Photosynthetica, 2012 (vol. 50), issue 4

Photosynthetica 2012, 50(4):635-640 | DOI: 10.1007/s11099-012-0063-1

Changes in stomatal characteristics and photochemical efficiency during leaf development in six species of Sorbus

I. Čaňová1,*, J. Ďurkovič1, D. Hladká2, I. Lukáčik3
1 Department of Phytology, Technical University, Zvolen, Slovak Republic
2 Institute of Landscape Research, Matej Bel University, Banská Bystrica, Slovak Republic
3 Department of Silviculture, Technical University, Zvolen, Slovak Republic

Measurements of Sorbus stomata size and density, maximal photochemical efficiency of photosystem II (Fv/Fm), variable-to-initial fluorescence ratio (Fv/F0) and potential electron acceptor capacity ('area') were performed during leaf development in four parental diploid species, S. aria, S. aucuparia, S. chamaemespilus, S. torminalis, and two hybrid species, S. hazslinszkyana and S. intermedia. In fully expanded mature leaves, stomata lengths and densities were significantly larger in the shrub S. chamaemespilus than in the five tree species. The best performance of both the Fv/Fm and the Fv/F0 ratio was recorded in S. intermedia, whereas S. chamaemespilus had the highest value of 'area'. From a physiological point of view, the results of this study showed that the photosystem II reaction centers remained intact functionally through all phenological stages of leaf expansion for all examined species of Sorbus.

Keywords: phenological stages; photochemical efficiency; Sorbus chamaemespilus

Received: February 23, 2012; Accepted: June 30, 2012; Published: December 1, 2012Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Čaňová, I., Ďurkovič, J., Hladká, D., & Lukáčik, I. (2012). Changes in stomatal characteristics and photochemical efficiency during leaf development in six species of Sorbus. Photosynthetica50(4), 635-640. doi: 10.1007/s11099-012-0063-1.
Download citation

References

  1. Bolhàr-Nordenkampf, H.R., Götzl, M.: [Chlorophyll fluorescence as an indicator of the increasing stress with the elevation of spruce needles.] - FBVA-Berichte 67: 119-131, 1992. [In German.]
  2. Calatayud, V., Cerveró, J., Sanz, M.J.: Foliar, physiologial and growth responses of four maple species exposed to ozone. - Water Air Soil Pollut. 185: 239-254, 2007. Go to original source...
  3. Casson, S., Gray, J.E.: Influence of environmental factors on stomatal development. - New Phytol. 178: 9-23, 2008. Go to original source...
  4. Cavender-Bares, J., Cortes, P., Rambal, S., Joffre, R., Miles, B., Rocheteau, A.: Summer and winter sensitivity of leaves and xylem to minimum freezing temperatures: a comparison of co-occurring Mediterranean oaks that differ in leaf lifespan. - New Phytol. 168: 597-612, 2005. Go to original source...
  5. Čaňová, I., Ďurkovič, J., Hladká, D.: Stomatal and chlorophyll fluorescence characteristics in European beech cultivars during leaf development. - Biol. Plant. 52: 577-581, 2008.
  6. De Smet, I., Voß, U., Jürgens, G., Beeckman, T.: Receptor-like kinases shape the plant. - Nature Cell Biol. 11: 1166-1173, 2009. Go to original source...
  7. Demmig, B., Björkman, O.: Comparison of the effect of excessive light on chlorophyll fluorescence (77 K) and photon yield of O2 evolution in leaves of higher plants. - Planta 171: 171-184, 1987. Go to original source...
  8. Demmig-Adams, B., Adams, W.W., III: Photoprotection and other responses of plants to high light stress. - Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 599-626, 1992. Go to original source...
  9. Drinovec, L., Flander-Putrle, V., Knez, M., Beran, A., Berden-Zrimec, M.: Discrimination of marine algal taxonomic groups using delayed fluorescence spectroscopy. - Environ. Exp. Bot. 73: 42-48, 2011. Go to original source...
  10. Ennos, R.A., French, G.C., Hollingsworth, P.M.: Conserving taxonomic complexity. - Trends Ecol. Evol. 20: 164-168, 2005. Go to original source...
  11. Georgieva, K., Tsonev, T., Velikova, V., Yordanov, I.: Photosynthetic activity during high temperature treatment of pea plants. - J. Plant Physiol. 157: 169-176, 2000. Go to original source...
  12. Haisel, D., Pospíšilová, J., Synková, H., Schnablová, R., Baťková, P.: Effects of abscisic acid or benzyladenine on pigment contents, chlorophyll fluorescence, and chloroplast ultrastructure during water stress and after rehydration. - Photosynthetica 44: 606-614, 2006. Go to original source...
  13. Huner, N.P.A., Öquist, G., Sarhan, F.: Energy balance and acclimation to light and cold. - Trends Plant Sci. 3: 224-230, 1998. Go to original source...
  14. Kelly, C.K., Beerling, D.J.: Plant life form, stomatal density and taxonomic relatedness: a reanalysis of Salisbury (1927). - Funct. Ecol. 9: 422-431, 1995. Go to original source...
  15. Krause, G.H., Weis E.: Chlorophyll fluorescence and photosynthesis: the basics. - Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 313-349, 1991. Go to original source...
  16. Larcher, W.: Temperature stress and survival ability of Mediterranean sclerophyllous plants. - Plant Biosyst. 134: 279-295, 2000. Go to original source...
  17. Major, J.E., Barsi, D.C., Mosseler, A., Rajora, O.P., Campbell, M.: Predominant paternal inheritance of light-energy processing adaptive traits in red and black spruce hybrids. - Can. J. Forest Res. 37: 293-305, 2007. Go to original source...
  18. Mathur, S., Jajoo, A., Mehta, P., Bharti, S.: Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). - Plant Biol. 13: 1-6, 2011. Go to original source...
  19. Mohammed, G.H., Binder, W.D., Gillies, S.L.: Chlorophyll fluorescence: A review of its practical forestry applications and instrumentation. - Scand. J. Forest Res. 10: 383-410, 1995. Go to original source...
  20. Nesterenko, T.V., Tikhomirov, A.A., Shikhov, V.N.: Ontogenetic approach to the assessment of plant resistance to prolonged stress using chlorophyll fluorescence induction method. - Photosynthetica 44: 321-332, 2006. Go to original source...
  21. Offord, C.A.: Pushed to the limit: consequences of climate change for the Araucariaceae: a relictual rain forest family. - Ann. Bot. 108: 347-357, 2011. Go to original source...
  22. Ogaya, R., Peñuelas, J., Asensio, D., Llusià, J.: Chlorophyll fluorescence responses to temperature and water availability in two co-dominant Mediterranean shrub and tree species in a long-term field experiment simulating climate change. - Environ. Exp. Bot. 71: 123-127, 2011. Go to original source...
  23. Parra, M.J., Acuña, K., Corcuera, L.J., Saldaña, A.: Vertical distribution of Hymenophyllaceae species among host tree microhabitats in a temperate rain forest in Southern Chile. - J. Veg. Sci. 20: 588-595, 2009. Go to original source...
  24. Percival, G.C.: Identification of foliar salt tolerance of woody perennials using chlorophyll fluorescence. - HortSci. 40: 1892-1897, 2005.
  25. Percival, G.C., Sheriffs, C.N.: Identification of drought-tolerant woody perennials using chlorophyll fluorescence. - J. Arboric. 28: 215-223, 2002.
  26. Phipps, J.B., Robertson, K.R., Smith, P.G., Rohrer, J.R.: A checklist of the subfamily Maloideae (Rosaceae). - Can. J. Bot. 68: 2209-2269, 1990. Go to original source...
  27. Robertson, A., Rich, T.C.G., Allen, A.M., Houston, L., Roberts, C., Bridle, J.R., Harris, S.A., Hiscock, S.J.: Hybridization and polyploidy as drivers of continuing evolution and speciation in Sorbus. - Mol. Ecol. 19: 1675-1690, 2010. Go to original source...
  28. Salisbury, E.J.: On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. - Philos. T. Roy. Soc. B216: 1-65, 1927.
  29. Šesták, Z., Šiffel, P.: Leaf-age related differences in chlorophyll fluorescence. - Photosynthetica 33: 347-369, 1997.
  30. Tay, A.-C., Furukawa, A.: Variations in leaf stomatal density and distribution of 53 vine species in Japan. - Plant Species Biol. 23: 2-8, 2008. Go to original source...
  31. von Groll, U., Berger, D., Altmann, T.: The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling during Arabidopsis stomatal development. - Plant Cell 14: 1527-1539, 2002. Go to original source...
  32. Warburg, E.F., Kárpáti, Z.E.: Sorbus L. - In: Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walters, S.M., Webb, D.A. (eds.): Flora Europaea, Vol. 2. Pp. 67-71. Cambridge University Press, Cambridge 1968.
  33. Yamori, W., Noguchi, K., Terashima, I.: Temperature acclimation of photosynthesis in spinach leaves: analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions. - Plant Cell Environ. 28: 536-547, 2005. Go to original source...
  34. Yamori, W., Sakata, N., Suzuki, Y., Shikanai, T., Makino, A.: Cyclic electron flow around photosystem I via chloroplast NAD(P)H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice. - Plant J. 68: 966-976, 2011. Go to original source...
  35. Yoo, S.D., Greer, D.H., Laing, W.A., McManus, M.T.: Changes in photosynthetic efficiency and carotenoid composition in leaves of white clover at different developmental stages. - Plant Physiol. Biochem. 41: 887-893, 2003. Go to original source...