U). (4.10)

By shifting pr ∈ Ur all along cr(pr) we exhaust all points of Ur, we obtain connections
of ConUr (U) on the whole Ur. By using Lemma 3, we extend (4.10) to we obtain the
statement of Proposition:

H1
m(U) =

⋃
pr∈Ur

Conpr (U).

�

4.4. Classes associated with the first cohomologies H1
m(U). For the first co-

homology H1
m(U), we have the following corollary from Proposition 6:

Corollary 1. The H1
m(U) cohomological class of the grading-restricted vertex algebra

cohomology of U is given by [
δ1
mΦ
]
, (4.11)

for Φ ∈ C1
m(U). It vanishes if and only if Φ is given by a two point holomorphic

connection.
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Proof.
[
δ1
mΦ
]

for Φ ∈ C1
m(U). It is easy to see that it remains cohomologically

invariant under a substitution Φ 7→ Φ + Φ0, due to properties of (4.11). The second
statement of the proposition follows from the proof of Proposition 6. �

Since Φ ∈ C1
m(U) and δ1

mΦ ∈ C2
m−1(U), we obtain the characteristic two-form for

U

R(c(p), c(p′)) = Rδ1
mΦ(v,v′) (p, p′) . (4.12)

Here δ1
mΦ represents a cohomological class of H1

m(U). Instead, for a local character-
ization of M, we may choose elements

Φg = g(v, 0) ∈ W,

which do not depend on z, and, hence, matrix elements become computable. For
non-vanishing invariants (4.11) (i.e., which are not two point connections G(Φ)) we
obtain the non-vanishing form

R(c(p)) = R δ1
mΦg(v) (p)

=
(
RωW g(u,v)(p, 0) +R ezLW (−1)ωW g(v,u)(−p, 0)−Rg(ωV (u,v))(p, 0)

)
.

(4.13)

The form of dependence of Φ or g(v, z) on v ∈ V determines the result of computation
of the matrix element in (4.13). In order to compute (4.13) we use the properties of
the grading-restricted vertex algebra V , in particular, one expands ω(v, c(p)) as in
(5.1), and acts on g(v, 0).

4.5. C2
ex-complex. In this subsection we consider a particular example of the dou-

ble complex (3.6), which takes into account C2
0 - conditions on elements of the space

C2
0 (U). In addition to the double complex (Cnm(U), δnm) provided by (3.6) and (3.9),

there exists an C2
0 - short double complex which we call transversal connection com-

plex. We have

Lemma 7. For n = 2, there exists a subspace C0
ex(U)

C2
m(U) ⊂ C0

ex(U) ⊂ C2
0 (U),

for all m ≥ 1, with the action of coboundary operator δ2
m defined.

Proof. Let us consider the space C2
0 (U). The space C2

0 (U) contains elements ofWp1,p2

so that the action of δ2
0 is zero. Nevertheless, as for J nm(Φ) in (2.16), Definition 5, let

us consider sum of projections

Pr :Wzi,zj →Wr,

for r ∈ C, and (i, j) = (1, 2), (2, 3), so that the condition (2.16) is satisfied for some
connections similar to the action (2.16) of δ2

0 . Separating the first two and the second
two summands in (3.9), we find that for a subspace of C2

0 (U), which we denote as
C2
ex(U), consisting of three-point connections Φ such that for v1, v2, v3 ∈ V , and
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arbitrary ζ ∈ C, the following forms of connections

G1(c1(p1), c2(p2), c3(p3))

=
∑
r∈C

(
R ωWPr(Φ)(v1,v2,v3) (p1, p2 − ζ, p3 − ζ)

+RΦ Pr(ωV ;ωV )(v1,v2,v3) (p1, p2 − ζ, p3 − ζ)
)
, (4.14)

G2(c1(p1), c2(p2), c3(p3))

=
∑
r∈C

(
RΦ(Pr(ωV ωV )(v1,v2,v3)(p1 − ζ, p2 − ζ, p3)

+RωV Pr(Φ)(v3,v1,v2) (p3, p1 − ζ; p2 − ζ)
)
, (4.15)

are absolutely convergent in the regions |c1(p1) − ζ| > |c2(p2) − ζ|, |c2(p2) − ζ| > 0,
|ζ−c3(p3)| > |c1(p1)−ζ|, |c2(p2)−ζ| > 0, where ci, 1 ≤ i ≤ 3 are coordinate functions,
respectively, and can be analytically extended to rational form-valued functions in
c1(p1) and c2(p2) with the only possible poles at c1(p1), c2(p2) = 0, and c1(p1) =
c2(p2). Note that (4.14) and (4.15) constitute the first two and the last two terms
of (3.9) correspondingly. According to Proposition 2 (cf. Appendix 2.2), C2

m(U) is
a subspace of C2

ex(U), for m ≥ 0, and Φ ∈ C2
m(U) are composable with m vertex

operators. Note that (4.14) and (4.15) represent sums of forms Gtr(p, p
′) of transversal

connections (6.6) (cf. Section 4). �

Then we have

Definition 18. The coboundary operator

δ2
ex : C2

ex(U)→ C3
0 (U), (4.16)

is defined by three point connection of the form

Rδ2
exΦ(v1,v2,v3)(p1, p2, p3) = Gex(p1, p2, p3), (4.17)

Gex(p1, p2, p3) = RωW Φ(v1,v2,v3) (p1, p2, p3)−RΦ(ωV ωV )(v1,v2,v3)(p1, p2, p3)

+RΦ(ωV ωV )(v1,v2,v3)(p1, p2, p3) +RωW Φ(v3,v1,v2)(p3, p1, p2),

(4.18)

for w′ ∈W ′, Φ ∈ C2
ex(U), v1, v2, v3 ∈ V and (c1(p1), c2(p2), c3(p3)) ∈ F3C.

A particular consideration as in Proposition 4 results in

Proposition 7. The operator (4.16) provides the chain-cochain complex

δ2
ex ◦ δ1

2 = 0,

0 −→ C0
3 (U)

δ0
3−→ C1

2 (U)
δ1
2−→ C2

ex(U)
δ2
ex−→ C3

0 (U) −→ 0, (4.19)

on the spaces (3.6).
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4.6. Classes associated with C2
ex- cohomology. In this subsection we consider

the cohomology H2
ex(U) associated to the short complex (4.19), and corresponding

cohomological class. Let us first mention the geometrical meaning of the square-zero
extension (VW , γ, α) of V by W . Let us consider u, v belong to the square-zero ideal
of a grading-restricted vertex algebra V , then

ωV (u, c(p))v = 0.

Then, geometrically it means that corresponding vertex algebra holomorphic connec-
tions are transversal (cf. Definition 32):

Gtr(p, p
′) = ωW (v, c(p′)) Φ (u, c(p)) + ωW (u, c(p)) Φ (ψ, c(p′)) = 0. (4.20)

Note that, for a square-zero ideal, the full form of holomorphic connection has a
reduced form (4.20). In our setup the holomorphic connection plays the following
role: if it has does not have an full closed form (4.6), then the cohomology class it
non-trivial. In [13] we find the proof of the following algebraic result for the second
cohomology of a grading-restricted vertex algebra V , H2

ex(V,W ) of V with coefficients
in W . It follows from that Proposition, that the difference between two square-zero
extensions are controled by the vertex operator map for the square-zero extension
defined for Z = V

⊕
W .

Proposition 8. Let V be a grading-restricted vertex algebra and W a V -module.
Then the set of the equivalence classes of square-zero extensions of V by W corre-
sponds bijectively to H2

ex(V,W ).

Now we formulate the following corollary from Proposition 2.

Corollary 2. Let V be a grading-restricted vertex algebra and W a V -module. The
classes of square-zero extensions of V by W are isomorphic to classes of cohomological
invariants Φ (5.19) of H2

ex(U).

Proof. As in the proof of Proposition 2 we check that Φ (5.19) satisfies the L(−1)-
derivative and L(0)- conjugation properties. Since Z is a grading-restricted vertex
algebra, by using the associativity property for vertex operators (5.18), we see that
the conditions (4.14) and (4.15) for forms Gi, i = 1, 2, in the proof of Lemma 7 of
the space C2

ex(U) for Φ are satisfied, and Φ ∈ C2
ex(U). Using again corresponding

associativity properties for vertex operators in Z, we find that Φ is closed (according
to our Definition 33), i.e., δ2

exΦ = 0. Thus, we see that, for a representative of the
class of square-zero extension (Z, YZ , p1, i2) corresponds by the formula (5.19) for ωZ
to an element of H2

ex(U), [Φ] = Φ + η, where η be an element δ1
2C

1
2 (U). It is easy

to see that, according to properties of the above construction Φ is invariant with
respect to a substitution Φ 7→ Φ + µ, for µ ∈ C2

ex(U). Thus, Φ (5.19) belongs to the
cohomology class H2

ex(U).
Let us prove the inverse statement. For an element Φ ∈ C2

ex(U) which is a rep-
resentative of H2

ex(U), according to Definition 5 of composibility, it follows that for
any v1, v2 ∈ V , there exists N2

0 (v1, 0) such that for w′ ∈W ′,

G2(c1(p1), c2(p2)) = RΦ(v1,v2)(z1, z2),
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is a rational Wz1,z2-valued form with the only possible pole at z1 = z2 of order less
than or equal to N2

0 (v1, v2). For v1, v2 ∈ V , let us define ωΨ(v1, ζ)v2 ∈ W((ζ)) such
that

RωΨ(v1,v2)(ζ)|ζ=z = RΦ(v1,v2)(z, z2),

for z ∈ C×. For v1, v2 ∈ V , we can define YZ(v1, ζ)v2 using (5.18). Thus, we obtain a
vertex operator map YZ , and Z is endowed with the structure of a grading-restricted
vertex algebra. Finally, we have

Corollary 3. Two elements of ker δ2
ex differ by an element δ1

2C
1
2 (U) if and only if

the corresponding square-zero extensions of V by W are equivalent.

�

Recall definitions of the forms G1 (4.14) and G2 (4.15) from Section 3.2. We define
the following characteristic functions as triple integrals associated to the these forms:

F (c(p), c(p′), c(p′′)) =

(q2,q
′
2,q
′′
2 )∫

(q1,q′1,q
′′
1 )

Gi (v, c(p); v′, c(p′); v′′, c(p′′)) , (4.21)

with i = 1, 2. By assumption containing in Subsection 4.5, the forms (4.14) and
(4.15) have nice convergence properties. Moreover, they contain only parts of the
connection (functions do not vanish), and can be used in order to describe M. For
the invariant related to the second cohomology H2

ex(U), we obtain for (5.19)

F (c(p), c(p′), c(p′′)) = RΦ(v,v′,v′′) (p, p′, p′′) . (4.22)

In addition to (4.22), one uses the particular form of Gi, i = 1, 2

G1(p1, p2, p3) = RωΨ ωV .ωV (v1,v2,v3)(p1, p2, p3) +RωW ωΨ ωV (v1,v2,v3)(p1, p2, p3),

G2(p1, p2, p3) = RωΨ(ωV ωV )(v1,v2,v3)(p1 − p2, p2, p3)

+RωWWV (ωΨωV )(v1,v2,v3)(p1 − p2, p2, p3),

(4.14) and (4.15) in (4.21) (cf. Subsection 4.5).
Φ ∈ Wz1,...,zn is associated to R which is supposed to be a rational form with poles

at zi = zj , i 6= j only. Thus, the general principle is the following. By associating
zi to ci(p) on M and computing (8.1), we study its analytic behavior. If (8.1) has
poles then they could be related to singular points of M. Next, for (2.14), (2.16),
(4.14), and (4.15), for zi = ci(pi), we determine the domains of convergence. When
such a domain is limited to one point, then M might have a singular point. Finally,
consider δ0

1Φ, for Φ ∈ C0
1 (U), and identify z to c(w), where c(w) is a local coordinate

onM. Thus, in case of singular point we have different values of, e.g., integrals (8.2)
in these directions.
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4.7. A relation to ordinary setup for Čech-de Rham cohomology. Recall the
setup for the Čech-de Rham cohomology given in Appendix 6. In particular, we have
the following

Lemma 8. The construction of the double complex
(
Ck,l, δ

)
, (6.7), (6.8) follows

from the construction of the double complex (Cnm(U), δnm) of (3.12). Thus, the Č ech-
de Rham cohomology of a smooth complex curve M results from grading-restricted
vertex algebra V cohomology of M.

Proof. One constructs the space of differential forms of degree k by elements Φ of
Cnm(U)

RΦ(dc1(p1)wt(v1)⊗v1,...,dcn(pn)wt(vn)vn) (p1, . . . , pn) , (4.23)

such that n = k the total degree

n∑
i=1

wt (vi) = l,

for vi ∈ V . The condition of composability of Φ with m vertex operators allows us
make the association of the differential form $(h1, . . . , hn) with (4.23) (h∗1, . . . , h

∗
k)

with (vi, . . . , vk), and to represent a sequence of holomorphic embeddings h1, . . . , hp
for U0, . . . , Up in (6.7) by vertex operators ωW , i.e,

(h(h∗1) . . . h(h∗n)) (z1, . . . , zn)) = ωW (v1, c1(p1)) . . . ωW (vl, cn(pn)) .

Then, by using Definitions of coboundary operator (3.9), we see that the definition
of the coboundary operator for the Čech-de Rham cohomology. �
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5. Appendix: Grading-restricted vertex algebras and their modules

In this section, following [12] we recall basic properties of grading-restricted vertex
algebras and their grading-restricted generalized modules, useful for our purposes in
later sections. We work over the base field C of complex numbers.

Definition 19. A vertex algebra (V, YV ,1V ), (cf. [15]), consists of a Z-graded complex
vector space

V =
∐
n∈Z

V(n), dimV(n) <∞,

for each n ∈ Z, and linear map

YV : V → End (V )[[z, z−1]],
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for a formal parameter z and a distinguished vector 1V ∈ V . The evaluation of YV
on v ∈ V is the vertex operator

YV (v) ≡ YV (v, z) =
∑
n∈Z

v(n)z−n−1, (5.1)

with components (YV (v))n = v(n) ∈ End (V ), where YV (v, z)1V = v +O(z).

Definition 20. A grading-restricted vertex algebra satisfies the following conditions:

(1) Grading-restriction condition: V(n) is finite dimensional for all n ∈ Z, and
V(n) = 0 for n� 0;

(2) Lower-truncation condition: For u, v ∈ V , YV (u, z)v contains only finitely
many negative power terms, that is,

YV (u, z)v ∈ V ((z)),

(the space of formal Laurent series in z with coefficients in V );
(3) Identity property: Let IdV be the identity operator on V . Then

YV (1V , z) = IdV ;

(4) Creation property: For u ∈ V ,

YV (u, z)1V ∈ V [[z]],

and

lim
z→0

YV (u, z)1V = u;

(5) Duality: For u1, u2, v ∈ V ,

v′ ∈ V ′ =
∐
n∈Z

V ∗(n),

where V ∗(n) denotes the dual vector space to V(n) and 〈 ., .〉 the evaluation

pairing V ′ ⊗ V → C, the series

RYV YV (u1,u2)(z1, z2), RYV YV (u2,u1)(z2, z1), RYV YV (u1u2)(z1 − z2, z2), (5.2)

are absolutely convergent in the regions

|z1| > |z2| > 0, |z2| > |z1| > 0, |z2| > |z1 − z2| > 0,

respectively, to a common rational function in z1 and z2 with the only possible
poles at z1 = 0 = z2 and z1 = z2;

(6) LV (0)-bracket formula: Let LV (0) : V → V , be defined by

LV (0)v = nv, n = wt (v),

for v ∈ V(n). Then

[LV (0), YV (v, z)] = YV (LV (0)v, z) + z
d

dz
YV (v, z),

for v ∈ V .
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(7) LV (−1)-derivative property: Let

LV (−1) : V → V,

be the operator given by

LV (−1)v = Reszz
−2YV (v, z)1V = Y(−2)(v)1V ,

for v ∈ V . Then for v ∈ V ,

d

dz
YV (u, z) = YV (LV (−1)u, z) = [LV (−1), YV (u, z)]. (5.3)

In addition to that, we recall here the following definition (cf. [1]):

Definition 21. A grading-restricted vertex algebra V is called conformal of central
charge c ∈ C, if there exists a non-zero conformal vector (Virasoro vector) ω ∈ V(2)

such that the corresponding vertex operator

YV (ω, z) =
∑
n∈Z

LV (n)z−n−2,

is determined by modes of Virasoro algebra LV (n) : V → V satisfying

[LV (m), LV (n)] = (m− n)L(m+ n) +
c

12
(m3 −m)δm+b,0 IdV.

Definition 22. A vector A which belongs to a module W of a quasi-conformal
grading-restricted vertex algebra V is called primary of conformal dimension ∆(A) ∈
Z+ if

LW (k)A = 0, k > 0,

LW (0)A = ∆(A)A.

Definition 23. A grading-restricted generalized V -module is a vector spaceW equipped
with a vertex operator map

YW : V ⊗W → W [[z, z−1]],

u⊗ w 7→ YW (u,w) ≡ YW (u, z)w =
∑
n∈Z

(YW )n(u,w)z−n−1,

and linear operators LW (0) and LW (−1) on W satisfying the following conditions:

(1) Grading-restriction condition: The vector space W is C-graded, that is,

W =
∐
α∈C

W(α),

such that W(α) = 0 when the real part of α is sufficiently negative;
(2) Lower-truncation condition: For u ∈ V and w ∈W , YW (u, z)w contains only

finitely many negative power terms, that is, YW (u, z)w ∈W ((z));
(3) Identity property: Let IdW be the identity operator on W . Then

YW (1V , z) = IdW ;
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(4) Duality: For u1, u2 ∈ V , w ∈W ,

w′ ∈W ′ =
∐
n∈Z

W ∗(n),

W ′ denotes the dual V -module to W and 〈 ., .〉 their evaluation pairing, the
series RYWYW (u1u2)(z1, z2), RYWYW (u2,u1)(z2, z1), RYWYW (u1,u2)(z1 − z2, z2),
are absolutely convergent in the regions

|z1| > |z2| > 0, |z2| > |z1| > 0, |z2| > |z1 − z2| > 0,

respectively, to a common rational function in z1 and z2 with the only possible
poles at z1 = 0 = z2 and z1 = z2.

(5) LW (0)-bracket formula: For v ∈ V ,

[LW (0), YW (v, z)] = YW (LV (0)v, z) + z
d

dz
YW (v, z);

(6) LW (0)-grading property: For w ∈W(α), there exists N ∈ Z+ such that

(LW (0)− α)Nw = 0; (5.4)

(7) LW (−1)-derivative property: For v ∈ V ,

d

dz
YW (u, z) = YW (LV (−1)u, z) = [LW (−1), YW (u, z)]. (5.5)

The translation property of vertex operators

YW (u, z) = e−z
′LW (−1)YW (u, z + z′)ez

′LW (−1), (5.6)

for z′ ∈ C, follows from from (5.5). For v ∈ V , and w ∈W , the intertwining operator

YWWV : V →W,

v 7→ YWWV (w, z)v, (5.7)

is defined by

YWWV (w, z)v = ezLW (−1)YW (v,−z)w. (5.8)

We will also use the following property of intertwining operators (5.7) [13]. For a
function f(u), u ∈ V ,

f (YV (u, z)1V ) = YWWV (f(u), z)1V .

Let us recall some further facts from [1] relating generators of Virasoro algebra
with the group of automorphisms in complex dimension one. Let us represent an
element of Aut O(1) by the map

z 7→ ρ = ρ(z), (5.9)

given by the power series

ρ(z) =
∑
k≥1

akz
k, (5.10)

ρ(z) can be represented in an exponential form

ρ̃(z) = exp

(∑
k>−1

βk z
k+1∂z

)
(β0)

z∂z .z, (5.11)
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where we express βk ∈ C, k ≥ 0, through combinations of ak, k ≥ 1. A representation
of Virasoro algebra modes in terms of differential operators is given by [15]

LW (m) 7→ −ζm+1∂ζ , (5.12)

for m ∈ Z. By expanding (5.11) and comparing to (5.10) we obtain a system of
equations which, can be solved recursively for all βk. In [1], v ∈ V , they derive the
formula

[LW (n), YW (v, z)] =
∑
m≥−1

1

(m+ 1)!

(
∂m+1
z zm+1

)
YW (LV (m)v, z), (5.13)

of a Virasoro generator commutation with a vertex operator. Given a vector field

β(z)∂z =
∑
n≥−1

βnz
n+1∂z, (5.14)

which belongs to local Lie algebra of Aut O(1), one introduces the operator

β = −
∑
n≥−1

βnLW (n).

We conlclude from (5.14) with the following

Lemma 9.

[β, YW (v, z)] =
∑
m≥−1

1

(m+ 1)!

(
∂m+1
z β(z)

)
YW (LV (m)v, z). (5.15)

The formula (5.15) is used in [1] (Chapter 6) in order to prove invariance of vertex
operators multiplied by conformal weight differentials in case of primary states, and
in generic case.

Let us give some further definition:

Definition 24. A grading-restricted vertex algebra V -module W is called quasi-
conformal if it carries an action of local Lie algebra of Aut O such that commutation
formula (5.15) holds for any v ∈ V , the element LW (−1) = −∂z, as the translation
operator T ,

LW (0) = −z∂z,

acts semi-simply with integral eigenvalues, and the Lie subalgebra of the positive part
of local Lie algebra of Aut O(n) acts locally nilpotently.

Recall [1] the exponential form ρ̃(ζ) (5.11) of the coordinate transformation (5.9)
ρ(z) ∈ Aut O(1). A quasi-conformal vertex algebra possesses the formula (5.15),
thus, it is possible by using the identification (5.12), to introduce the linear operator
representing ρ̃(ζ) (5.11) on Wz1,...,zn ,

P (ρ̃(ζ)) = exp

(∑
m>0

(m+ 1) βm LV (m)

)
β
LW (0)
0 , (5.16)
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(note that we have a different normalization in it). In [1] (Chapter 6) it was shown
that the action of an operator similar to (5.16) on a vertex algebra element v ∈ Vn
contains finitely meny terms, and subspaces

V≤m =
m⊕

n≥K

Vn,

are stable under all operators P (ρ̃), ρ̃ ∈ Aut O(1). In [1] they proved the following

Lemma 10. The assignment

ρ̃ 7→ P (ρ̃),

defines a representation of Aut O(1) on V ,

P (ρ̃1 ∗ ρ̃2) = P (ρ̃1) P (ρ̃2),

which is the inductive limit of the representations V≤m, m ≥ K.

Similarly, (5.16) provides a representation operator on Wz1,...,zn .

5.1. Square-zero extensions of V . Let us first recall some definitions [13] concern-
ing the notion of square-zero extension of V by its module W .

Definition 25. Let V be a grading-restricted vertex algebra. A square-zero ideal of
V is an ideal W of V such that for any u, v ∈W ,

YV (u, x)v = 0.

Definition 26. Let V be a grading-restricted vertex algebra and W a Z-graded V -
module. A square-zero extension (VW , γ, α) of V by W is a grading-restricted vertex
algebra VW together with a surjective homomorphism

γ : VW → V,

of grading-restricted vertex algebras such that ker γ is a square-zero ideal of VW (and
therefore a V -module) and an injective homomorphism α of V -modules from W to
VW such that

α(W ) = ker γ.

Definition 27. Two square-zero extensions (VW,1, γ1, α1) and (VW,2, γ2, α2) of V by
W are equivalent if there exists an isomorphism of grading-restricted vertex algebras
h : VW,1 → VW,2 such that the diagram

0 −−−−→ W −−−−→
α1

VW,1 −−−−→
γ1

V −−−−→ 0

IdW

y h

y yIdV

0 −−−−→ W −−−−→
α2

VW,2 −−−−→
γ2

V −−−−→ 0,

is commutative.
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Let (VW , γ, α) be a square-zero extension of V by W . It is possible to construct
a realization of the square-zero extension of V by W on Z = V

⊕
W . Then there

exists an injective linear map Γ : V → VW , such that the linear map

h : Z → VW ,

given by

h(v, w) = Γ(v) + α(w),

is a linear isomorphism. By definition, the restriction of h to W is the isomorphism
α from W to ker γ. Then the grading-restricted vertex algebra structure and the
V -module structure on VW give a grading-restricted vertex algebra structure and a
V -module structure on Z such that the embedding i2 : W → Z and the projection
p1 : Z → V , are homomorphisms of grading-restricted vertex algebras. In addition
to that, ker p1 is a square-zero ideal of Z, i2 is an injective homomorphism such that
i2(W ) = ker p1 and the diagram

0 −−−−→ W
i2−−−−→ Z

p1−−−−→ V −−−−→ 0

IdW

y h

y yIdV

0 −−−−→ W −−−−→
α

VW −−−−→
γ

V −−−−→ 0

(5.17)

of V -modules is commutative. Thus, one obtains a square-zero extension (Z, p1, i2)
equivalent to (VW , γ, α). It is enough then to consider square-zero extensions of V
by W of the particular form (Z, p1, i2). The difference between two such square-zero
extensions consists in the vertex operator maps. Such square-zero extensions will be
denoted by (Z, YZ , p1, i2).

The explicit definition for Z-vertex operator was introduced in [13]. We denote by
(Z, YZ , p1, i2) a suitable square-zero extension of V by W . Then there exists

ωΨ (u, z) v ∈ W((z)),

for u, v ∈ V such that

ωZ((v1, 0), z)(v2, 0) = (ωV (v1, z)v2, ωΨ(v1, z)v2),

ωZ((v1, 0), z)(0, w) = (0, ωV (v1, z)w2),

ωZ((0, w1), z)(v2, 0) = (0, ωWWV (w, z)v2),

ωZ((0, w1), z)(0, w2) = 0,

for v1, v2 ∈ V and w1, w2 ∈W . Thus, one has

ωZ((v1, w1), z)(v2, w2) (5.18)

=
(
ωV (v1, z)v2, ωW (v1, z) w2 + ωWWV (w1, z) v2 + ωΨ(v1, z) v2

)
,

for v1, v2 ∈ V and w1, w2 ∈W . The vacuum of Z is given by (1V , 0), and

ωΨ(v, z)1V = 0,

and the dual space Z ′ for Z is identified with

Z ′ = V ′ ⊕W ′.
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By Definition 20 of a grading-restricted vertex algebra, for v, v′ ∈ V , vertex operators
ωΨ(v, z) and ωV (v′, z′) in extension (VW , γ, α), satisfy the associativity property, i.e.,
their matrix elements of (5.2) converge (under appropriate conditions for local coor-
dinates of points) to the same Wz1,z2 -valued rational function. Thus, for v1, v2 ∈ V ,
and (z1, z2) ∈ F2C, we introduce a linear map

Φ : V ⊗ V →Wz1,z2 ,

such that

RΦ(v1,v2)(z1, z2) = RωΨωV (v1,v2)(z1, z2)

= RωΨωV (v2,v1)(z2, z1)

= RωWWV (ωΨ)(v1,v2)(z1 − z2, z2). (5.19)

6. Appendix: Cohomology in terms of connections

6.1. Multi-point holomorphic connections. In this subsection, motivated by the
definition of the holomorphic connection for a vertex algebra bundle (cf. Section
6, [1]) over a smooth complex variety, we introduce the definition of the multiple
point holomorphic connection over a smooth complex curve M.

Definition 28. Let V be a holomorphic vector bundle overM, andM0 its subman-
ifold. A holomorphic multi-point connection G on V is a C-multi-linear map

G : E → E ⊗ Ω,

such that for any holomorphic function f , and two sections φ(p) and ψ(p′) at points
p and p′ on M0 correspondingly, we have∑

q,q′M0⊂M
G (f(ψ(q)).φ(q′)) = f(ψ(p′)) G (φ(p)) + f(φ(p)) G (ψ(p′)) , (6.1)

where the summation on left hand side is performed over a locus of points q, q′ on
M0. We denote by ConM0(S) the space of such connections defined over a smooth
complex curve M. We will call G satisfying (6.1), a closed connection, and denote
the space of such connections by ConnM0;cl.

Geometrically, for a vector bundle V defined over a complex variety M, a multi-
point holomorphic connection (6.1) relates two sections φ and ψ of E at points p and
p′ with a number of sections at a subvariety M0 of M.

Definition 29. We call

G(φ, ψ) = f(φ(p)) G (ψ(p′)) + f(ψ(p′)) G (φ(p))−
∑

q,q′M0⊂M
G (f(ψ(q′)).φ(q)) , (6.2)

the form of a holomorphic connection G. The space of form for n-point holomorphic
connection forms will be denoted by Gn(p, p′, q, q′).

Definition 30. A fixed point holomorphic connection on E is defined by the condition∑
p0; q,q′∈M0⊂M

G (f(ψ(q′)).φ(q)) = f(ψ(p′0)) G (φ(p)) + f(φ(p)) G (ψ(p0)) , (6.3)

where a point p0 is fixed on M0.
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Definition 31. A holomorphic connection defined for a vector bundle V over a
smooth complex variety M (the two point case of the multi-point holomorphic con-
nection (6.1)) is called a two point connection when for any holomorphic function
f ,

G (f(ψ(p′)) .φ(p)) = f(ψ(p′)) G(φ(p)) + f(φ(p)) G(ψ(p′)), (6.4)

for two sections ψ(p′) and φ(p) of E. We denote the space of such connections as
Con2

p,p0;M0
.

Let us formulate another definition which we use in the next section:

Definition 32. We call a multi-point holomorphic connection G the transversal con-
nection, i.e., when it satisfies

f(ψ(p′)) G(φ(p)) + f(φ(p)) G(ψ(p′)) = 0. (6.5)

We call

Gtr(p, p
′) = (ψ(p′)) G(φ(p)) + f(φ(p)) G(ψ(p′)), (6.6)

the form of a transversal connection. The space of such connections is denoted by
G2
tr.

In various situations it is sometimes effective to use an interpretation of cohomology
in terms of connections. In particular in our supporting example of vertex algebra
cohomology of codimension one foliations. It is convenient to introduce multi-point
connections over a graded space and to express coboundary operators and cohomology
in terms of connections:

δnφ ∈ Gn+1(φ),

δnφ = G(φ).

Then the cohomology is defined as the factor space

Hn = Conncl; /Gn−1,

of closed multi-point connections with respect to the space of connection forms.

6.2. Double complex spaces for ordinary Čech-de Rham cohomology. Let
us recall the setup for ordinary Čech-de Rham cohomology [3,18]. Consider a smooth
manifold M. Consider the double complex

Ck,l =
∏

U1

h1
↪→···

hk
↪→Uk−1

Ωl(U1), (6.7)

where Ωl(U1) is the space of differential l-forms on U1, and the product ranges over all
k-tuples of holonomy embeddings between open domains Ui, i = 1, . . . , k. Component
of $ ∈ Ck,l are denoted by $(h1, . . . , hl) ∈ Ωl(U1). The vertical differential is defined
as

(−1)kd : Ck,l → Ck,l+1,

where d is the usual de Rham differential. The horizontal differential

δ : Ck,l → Ck+1,l,
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is given by

δ =
k∑
i=1

(−1)iδi,

δi$(h1, . . . , hk+1) = G(h1, . . . , hk+1), (6.8)

where G(h1, . . . , hk+1) is the multi-point connection of the form (6.1), i.e.,

δi$(h1, . . . , hp+1) =

 h∗1$(h2, . . . , hp+1), if i = 0,
$(h1, . . . , hi+1hi, . . . , hp+1), if 0 < i < p+ 1,
$(h1, . . . , hp), if i = p+ 1.

(6.9)

This double complex is actually a bigraded differential algebra, with the usual product

($ · η)(h1, . . . , hk+k ′) = (−1)kk
′
$(h1, . . . , hk) h∗1 . . . h

∗
k .η(hk+1, . . . hk+k ′), (6.10)

for $ ∈ Ck,l and η ∈ Ck′,l′ , thus, ($ · η)(h1, . . . , hk+k ′) ∈ Ck+k′,l+l′ . Let us denote
by U a collection of open domains on M. The cohomology Ȟ∗U(M) of this complex

is called the Čech-de Rham cohomology of M with respect to U. It is defined by

Ȟ∗U(M) = Conk+1
cl (h1, . . . , hk+1)|U/Gk(h1, . . . , hk)|U,

where Conk+1
cl (h1, . . . , hk+1) is the space of closed multi-point connections, and Gk

(h1, . . ., hk) is the space of k-point connection forms on U.

7. Appendix: Proofs of Lemmas 1, 2, and Proposition 3

In this Appendix we provide proofs of Lemmas 1, 2, and Proposition 3. We start
with the proof of Lemma 1.

Proof. From the construction of spaces for double complex for a grading-restricted
vertex algebra cohomology, it is clear that the spaces Cn(V,W,M)(Uj), 1 ≤ s ≤ m in
Definition 8 are non-empty. On each domain Us, 1 ≤ s ≤ m, Φ(v1, cj(p1); . . . ; vn, cj(pn))
belongs to the spaceWcj(p1),...,cj(pn), and satisfy the L(−1)-derivative (2.5) and L(0)-
conjugation (2.10) properties. A map Φ(v1, cj(p1); . . .; vn, cj(pn)) is composable with
m vertex operators with formal parameters identified with local coordinates cj(p

′
j),

on each domain Uj . Note that on each domain U , n and m the spaces (3.6) remain
the same. The only difference may be constituted by the composibility conditions
(2.14) and (2.16) for Φ.

In particular, for l1, . . . , ln ∈ Z+ such that l1 + · · ·+ ln = n+m, v1, . . . , vm+n ∈ V
and w′ ∈W ′, recall (2.11) that

Ψi = ωV (vk1
, ck1

(pk1
)− ζi) . . . ωV (vki , cki(pki)− ζi) 1V , (7.1)

where ki is defined in (2.12), for i = 1, . . . , n, depend on coordinates of points on
domains. At the same time, in the first composibility condition (2.14) depends on
projections Pr(Ψi), r ∈ C, of Wc(p1),...,c(pn) to W , and on arbitrary variables ζi,
1 ≤ i ≤ m. On each transversal connection Us, 1 ≤ s ≤ m, the absolute convergence
is assumed for the series (2.14) (cf. Appendix 2.2). Positive integers Nn

m(vi, vj),
(depending only on vi and vj) as well as ζi, for i, j = 1, . . . , k, i 6= j, may vary for
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domains U . Nevertheless, the domains of convergence determined by the conditions
(2.15) which have the form

|cmi(pmi)− ζi|+ |cni(pni)− ζi| < |ζi − ζj |, (7.2)

for mi = l1 + · · · + li−1 + p, n = l1 + · · · + lj−1 + q, i, j = 1, . . . , k, i 6= j and for
p = 1, . . . , li and q = 1, . . . , lj , are limited by |ζi − ζj | in (7.2) from above. Thus, for
the intersection variation of sets of homology embeddings in (3.6), the absolute con-
vergence condition for (2.14) is still fulfilled. Under intersection in (3.6) by choosing
appropriate Nn

m(vi, vj), one can analytically extend (2.14) to a rational function in
(c1(p1), . . . , cn+m(pn+m)), independent of (ζ1, . . . , ζn), with the only possible poles at
ci(pi) = cj(pj), of order less than or equal to Nn

m(vi, vj), for i, j = 1, . . . , k, i 6= j.
As for the second condition in Definition of composibility, we note that, on each

domain of U, the domains of absolute convergense ci(pi) 6= cj(pj), i 6= j |ci(pi)| >
|ck(pj)| > 0, for i = 1, . . . ,m, and k = 1 +m, . . . , n+m, for

J nm(Φ) =
∑
q∈C

RωW ...ωW Pq(Φ)(v1,...,vm) (p1, . . . , pm, p1+m, . . . , pn+m) , (7.3)

are limited from below by the same set ot absolute values of local coordinates on
a domain of U. Thus, under intersection in (3.6) this condition is preserved, and
the sum (2.16) can be analytically extended to a rational function in (c1(p1), . . . ,
cm+n(pm+n)) with the only possible poles at ci(pi) = cj(pj), of orders less than or
equal to Nn

m(vi, vj), for i, j = 1, . . . , k, i 6= j. Thus, we proved the lemma. �

Next, we prove Proposition 3.

Proof. Here we prove that for generic elements of a quasi-conformal grading-restricted
vertex algebra Φ and ωW ∈ Wz1,...,zn and are canonical, i.e., independent on changes

zi 7→ wi = ρi(zi), 1 ≤ i ≤ n, (7.4)

of local coordinates of ci(pi) at points pi 1 ≤ i ≤ n. Thus, the construction of the
double complex spaces (3.6) is proved to be canonical too. Let us denote by

ξi =

((
β

(i)
0

)−1

dwi

)wt (vi)

.

Recall the linear operator (3.4) (cf. Appendix 5). Introduce the action of the trans-
formations (7.4) as

Φ
(
dw

wt (v1)
1 ⊗ v1, w1; . . . ; dwwt (vn)

n ⊗ vn, wn
)

=

(
dρ̃ζ(ζ)

dζ

)−LW (0)

P (ρ̃ζ(ζ)) Φ (ξ1 ⊗ v1, z1; . . . ; ξn ⊗ vn, zn) . (7.5)

We then obtain

Lemma 11. An element (2.3)

R
Φ
(
dz

wt(v1)
1 ⊗v1, ..., dz

wt(vn)
n ⊗vn

)(z1, . . . , zn),
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of Wz1,...,zn is canonical, i.e., it is invariant under elements (7.4) of
(
Autp1 O(1)×

. . .×Autpn O(1)
)
.

Proof. Consider (7.5). First, note that

ρ̃′i(ζ) =
dρ̃i(ζ)

dζ
=
∑
m≥0

(m+ 1) β(i)
m ζm.

By using the identification (5.12) and and the LW (−1)-properties (2.5) and (2.10) we
obtain

R
Φ
(
dw

wt(v1)
1 ⊗v1 ... dw

wt(vn)
n ⊗vn

)(w1, . . . , wn)

= Rρ̃′ζ(ζ)−LW (0) P (ρ̃ζ(ζ)) Φ(ξ1 ⊗v1,...; ξn⊗vn)(z1, . . . , zn)

= R (
dρ̃ζ(ζ)

dζ

)−LW (0)

Φ
(
dw

wt(v1)
1 ⊗v1,...,dw

wt(vn)
n ⊗vn,

)∑
m≥0

(m+ 1) β(1)
m zm+1

1 , . . . ,
∑
m≥0

(m+ 1) β(n)
m zm+1

n


= R( dρ̃ζ(ζ)

dζ

)−LW (0)

Φ

(
dw

wt (v1)
1 ⊗v1,...,dw

wt(vn)
n ⊗vn

)
((

dρ̃1(z1)

dz1

)
z1, . . . ,

(
dρ̃n(zn)

dzn

)
zn

)
= R

Φ

((
dρ̃1(z1)
dz1

dw1

)−wt (v1)
⊗v1, ..., ( dρ̃n(zn)

dzn
dwn)

−wt (vn)
⊗vn

)(z1, . . . , zn)

= R
Φ
(
dz

wt(v1)
1 ⊗v1, ..., dz

wt(vn)
n ⊗vn

)(z1, . . . , zn).

Thus, we proved the Lemma. �

The elements Φ(v1, z1; . . . ; vn, zn) of Cnm(U) belong to the space Wz1,...,zn and
assumed to be composable with a set of vertex operators ωW (vj , cj(pj)), 1 ≤ j ≤ m.

Vertex operators ωW (dcj(pj)
wt (vj) ⊗ vj , cj(pj)) constitute particular examples of

mapping of C1
∞(U) and, therefore, are invariant with respect to (7.4). Thus, the

construction of spaces (3.6) is invariant under the action of the group �

Finally, we give a proof of Lemma 2.

Proof. Since n is the same for both spaces in (3.8), it only remains to check that
the conditions for (2.14) and (2.16) for Φ(v1, cj(p1); . . . ; vn, cj(pn)) of composibility
Definition 2.2 with vertex operators are stronger for Cnm(U) then for Cnm−1(U). In
particular, in the first condition for (2.14) in definition of composability 5 the dif-
ference between the spaces in (3.8) is in indeces. Consider (7.1). For Cnm−1(U), the
summations in idexes k1 = l1 + · · ·+ li−1 + 1, ..., ki = l1 + · · ·+ li−1 + li, for the co-
ordinates cj(p1), ..., cj(pn) with l1, . . . , ln ∈ Z+, such that l1 + · · ·+ ln = n+ (m− 1),
and vertex algebra elements v1, . . . , vn+(m−1) are included in summation for indexes



FORMAL SERIES COHOMOLOGY OF COMPLEX CURVES 31

for Cnm(U). The conditions for the domains of absolute convergence for M, i.e.,
|cl1+···+li−1+p − ζi| + |cl1+···+lj−1+q − ζi| < |ζi − ζj |, for i, j = 1, . . . , k, i 6= j, and
for p = 1, . . . , li and q = 1, . . . , lj , for the series (2.14) are more restrictive then for
m− 1. The conditions for Inm−1(Φ) to be extended analytically to a rational function
in (c1(p1), . . . , cn+(m−1)(pn+(m−1))), with positive integers Nn

m−1(vi, vj), depending
only on vi and vj for i, j = 1, . . . , k, i 6= j, are included in the conditions for Inm(Φ).

Similarly, the second condition for (2.16), of is absolute convergence and analytical
extension to a rational function in (c1(p1), . . . , cm+n(pm+n)), with the only possible
poles at ci(pi) = cj(pj), of orders less than or equal to Nn

m(vi, vj), for i, j = 1, . . . , k,
i 6= j, for (2.16) when ci(pi) 6= cj(pj), i 6= j |ci(pi)| > |ck(pk)| > 0 for i = 1, . . . ,m,
and k = m+ 1, . . . ,m+n includes the same condition for J nm−1(Φ). Thus, we obtain
the conclusion of Lemma. �

8. Appendix: Cohomological classes and characterization of complex
curves

In this appendix we describe certain classes associated to the first and the second
vertex algebra cohomologies of complex curves. It is a separate geometrical problem
to introduce a product defined among elements of spaces Cnm(U) of (3.6). Neverthe-
less, even with such a product yet missing, it is possible to introduce the lower-level
cohomological classes of the form [δη]. Let us give some further definitions.

Definition 33. We call a map

Φ ∈ Cnk (U),

closed if it is a closed connection:

δnkΦ = G(Φ) = 0.

For k ≥ 1, we call it exact if there exists Ψ ∈ Cn+1
k−1 (U) such that Ψ = δnkΦ, i.e., Ψ is

a form of connection.

For Φ ∈ Cnk (V,W,M) we call the cohomology class of mappings [Φ] the set of all

closed forms that differ from Φ by an exact mapping, i.e., for χ ∈ Cn−1
k+1 (V,W,M),

[Φ] = Φ + δn−1
k+1χ.

As we will see in this section, there are cohomological classes, (i.e., [Φ], Φ ∈ C1
m(U),

m ≥ 0), associated with two-point connections and the first cohomology H1
m(U), and

classes (i.e., [Φ], Φ ∈ C2
ex(U)), associated with transversal connections and the second

cohomology H2
ex(U), of M.

Remark 4. That means that the actual functional form of Φ(v, z) (and therefore
〈w′,Φ〉, for w′ ∈W ′) varies with various choices of v ∈ V .

In this section we consider a general formulation of characterizasion of a com-
plex curve M by means of rational functions of invariants. Let us introduce further
notations, for n ≥ 0,

x = (x1, . . . , xn),

for n vertex algebra element, formal parameters, points, etc. Introduce
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Definition 34. For an element Φ(v, c(p)) ∈ Wc1(p1),...,cn(pn) let us call n-variable
rational function valued form

R(z) = RΦ(v)(c(p)), (8.1)

the characteristic form.

We have used this form for the construction of chain complexes in Section 3.2. In
certain cases, depending on properties of Φ(v, z), one is able to compute this matrix
element explicitely.

By varying vertex algebra elements vi, one can vary the the form of dependence
of Φ(v, c(p)) on v, and, therefore, obtain various functions of R(z). By using the
freedom of choice of v ∈ V , we could try to find a suitable pattern for of Φ(v, c(p))
(as a functional of v), in such a way (8.1) would result to a specific differential form.
Since Φ(v, c(p)) belongs to Cnm(U) for some n, m, it is important to mention that,
due to our formulation in terms of matrix elements, (8.1), associated to cohomological
invariants are supposed to be absolutely convergent in suitable domains of M. One
can also integrate (8.1) along (closed) paths either on M. For that purpose we
introduce

Definition 35. We call a multiple integral

F (z′) =

(p2)∫
(p1)

R (c(p)) , (8.2)

the characteristic function for M, where (pi), i = 1, 2 denote limiting points of inte-
gration.

In Proposition 3 we proved, in particular, that elements of spaces Cnm(U) ∈
Wz1,...,zn are invariant with respect to changes of formal parameters (z1, . . . , zn).
In Definition 34 of a characteristic form we use such elements, and, therefore, (8.1),
containing wt (vi), 1 ≤ i ≤ n, of corresponding differentials, is also invariant with
respect to action of

(
Autp1

O(1) × . . .×Autpn O(1)
)
.

8.1. Characterization of curves by composibilty conditions. Let us start with
forms associated to the composibility conditions. For l1, . . . , ln ∈ Z+ such that l1 +
· · ·+ ln = n+m, define k1 = l1 + · · ·+ li−1 + 1, ..., ki = l1 + · · ·+ li−1 + li. Consider
a set of pk1

, . . . , pkn with local coordinates ck1
(pk1

), . . . , ckn(pkn), on M for points
on M. Then, for v1, . . . , vn+m ∈ V and w′ ∈ W ′, one defines (2.11) and there exist
positive integers Nn

m(vi, vj) depending only on vi and vj for i, j = 1, . . . , k, i 6= j
such that the series (2.14) is absolutely convergent when for lp = l1 + · · ·+ li−1 + p,
lq = l1 + · · ·+ lj−1 + q,

|clp(plp)− ζi|+ |clq (plq )− ζi| < |ζi − ζj |, (8.3)

for i, j = 1, . . . , k, i 6= j and for p = 1, . . . , li and q = 1, . . . , lj . Note that in (2.14) the
original variables zi are present in combinations (2.11) only, and the conditions on
domains of convergence are express through such combinations clp(plp) and clq (plq ),
and some ζi which could be identified with other local coordinates on M. Thus,
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we obtain an external (with respect to original coordinates) condition on Inm(Φ).
Geometrically this means that the sum of shifts in domains of convergence with respect
to clp(plp) and clq (plq ) are smaller than difference for other two points with local
coordinates ζi and ζj . It is also assumed that the sum must be analytically extended
to a rational function in (c1(p1), . . . , cm+n(pm+n)), independent of (ζ1, . . . , ζn), with
the only possible poles at ci(pi) = cj(pj), of order less than or equal to Nn

m(vi, vj),
for i, j = 1, . . . , k, i 6= j.

Consider the second condition in Definition 5. For v1, . . . , vm+n ∈ V , there exist
positive integers Nn

m(vi, vj), depending only on vi and vj , for i, j = 1, . . . , k, i 6= j,
such that for w′ ∈W ′, such that (2.16) is absolutely convergent when zi 6= zj , i 6= j

|ci(pi)| > |ck(pk)| > 0, (8.4)

for i = 1, . . . ,m, and k = m+ 1, . . . ,m+n, and the sum can be analytically extended
to a rational function in (z1, . . . , zm+n) with the only possible poles at zi = zj , of
orders less than or equal to Nn

m(vi, vj), for i, j = 1, . . . , k, i 6= j,. Elements Φ of
spaces Cnm(U) (3.6) are composable with m vertex operators, and, therefore possess
properies described above. Due to absulute convergence in the regions (8.3) and (8.4)
on M, forms Inm(Φ) and Jnm(Φ) locally characterize M.

References

[1] D. Ben-Zvi and E. Frenkel Vertex algebras on algebraic curves. American Mathematical Society,
2 edition, 2004.

[2] R. Bott, G. Segal The cohomology of the vector fields on a manifold. Topology. V. 16, Issue 4,

1977, Pages 285–298.
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