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Summary 

Normal increase in hemodynamic load during early postnatal life 

is associated with heart growth and maturation of membrane 

structures that is accompanied by remodeling of membrane 

protein and lipid components. This review describes remodeling 

of phospholipids (PL) in rat myocardium during normal postnatal 

development and during accelerated cardiac growth induced by 

additional workload (aorta constriction, chronic hypoxia and 

hyperthyroidism) imposed on the heart early after birth. Normal 

physiological load after birth stimulates the development of 

membrane structures and synthesis of PL. While hyperthyroidism 

accelerates these processes, pressure overload has an inhibitory 

effect. These changes primarily influence the maturation of 

mitochondrial membranes as cardiolipin is one of the most 

affected PL species. The most sensitive part of PL structure in 

their remodeling process are PL acyl chains, particularly 

polyunsaturated fatty acids that are the key components 

determining the basic physicochemical properties of the 

membrane bilayer and thus the function of membrane-bound 

proteins and membrane-derived signaling lipid molecules. It is 

evident that PL remodeling may significantly influence both 

normal and pathological postnatal development of myocardium. 
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Introduction 
 
 Transition from prenatal to postnatal life is 
associated with profound changes in the circulation 
followed by restructuring of the cardiovascular system. 
The newborn heart possesses high capability to cope with 
an increased load accompanied by neural and endocrine 
maturation leading to myocardial growth. This high 
adaptive potential of the myocardium attenuates during 
maturation (Oštádal et al. 1999). Just after birth, the heart 
has to overcome the rapid switch-over from the right 
ventricle dominance in the fetus to the left ventricle 
dominance reflected by different growth pattern of both 
ventricles (Smolich 1995). In most mammals, ventricular 
myocytes lose their capability of division shortly after 
birth, and further growth of the heart is solely due to their 
hypertrophy and hyperplasia/hypertrophy of other cell 
types (Clubb and Bishop 1984). It was shown that the 
switch from hyperplastic to hypertrophic growth of rat 
ventricular myocytes occurs as early as after the third 
postnatal day (Li et al. 1996). Additional excessive load 
imposed during the early postnatal period leads to 
accelerated heart growth response by both myocyte 
hyperplasia and hypertrophy (Sedmera et al. 2003) 
accompanied by metabolic changes and remodeling of 
membranes including proteins (Wibo et al. 1995, Zheng 
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et al. 1996) and lipids (Mrnka et al. 1996, Hamplová et 
al. 2003, Novák et al. 2004). 
 The principal components of the membrane lipid 
bilayer are phospholipids (PL) and their ontogenetic 
remodeling contributes to the modification of membrane-
bound proteins that influence proper heart maturation. 
Furthermore, membrane PL are precursors of second 
messengers involved in a variety of signaling pathways. 
Hence, changes in the quantity and quality of cardiac PL 
have an indirect effect on the regulation of cardiac 
function and growth during postnatal development 
(Tappia 2007).  
 The present review summarizes the results 
dealing with remodeling processes of membrane PL and 
their fatty acid (FA) composition in rat myocardium 
during normal postnatal development and during 
accelerated cardiac growth induced by additional 
workload (aorta constriction, chronic hypoxia and 
hyperthyroidism) imposed on the heart early after birth. 
 
Phospholipid de novo synthesis and 
remodeling 
 
 Cellular membranes contain several classes of 
phospholipids that have numerous structural and 
functional roles in cells. Heart tissue maintains a distinct 
content and composition of various PL, such as 
phosphatidic acid (PA), phosphatidylcholine (PC), 
phosphatidylethanolamine (PE), phosphatidylglycerol 
(PG), diphosphatidylglycerol (cardiolipin, CL), 
phosphatidylinositol (PI), phosphatidylserine (PS) and 
sphingomyelin (SM) (Nováková et al. 1994). 
Glycerophospholipids are first formed by the de novo 
pathway using acyl-CoA as an acyl donor (Kennedy and 
Weiss 1956). Subsequently, in the remodeling pathway, 
cycles of deacylation and reacylation of 
glycerophospholipids modify the FA composition to 
generate mature membrane PL with asymmetry and 
diversity (Lands 1958). Polyunsaturated FA (PUFA) are 
usually located at the sn-2 position while saturated FA 
(SFA) and monounsaturated FA (MUFA) at the sn-1 

position of glycerophospholipids in an asymmetric 
manner (Wood and Harlow 1969, Yamashita et al. 1997).  
Biosynthetic pathways of most glycerophospholipids are 
localized at the endoplasmic reticulum while CL 
biosynthesis takes place in mitochondria. The precursor 
for glycerophospholipid de novo synthesis is glycerol-3-
phosphate (G3P) that is acylated in the first step by acyl-
CoA:glycerol-3-phosphate acyltransferase (GPAT) 

(Kennedy and Weiss 1956) (Fig. 1A). The resulting 
lysophosphatidic acid (LPA) is further acylated to PA by 
acyl-CoA:monoacylglycerol-3-phosphate acyltransferase 
(LPAAT). PA is converted either to cytidinediphosphate-
diacylglycerol (CDP-DAG) by CDP-DAG synthase or to 
DAG by the PA phosphatase. CDP-DAG can be further 
incorporated into PS, PI, PG and CL while DAG is 
transferred to CDP-choline or CDP-ethanolamine 
resulting in PC and PE (Fig. 1A). It is necessary to 
mention that both acyltransferases, involved in de novo 
PL synthesis in the heart, possess broad substrate affinity 
for different SFA and MUFA (Zaror-Behrens and Kako 
1976) that does not correspond to characteristic acyl 
chain composition of mature PL in specific cellular 
membranes with preference for PUFA in sn-2 position of 
individual PL. Thus, the acyl chain remodeling pathways 
have been proposed to account for the characteristic 
profile of acyl chains in phosphoglyceride species. Lands' 
cycle involves a two-step deacylation-reacylation process 
whereby non-specific acyl chains are cleaved from 
appropriate PL by phospholipase A2 (PLA2) and 
generated lyso-PL is reacylated by lyso-PL acyl-CoA 
acyltransferases with high specificity for unsaturated FA 
(Fig. 1B) (Lands 1958). Another pathway, participating 
in PL remodeling, is the transacylation reaction 
(Yamashita et al. 1997), which involves transfer of acyl 
chain from various diacyl-PL to lyso-PL (Fig. 1C). 
 
Normal postnatal development of myocardial 
phospholipids 
 
Phospholipid species 
 The mass of cardiac membrane structures rises 
dramatically during early postnatal development; the 
biosynthesis of protein and PL components predominates 
over its degradation, whereas both processes are more in 
a dynamic equilibrium in the adult heart under 
physiological conditions (Girard et al. 1992, Nováková et 
al. 1994). The time course of changes in the myocardial 
concentration of total PL is generally proportional to 
ventricular growth. Nevertheless, there are two 
exceptions (Fig. 2). In the rat heart, the increment of total 
PL between postnatal days d2-d5 and d20-d40 is higher 
than that of ventricular weight (Novák et al. 2006). These 
periods are considered to be the most critical and stressful 
periods of rat postnatal life (Olivetti et al. 1980). The first 
one is characterized by an abrupt increase of cardiac 
workload and concomitant transition from predominantly 
anaerobic fetal metabolism of carbohydrates to aerobic 
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metabolism of FA. The second period includes nutritional 
transition from suckling of mother’s milk to solid food 
intake and initiation of circadian rhythms (Babický et al. 
1973, Smolich 1995).  
 Analysis of individual PL species demonstrates 
that mainly PC and PE are responsible for this uneven 
rise of total PL concentration during early postnatal 
development, since these two major PL account for 
almost 80 % of total PL in the rat heart (Novák et al. 
2006). Other studies (Gudmundsdottir and Gudbjarnason 
1983, Kumar and Chaudhuri 1993) also reported an 
increase in the amount of PC and PE in the developing rat 
heart but, due to different developmental stages analyzed, 
they did not observe these critical periods. PE is thought 
to play a crucial role during cardiomyocyte proliferation; 
there is evidence that this amino-PL plays a pivotal role 
in the cytokinetic process (Emoto and Umeda 2000). PE 
resides in the inner leaflet of the majority of eukaryotic 
plasma membranes (Zachowski 1993) including rat 
cardiomyocytes (Post et al. 1988). It is probably localized 
in PE-rich domains (Emoto and Umeda 2000) that tend to 
form a non-bilayer hexagonal structure, which has been 
shown to regulate various membrane-bound enzymes, 
such as phospholipase D (Nakamura et al. 1996) and 
protein kinase C (PKC) (Bazzi et al. 1992). On the other 
hand, PC is more disposed to maintain the lamellar 

organization of membranes due to its large polar head 
group, which provides lateral pressure equilibrium 
between the headgroup and acyl chain level (Goni and 
Alonso 1999). Besides, PC plays an important role in 
PKC signaling (Lamers et al. 1992, Slater et al. 1996).  
 PC and PE occur not only as 
diacylglycerophospholipids but their sn-1 vinyl-ether-
linked analogues, plasmalogens, are present in relatively 
high amounts in the rat myocardium as well (Novák et al. 
2006, Post et al. 1988). Plasmalogens are less polar than 
their ester analogues because of the absence of the ester 
carbonyl dipole. This fact results in the changes of 
molecular conformation and consequently in different 
physicochemical properties of the lipid bilayer (Han and 
Gross 1990). Plasmalogen content in cardiac membranes 
differs among mammalian species. For example, the 
amount of choline plasmalogen (PLPC) is high in human, 
rabbit, dog and guinea pig myocardium (up to 20-40 % of 
PC), whereas in rat, mouse and hamster it comprises only 
3-8 % of PC (van der Vusse et al. 1992). Ethanolamine 
plasmalogen (PLPE) concentration is approximately  
5-fold higher than that of PLPC in the rat heart (Hack and 
Helmy 1988, Novák et al. 2006). In the course of 
postnatal development, the PLPC proportion drops 
transiently to a minimum by d5, grows again by d10, and 
then does not change till adulthood (Fig. 3). PLPE 

 
 
Fig. 1. Simplified scheme of phospholipid de novo synthesis and remodeling pathways. A. G3P (glycerol-3-phosphate), GPAT (acyl-
CoA:glycerol-3-phosphate acyltransferase), LPA (lysophosphatidic acid), LPAAT (acyl-CoA:monoacylglycerol-3-phosphate 
acyltransferase), PA (phosphatidic acid), CTP (cytidinetriphosphate), CDP-DAG (cytidinediphosphate-diacylglycerol), DAG 
(diacylglycerol), PC (phosphatidylcholine), PE (phosphatidylethanolamine), PI (phosphatidylinositol), PGp (phosphatidylglycerol 
phosphate), PS (phosphatidylserine), PG (phosphatidylglycerol), CL (cardiolipin, diphosphatidylglycerol). B. PC (phosphatidylcholine), 
LPCAT (lysophosphatidylcholine acyltransferase), PLA2 (phospholipase A2), LPC (lysophosphatidylcholine), FA (fatty acid). C. LPLx 
(lysophospholipid x), PLx (phospholipid x), PLy (phospholipid y), LPLy (lysophospholipid y), TA (Acyl-CoA independent transacylase). 
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proportion falls within the suckling-to-weaning transition 
(Novák et al. 2006). The dramatic changes in cardiac 
PLPC and PLPE proportion during early rat ontogeny 
might be related to the postnatal changes in intracellular 
Ca2+ transients that also take place in the first postnatal 
weeks (Escobar et al. 2004). This view is supported by a 
preferential distribution of plasmalogens in the inner 
leaflet of the sarcolemma (Gross 1984, Post et al. 1988) 
and the sarcoplasmic reticulum and by their propensity 
for inverted hexagonal phase formation (Glaser and Gross 
1994), which are indications of their participation in ion 
transport (Chen and Gross 1994). In line with this, Ford 
and Hale (1996) showed that plasmalogens provide a 
critical lipid environment for the regulation of the trans-

sarcolemmal sodium-calcium exchanger. Plasmalogens 
also play an important role as a source of second 
messengers: ether-linked diglycerides as effective 
activators of PKC (Ford and Gross 1990), and 
arachidonic acid (20:4n-6) (Glaser and Gross 1994), the 
precursor of eicosanoids and a potent signaling molecule 
(Lokuta et al. 1994). 
 The concentration of CL, a marker of the inner 
mitochondrial membrane, increases markedly by d40 
(Novák et al. 2006). This almost 3-fold increase suggests 
that mitochondrial membranes are predominant structures 
accounting for the growth of total PL concentration 
during the first five weeks of rat postnatal life. It has been 
shown that the interval between d1 and d4 is associated 
with the rapid and large accumulation of mitochondria 
and myofibrils in rabbit left ventricular (LV) 
myocardium. Mitochondria are packed more densely with 
cristae and the area of the mitochondrial inner membrane 
per unit of myofibrillar volume increases progressively 
throughout the perinatal period (Smith and Page 1977). In 
adult rat heart, the area of the mitochondrial inner 
membrane per unit cell volume exceeds that of the 

 
Fig. 2. A. Weights of rat left ventricle (mg wet weight).
B. Concentration of total phospholipids in rat left ventricle on
postnatal days 2, 5, 10, 20, 40, 60, 80 and 100. Values are 
means ± S.E.M. from 5 experiments in each group. #p<0.05, 
significant difference vs. previous stage (adapted from Novák et 
al. 2006). 
 

 
Fig. 3. Developmental changes in the concentration of PI 
(phosphatidylinositol), DAG (diacylglycerol) and PLPC (choline 
plasmalogen). Values are expressed as arbitrary units (sum of 
concentrations measured on postnatal days 2, 5 and 10 is equal 
to 1). Values are means ± S.E.M. from 5 experiments in each 
group. #p<0.05, significant difference vs. 2-day-old rats (adapted 
from Novák et al. 2006). 
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sarcoplasmic reticulum by 16-fold and that of the 
sarcolemma by about 41-fold in LV myocytes (Page 
1978). The rapid increase in CL amount in the neonatal 
rat heart has been confirmed by incorporation studies 
using radioactive precursors. The rate of CL biosynthesis 
is 4.5-fold higher in mitochondria isolated from neonatal 
rat hearts than in those from adults (Stuhne-Sekalec et al. 
1990). CL is known to be associated with several inner 
mitochondrial membrane proteins (Hoch 1992), the best 
characterized being its interaction with cytochrome c 
oxidase. Paradies et al. (1997) demonstrated the close 
linkage between the content of CL in the mitochondrial 
membrane and cytochrome c oxidase activity in adult rat 
myocardium. In agreement with the rise of CL during 
early postnatal ontogeny (Novák et al. 2006), a 2-fold 
increase in the content of cytochrome c oxidase was 
found between birth and d30 in mitochondria of the 
neonatal rat heart (Škárka et al. 2003).  
 Although PI constitutes about 4-6 % of total 
myocardial PL, this quantitatively minor PL plays an 
important role in signal transduction as a precursor of 
phosphatidylinositol-4,5-bisphosphate, which is split by 
phospholipase C (PLC) to the second messengers 
inositoltrisphosphate and diacylglycerol (DAG) after  
G-protein-coupled receptor stimulation (Nishizuka 1992). 
We observed maximum PI concentration on d5 in rat LV 
(Novák et al. 2006). Together with the increase in PI 
concentration on postnatal d5, a significant drop occurs in 
the concentration of myocardial DAG (Fig. 3), PKC 
activator (Hamplová et al. 2005). Thus, these results 
suggest an inhibition of G-protein/PLC/PKC signaling 
between d2 and d5, i.e. within the narrow developmental 
window of the hyperplasia-to-hypertrophy switch of 
ventricular myocytes (Li et al. 1996).  
 Concerning developmental changes in PS, its 
concentration tends to rise by d5, then it falls by d10 and 
does not change thereafter (Novák et al. 2006). This 
minor amino-PL is distributed primarily in the inner 
leaflet of the plasma membrane (Post et al. 1988), where 
it serves as the cofactor of PKC. Besides this, exposure of 
PS on the plasma membrane surface in the outer leaflet is 
one of the earliest events in apoptosis (van den Hoff et al. 
2000).  
 The content of sphingomyelin (SM) is about 4 % 
in newborns and declines to a half in adulthood (Novák et 
al. 2006). This decrease can be explained by the relative 
increase of mitochondrial membranes rare in SM, which 
is distributed mainly in the outer monolayer of the 
sarcolemma (Post et al. 1988) and can be concentrated in 

lipid membrane domains, rafts and caveolae. Moreover, 
SM metabolites (ceramides and sphingosine-1-phosphate) 
play an important role as second messengers in the 
regulation of cell proliferation, cell-cycle arrest, apoptosis 
and angiogenesis (Chatterjee et al. 2006). 
 
Phospholipid FA composition 
 As demonstrated in our developmental study 
(Novák et al. 2006), each of the individual myocardial PL 
species has a characteristic proportion of FA acyl chains 
from birth till adulthood that might be related to its 
specific role in membrane function. On the other hand, 
FA composition in all PL undergoes similar changes 
during ontogeny, though their magnitude and time course 
differ in individual PL. As an example, Fig. 4 shows the 
time course of changes in the proportion of four main 
unsaturated FA acyl chains in PC, PE and CL from 
postnatal d2 till adulthood. Briefly, the proportion of 
oleic acid (18:1n-9) and arachidonic acid (20:4n-6) is 
relatively high while linoleic acid (18:2n-6) and 
docosahexaenoic acid (22:6n-3) is low in all PL shortly 
after birth as compared with adults. The time course in 
FA composition indicates that the most dynamic 
developmental changes in PL occur up to the suckling-to-
weaning transition.  
 Several factors may play a role in developmental 
changes in the FA profile of cardiac membrane PL, 
including nutrition, metabolic transition, hormonal 
changes and increasing workload. Results of dietary 
studies demonstrate that the FA composition of rat heart 
and other organs is highly responsive to the intake of n-3 
and n-6 long-chain PUFA during  postnatal life 
(Charnock et al. 1984, Suarez et al. 1996). Additionally, 
it was shown that reduced protein intake in pregnant rats 
alters the FA composition of membrane PL in the 
offspring after weaning (Burdge et al. 2003, Tappia et al. 
2005). At the beginning of postnatal life, rats are fed 
exclusively by their mother’s milk; hence, the FA profile 
of heart PL in sucklings is substantially influenced by the 
quality and quantity of milk fat (Berger et al. 1992, 
Huang et al. 1992). The composition of milk changes 
during lactation (Bitman et al. 1983, Bitman and Wood 
1990) and the FA profile of milk triacylglycerols (TAG) 
shows marked interspecies differences in the chain length 
and SFA/PUFA ratio: whereas human milk contains a 
large proportion of long-chain PUFA (Bitman et al. 
1983), in other species (cows, rats) the amount of SFA, 
MUFA and 18:2n-6 predominates (Bitman and Wood 
1990, Gudmundsdottir and Gudbjarnason 1983). 
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However, in our developmental study (Novák et al. 2006) 
as well as in that of others (Gudmundsdottir and 
Gudbjarnason 1983), a high amount of PUFA 
incorporated into myocardial PC and PE of suckling rats 
was observed which is not in line with the FA 
composition of rat milk. The high content of PUFA in PL 
suggests the involvement of endogenous sources of FA in 
myocardial PL turnover during early ontogeny. 
Considering the limited ability for FA synthesis (Ghosal 
et al. 1969) and desaturation (Brenner 1971) in the 
myocardium, PUFA in PL must be derived from plasma 
TAG and/or nonesterified FA originating from shorter 
chain precursors by the desaturation-elongation process 
in the liver (Cunnane and Chen 1992b). In line with this 
view, a marked quantitative increase in long-chain FA in 
TAG was observed in rat liver during the first postnatal 
week (Chen and Cunnane 1992, Cunnane and Chen 
1992a). During the suckling-weaning transition (Fig. 4), 
18:2n-6 starts to increase, probably due to its high content 
in solid food. In contrast, 20:4n-6 declines gradually in 
all PL after weaning (Gudmundsdottir and Gudbjarnason 
1983, Novák et al. 2006). The high proportion of 20:4n-6 
in PL of rat myocardium after birth is in line with the 
results of Decrok et al. (2002) who show that the main 
PUFA in myocardial PL is 20:4n-6 on d2 post-hatching 
in king penguin, although there is a preponderance of n-3 
PUFA in the yolk. The increase in 20:4n-6 and 22:6n-3 
proportion in myocardial PL observed just after birth 
copy closely the alterations in FA composition in cardiac 
membranes after the administration of catecholamines 
(Gudbjarnason 1989, Gudbjarnason and Benediktsdottir 
1996). We suppose that this membrane modification 
reflects an early response of the heart to stress connected 
with the transition from fetal to neonatal life. During 
adulthood and aging, from the 3rd till the 23rd month, the 
level of 18:2n-6 decreases in PC and that of 20:4n-6 
increases in PC and PE of the rat heart which coincides 
with the down-regulation of β-adrenoceptors 
(Benediktsdottir et al. 1995, Gudbjarnason and 
Benediktsdottir 1996).  
 The gradual elevation of the 22:6n-3 content in 
all PL during the suckling period observed in our study 
(Novák et al. 2006) and by others (Ghebremeskel et al. 
1999, Gudmundsdottir and Gudbjarnason 1983), cannot 
be explained by nutritional intake alone. The content of 
this PUFA in mother’s milk even decreases during the 
development of rats (Guesnet et al. 1997) and human 
neonates (Gibson and Kneebone 1981). This process of 
hormonal maturation during postnatal development offers 

a more acceptable explanation for the 22:6n-3 increase. 
The plasma level of thyroid hormones in the rat increases 
gradually until the third postnatal week (Vigouroux 
1976), resembling the time course of the increase in 
22:6n-3 in cardiac PL (Fig. 4). Moreover, the increase in 
22:6n-3 in the neonatal heart can even accelerate in 
hyperthyroidism (see further) (Hamplová et al. 2003). 
The developmental rise of 22:6n-3 can be also related to 
increasing adrenergic responsiveness of the developing 

 
Fig. 4. Time course (postnatal days 2, 5, 10, 20, 60 and 100) of 
changes in the proportion of 18:1n-9 (oleic acid), 18:2n-6 
(linoleic acid), 20:4n-6 (arachidonic acid) and 22:6n-3 
(docosahexaenoic acid) in PC (phosphatidylcholine), PE 
(phosphatidylethanolamine), CL (cardiolipin) (adapted from 
Novák et al. 2006). Values are means ± S.E.M. from 5 
experiments in each group. #p<0.05, significant difference vs. 
previous stage.  
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rat heart (Novotný et al. 1999). Stimulation of the heart 
by catecholamines leads to an increase of 22:6n-3 in 
myocardial PL of adult rats (Benediktsdottir et al. 1995, 
Gudbjarnason and Benediktsdottir 1996). Similar 
remodeling of myocardial FA composition was observed 
in response to different stress conditions, such as 
exposure of immature (Novák et al. 2004) or adult rats to 
chronic hypoxia (Ježková et al. 2002) or to systemic 
pressure overload (Nováková et al. 2002) (see further 
text). Gudbjarnason et al. (1978) described the positive 
correlation between heart rate of mammals, ranging from 
mice to whales, and 22:6n-3 content in their myocardial 
PL. Similarly, Hulbert et al. (2002) reported a substantial 
allometric decline in 22:6n-3 content in PL of the heart, 
skeletal muscle, liver and kidney with increasing body 
mass. The relationship mentioned above supports the 
hypothesis that the relative amount of 22:6n-3 can act as 
a membrane pacemaker for metabolic activity. Although 
its mode of action is not quite clear, the fundamental role 
of 22:6n-3 in membranes of many tissues is evident. This 
unique PUFA is known to readily incorporate into PL and 
thus significantly alter the basic properties of membranes, 
including fluidity and permeability. Recently, 22:6n-3 has 
been proposed to play an important role in the formation 
of lipid rafts (Shaikh et al. 2003) and thereby in a 
modification of function of proteins for which these 
regions provide a platform (Wassall et al. 2004). Many 
dietary studies suggest that the replacement of n-6 by n-3 
PUFA in membrane PL might have beneficial effects on 
the heart and reduce the risk of sudden death (Durot et al. 
1997). 
 It should be stressed that the FA profile in CL 
shifts most remarkably among membrane PL during heart 
ontogeny. Whereas in CL of newborns, besides 18:2n-6 
also 18:1n-9 and 20:4n-6 acyl chains are present (Fig. 4), 
(Novák et al. 2006), an 18:2n-6-enriched CL is found in 
the adult heart, where 18:2n-6 constitutes 80-90 % of CL 
acyl chains and other chains are quite minor (Hoch 1992). 
Fig. 4 shows that 18:2n-6 and 20:4n-6 levels do not 
change during the suckling period and 18:2n-6 steeply 
raises later, followed by a decline of 20:4n-6. Both acyl 
chains maintain the constant level in the heart of 2- and  
3-month-old rats. Lee et al. (2006) demonstrated that the 
FA composition of CL alters dramatically again with 
aging: the amount of 18:2n-6 decreases in favor of  
20:4n-6 and 22:6n-3 in 24-month-old rats as compared 
with 4-month-old ones. It is believed that the acyl chain 
specificity of CL can be attained via remodeling, as the 
enzymes responsible for its de novo synthesis are not 

acyl-group specific (Rustow et al. 1989). The remodeling 
is achieved through coordinated biosynthetic and 
remodeling pathways (Fig. 1) (Hauff and Hatch 2006,  
Li et al. 2007, Schlame and Ren 2006). Tetralinoleoyl-CL 
is the most abundant of CL species in mammalian heart, 
its maximum molecular symmetry being crucial for tight 
interactions of CL with mitochondrial proteins (Schlame 
et al. 2005). In line with this assumption, cytochrome c 
oxidase was stimulated most effectively by CL rich in 
18:2n-6 in reconstituted vesicles (Yamaoka-Koseki et al. 
1991). In agreement with our developmental study on the 
rat heart, Cheng et al. (2008) observed a similar fatty acyl 
pattern in CL of the rat brain during the first few days 
after birth. Surprisingly, the low level of 18:2n-6 (about 
10 mol%) persisted in the brain CL of adult rats in 
contrast with the high content of 18:2n-6 in CL of most 
mammalian tissues including the heart (Novák et al. 
2006). 
 
Effect of excessive workload on postnatal 
phospholipid remodeling 
 
Systemic pressure overload 
 In various forms of systemic hypertension, LV 
hypertrophy is considered as an adaptive response aiming 
to compensate for increased afterload and maintain 
normal hemodynamic functions. Hypertrophy involves 
specific qualitative alterations in gene expression as well 
as in cardiac cell phenotype (Dambrin et al. 1994, Ritter 
and Neyses 2003). Although the initial outcome is a 
compensatory growth of the heart, the excessive or long-
lasting stimulus may lead to congestive heart failure. 
Myocardial adaptation to increased workload includes 
structural and functional alterations of cell membranes 
which is well documented for both protein (Moalic et al. 
1993, Zheng et al. 1996) and lipid components (Mrnka et 
al. 1996, Reibel et al. 1986). Numerous results, obtained 
mostly with isolated cardiomyocytes, indicate that 
hydrolytic products derived from membrane PL by the 
action of phospholipases play an important role as second 
messengers in signal transduction involved in the 
stimulation of cell growth and proliferation (Dorn and 
Force 2005, Tappia 2007). In view of these observations, 
the remodeling of membrane PL induced by pressure 
overload during early ontogeny may influence the 
postnatal growth and other physiological characteristics 
of the developing heart.  
 In our experiments, we used a model of pressure 
overload induced in neonatal rats (d2 or d6) by the 
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abdominal aorta constriction (AC) as described earlier 
(Kolář et al. 1998). This model allows adaptive responses 
of the myocardium which is still in the proliferative phase 
of the ventricular myocyte growth (Clubb and Bishop 
1984, Sedmera et al. 2003). AC in neonatal rats leads to a 
pronounced increase in the LV mass and to a moderate 
increase in the right ventricle (RV) mass during 
maturation (LV/BW by 60 %, RV/BW by 20 %), 
indicating the transition from the compensatory phase of 
hypertrophy to heart failure. Concentrations of PC, PE, 
CL and PI are lower in the LV (by 11 %, 14 %, 24 % and 
15 %, respectively) of 60-d-old AC rats as compared with 
age-matched controls (Mrnka et al. 1996). The 
concentrations of SM and PLPE increase (by 10 % and 
8 %, respectively) (Fig. 5A). The decrease in the 
concentration of main PL species (especially CL) reflects 
the impaired development of membrane structures 
(predominantly mitochondria) as documented by 
quantitative electron microscopy in AC hearts (Page and 
McCallister 1973).  

 Figure 6 shows changes in the main PUFA 
profile induced by pressure overload in PC, PE and CL of 
the LV. In PC, the proportion of 18:2n-6 decreases and it 
is compensated by the increase of 20:4n-6 and 22:6n-3 
PUFA in LV of 60-d-old AC vs. age-matched controls. In 
PE of AC rats, the proportion of 18:2n-6 decreases, while 
the proportion of 22:6n-3 increases, compared with the 
controls. In CL of AC rats, the proportion of 16:0, 18:0 
and 18:1n-7 increases (not shown) while 18:2n-6 
decreases compared with the controls (Fig. 6). Alterations 
in PL concentration and FA acyl chain profile in the RV 
were similar but less pronounced than in the LV. The 
comparative analysis of 60-day-old intact and age-
matched sham-operated controls did not show any 
difference in the concentration of PL and their FA 
profiles (not shown).  
 A similar PL remodeling in pressure overload 
hypertrophy induced by AC has been well documented in 
adult rats. The reduction in the proportion of 18:2n-6 and 
increased accumulation of 22:6n-3 in most of PL are 

 

 

Fig. 5. A. Concentration of PC 
(choline phosphoglycerides), PE 
(ethanolamine phosphoglycerides), 
CL (cardiolipin), PI (phosphatidyl-
inositol), PS (phosphatidylserine), 
SM (sphingomyelin) in left ventricles 
of 2-day- and 60-day-old controls 
and 60-day-old aorta-constricted 
(AC) rats (AC was induced on 
postnatal day 2). Values are means 
± S.E.M. from 5 experiments in each 
group. #p<0.05, 60-day-old vs. 2-
day-old controls; * p<0.05, AC vs. 
60-day-old controls (adapted from 
Mrnka et al. 1996). B. Phospholipid 
concentration in left ventricles of 21-
day-old rats in different thyroid 
states. Values are means ± S.E.M. 
from 5 experiments in each group. 
* p<0.05, hypothyroid or hyper-
thyroid rats vs. euthyroid controls 
(adapted from Hamplová et al.
2003). 
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Fig. 6. Changes in proportions of 18:2n-6 
(linoleic acid), 20:4n-6 (arachidonic acid) and 
22:6n-3 (docosahexaenoic acid) in PC 
(phosphatidylcholine), PE (phosphatidyletha-
nolamine) and CL (cardiolipin) in the left 
ventricle of 60-day-old aorta-constricted rats 
(unpublished data) and in the right ventricle of 
40-day-old chronically hypoxic rats (adapted 
from Novák et al. 2004); controls (white 
columns), load (black columns). Values are 
means ± S.E.M. from 5 experiments in each 
group. * p<0.05, significant difference vs. 
corresponding controls. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
nearly identical with those observed in our model of 
pressure overload induced just after birth. In contrast, the 
myocardial concentration of CL and proportion of  
20:4n-6 in PC in adults are not influenced by AC (Reibel 
et al. 1986). Recently, considerable attention has been 
paid to CL remodeling in human and experimental heart 
failure. It has been proposed that pathological remodeling 
of CL (e.g. loss of tetralinoleoyl-CL and the rise in CL 
species containing 18:1n-9, 20:4n-6 and 22:6n-3) relates 
to impaired mitochondrial function and thereby may play 
a role in the initiation of heart failure (Heyen et al. 2002, 
Sparagna et al. 2007). The results presented in Fig. 6A 
point to two interesting observations: (i) loss of 18:2n-6 
in CL is negligible compared to that of PC and PE, and 
(ii) the decline of 18:2n-6 in PC and PE is compensated 
by incorporation of 20:4n-6 in PC and 22:6n-3 in PC and 
PE. Moreover, our results suggest that this phenomenon 

occurs both in pressure-overloaded hearts (AC) and in 
hearts of rats exposed to chronic hypoxia (Fig. 6). Xu et 
al. (2003) demonstrated a CL remodeling pathway in rat 
liver mitochondria that involves the CoA-independent 
transfer of 18:2n-6 acyl chains by the transacylation 
reaction directly from PC or PE to monolyso-CL. This 
energy-independent transacylation exhibits a clear 
specificity for the 18:2n-6 acyl chain and was shown to 
completely convert tetraoleoyl-CL to tetralinoleoyl-CL. 
These data suggest the possible way how to keep 
tetralinoleoyl-CL level and symmetry under conditions of 
decreased energy production in the overloaded heart. 
Thus, we suppose that PC and PE could serve as the 
storage of 18:2n-6 for regeneration of fully functional CL 
in the myocardium subjected to increased load from the 
early postnatal period. Yamashita et al. (1997) observed 
in the liver a CoA-independent transacylase, which 
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catalyzes the transfer of C20 and C22 PUFA from diacyl-
PL to various lyso-PL. This observation could help to 
explain the increased accumulation of 20:4n-6 and 22:6n-
3 into PC and PE observed under various stress 
conditions. 
 
Chronic hypoxia 
 Chronic myocardial hypoxia is the major 
pathophysiological feature of various cardiopulmonary 
diseases, such as chronic obstructive pulmonary disease 
and cyanotic congenital heart defects. It is also naturally 
present in fetuses and in individuals living at high altitude 
(Oštádal and Kolář 2007). It was shown that the 
adaptation to chronic hypoxia leads to a variety of 
morphological, biochemical and functional changes in 
order to maintain homeostasis with minimum energy 
expenditure (Oštádal et al. 1999). Chronic hypoxia 
affects both ventricles that need to adapt to decreased 
oxygen availability but the RV must in addition cope 
with increased afterload due to pulmonary hypertension. 
Pulmonary hypertension, RV hypertrophy and 
myocardial remodeling are the characteristic features of 
chronic hypoxia. Besides the potentially adverse 
influence on the cardiopulmonary system, it is well 
established that the heart adapted to chronic hypoxia 
exhibits an increased tolerance to acute ischemic injury 
manifested as a reduction of myocardial infarct size, 
improvement of post-ischemic contractile dysfunction 
and limitation of life-threatening ventricular arrhythmias 
(Kolář and Oštádal 2004, Ošťádal and Kolář 2007).  
 We have shown that, in addition to the 
remodeling of extracellular matrix, myofibrillar proteins 
and metabolic enzymes (Oštádal et al. 1995, Pelouch et 
al. 1993, Bass et al. 1989), the remodeling of cardiac 
membrane PL also takes place in the heart of both 
neonatal (Novák et al. 2004, Oka et al. 2008) and adult 
hypoxic rats (Balková et al. 2009, Hlaváčková et al. 
2007, Ježková et al. 2002). Rats exposed to intermittent 
hypobaric hypoxia (7000 m, 8 h/day) from postnatal d4 
till d40 exhibit RV hypertrophy (36 %) while LV 
hypertrophy is less pronounced. The concentration of 
myocardial PL is unchanged except for a slight but 
significant decrease in mitochondrial CL in the LV (by 
9 %). On the other hand, our study on adult rats adapted 
to the same hypoxic conditions demonstrates a greater 
effect on CL, namely in the RV (decrease by 19 %) 
(Ježková et al. 2002). The relative stability of membrane 
PL concentration in newborn hearts exposed to chronic 
hypoxia is in good agreement with other studies 

indicating higher resistance of newborn rat heart to 
oxygen deprivation compared with adults (Oštádal et al. 
1999). The absence of a decrease in the concentration of 
major PL despite a significant rise in the heart mass, 
which was observed in young rats, suggests that 
hypertrophy induced by intermittent hypoxia is 
accompanied by a proportional increase in the synthesis 
of membrane PL. In contrast, the cardiomegaly induced 
by LV pressure overload in rats during the early postnatal 
period might be an example of disproportion between the 
synthesis of myocardial proteins and PL, resulting in a 
decrease in PL concentration (Mrnka et al. 1996).  
 The adaptation to chronic hypoxia leads to a 
substantial decrease in 18:2n-6 proportion, which is 
compensated by an increase in 20:4n-6 and 22:6n-3 acyl 
chains in both PC and PE. In CL, chronic hypoxia causes 
an increase in the 22:6n-3 acyl chain proportion (Fig. 6). 
No left-to-right ventricle difference in FA composition of 
PC and PE is observed in young rats, in agreement with 
the previous report on adult rats adapted to the same 
hypoxic conditions (Ježková et al. 2002). It may be 
suggested that these changes are due to hypoxia itself 
rather than due to increased RV afterload. 
 During exposure to hypoxia, numerous 
metabolic pathways can participate in the remodeling of 
FA composition in membrane PL; the deacylation-
reacylation cycle where PLA2 and acyltransferases 
cooperate, desaturation-elongation processes, and PL de 
novo synthesis belong to these pathways. The increase in 
the 20:4n-6/18:2n-6 ratio might be caused by activation 
of the desaturation-elongation pathway of 18:2n-6. The 
presence of both Δ-6 desaturase and elongase in cardiac 
myocytes was reported (Lopez Jimenez et al. 1993). In 
our study (Novák et al. 2004), we have shown that the 
decreased content of 18:2n-6 was compensated by the 
elevation of 22:6n-3, which is a poorer substrate for PLA2 
than n-6 PUFA (Nalbone et al. 1990). Moreover, acyl-
CoA synthetase with preferential affinity for 22:6n-3 was 
found in cardiac tissue (Bouroudian et al. 1990). 
Kawaguchi et al. (1991) reported that hypoxia leads to 
PL breakdown due to the activation of PLA2. CoA-
independent transacylase with high specificity for C20 
and C22 unsaturated acyl chains (mentioned in 
connection with LV pressure overload) should be also 
taken into consideration (Yamashita et al. 1997). We can 
speculate that increased oxidative stress could play a role 
in the process of membrane PL remodeling. Chronic 
hypoxia is associated with increased myocardial 
oxidative stress as evidenced by marked lipid 
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peroxidation (Kolář et al. 2007, Yoshikawa et al. 1982). 
It was shown that PLA2 preferentially hydrolyzes 
damaged FA acyl chains from PL, thereby allowing their 
repair by the deacylation-reacylation process and the 
protection of membranes against further oxidative 
damage (De Windt et al. 1998). 
 
Thyroid states 
 Thyroid hormones (TH) are important players in 
the control of ontogenetic development of cardiac 
membrane structures. TH appear in the plasma of rats on 
prenatal day 18 (Pic and Bouquin 1985) and reach their 
maximum levels in the third postnatal week (Vigouroux 
1976). It has been well documented that hypothyroidism 
slows down the postnatal maturation of ventricular tissue 
whereas hyperthyroidism accelerates this process 
(Dieckman and Solaro 1990, Hoch 1988, Simonides and 
van Hardeveld 1987). In the immature rat myocardium 
among others, TH regulate the development of the 
coronary capillary network (Heron et al. 1997), early 
maturation of cardiac adrenergic signaling (Novotný et 
al. 1999, Whitsett et al. 1982), maturation of Ca2+ 

handling (Černohorský et al. 1998, Kolář et al. 1992, 
Wibo et al. 1995) and also the PL remodeling of cardiac 
membranes (Hamplová et al. 2003, Kumar and 
Chaudhuri 1993, Vasdev et al. 1977).  
 We examined the effect of hypo- and 
hyperthyroidism on the PL composition in the developing 
rat heart. The hypothyroid state was induced by 
propylthiouracil (PTU) in drinking water given to nursing 
mothers from the postnatal d2 till d21. Hyperthyroidism 
was produced by daily injection of triiodo-L-thyronine 
(T3) to newborns in the same period of time (Hamplová et 
al. 2003). Hypothyroidism decreases the relative weights 
of the LV and RV by 22 % and 29 %, respectively, 
compared with euthyroid animals on postnatal d21. 
Fig. 5B shows the decrease in the concentration of major 
PL, suggesting that normal maturation of cardiac 
membranes is delayed in hypothyroidism (Hamplová et 
al. 2003). The reason for the slowing down of membrane 
PL maturation in hypothyroid rats may be either the 
nutrition deficit as hypothyroid mothers are hypolactating 
(Babický and Nováková 1985, Zeisel et al. 1986), or 
cardiac hypofunction with low heart rate, low velocity of 
contraction, and last but not least a lack of stimulatory 
effect of TH on the expression and activity of enzymes 
involved in PL metabolism (Hoch 1988, Taylor et al. 
2002).  
 In contrast, we found an increase in the relative 

weights of the LV and RV (by 55 % and 80 %, 
respectively) and an increase in the concentration of 
major PL in the hyperthyroid rat myocardium on 
postnatal d21 (Fig. 5B). This is in line with the 
observation that hyperthyroidism also stimulates 
biosynthesis of CL and PC in the adult heart (Cao et al. 
1995, Limas 1980). Moreover, the maturation of 
ventricular membrane structures is accelerated in 
hyperthyroid neonatal rats as demonstrated by Jarkovská 
et al. (1994). It has been shown that in hyperthyroid rats 
the mitochondrial contribution to cell volume increases 
and the volume of myofibrils remains constant 
(McCallister and Page 1973) while in euthyroid rats, the 
contribution of myofibrils and mitochondria to 
myocardial cell volume increases proportionally during 
postnatal development (Page et al. 1974). In addition, the 
elevated number and size of mitochondria in the cardiac 
muscle of hyperthyroid adults in comparison with 
euthyroid controls was reported (Page and McCallister 
1973). Accordingly, we observed a markedly increased 
relative proportion of CL as a marker of preferential 
growth of mitochondrial structures in hyperthyroid 
immature myocardium (Hamplová et al. 2003). Both 
altered thyroid states also change the proportion of PLPE: 
hypothyroidism increases and hyperthyroidism decreases 
it, compared with euthyroid controls. Because 
plasmalogens are predominant PL of cardiac sarcolemma 
and their content is relatively low in mitochondria (Post 
et al. 1988), the observed differences may suggest that 
the proportion of mitochondrial to extramitochondrial 
membranes differs in the two altered thyroid states (Fig. 
5B).  
 In our study (Hamplová et al. 2003), both hypo- 
and hyperthyroidism caused marked changes in FA acyl 
composition of individual PL in comparison with 
euthyroid controls (Fig. 7). Hypothyroidism maintains 
similar PL acyl chain composition in ventricles of 21-
day-old rats as in euthyroid rats just after birth (Berger et 
al. 1992, Ghebremeskel et al. 1999, Gudmundsdottir and 
Gudbjarnason 1983), except for 18:2n-6, the content of 
which is higher in all PL compared with the euthyroid 
group. Similarly, the content of 18:2n-6 increases in 
cardiac mitochondria of hypothyroid adult rats (Hoch 
1982). A possible explanation of the rise in 18:2n-6 and 
concomitant decrease in the 20:4n-6/18:2n-6 ratio is the 
inhibition of Δ-6 desaturase activity by the lack of TH. 
The diminished Δ-6 desaturase activity, the rate-limiting 
step in the conversion of 18:2n-6 to 20:4n-6, was 
observed in the liver of hypothyroid adult rats (Faas and 



S24   Novák et al.  Vol. 58 
 
 
Carter 1982). The remodeling of FA composition after 
PTU treatment led to a decrease of the unsaturation index 
(UI) in PC. This decrease was caused by a redistribution 
of high unsaturated FA acyl chains in favor of the less 
unsaturated ones due to a marked decrease in the 
proportion of 22:6n-3 as compared with euthyroid 
controls (Hamplová et al. 2003) (Fig. 7). Pehowich 
(1995) reported a similar decrease of the 22:6n-3 content 
in cardiac mitochondria of hypothyroid rats. Decreased 
UI is also observed in cardiac mitochondria from 
hypothyroid adult rats (Hoch 1982) and in the 
sarcolemma from hypothyroid adult rabbits (Szymanska 
et al. 1991). In hyperthyroid hearts, a decreased n-6/n-3 
PUFA ratio in PC and PE is caused by the decrease in 
20:4n-6 and increase in 22:6n-3 contents. Enhanced 
conversion of 20:4n-6 to prostaglandin E2 may contribute 
to the lower 20:4n-6 level in PL of hyperthyroid hearts 
(Gudbjarnason 1975). The changes in the balance 
between n-6 and n-3 PUFA may have significant 
biological implications because eicosanoids derived from 
these two PUFA series exert adverse biological activities 
(Dimitrow and Jawien 2009). 
 
Concluding remarks 
 
 Table 1 shows the changes in 20:4/18:2, n-6/n-3 
ratios and UI in rat heart during postnatal development 
(d2, d21, d40 and d60) and effects of additional workload 
(hyperthyroidism, chronic hypoxia and aorta 
constriction). The gradual decline of 20:4/18:2 between 
d2 and d40 occurs in PC, PE and CL due to the rise in 
18:2n-6 and fall in 20:4n-6 contents. The n-6/n-3 ratio in 
PC and PE decreases till d21 mainly due to the significant 
increase in n-3 PUFA proportion. In contrast, the 
remarkable rise in the n-6/n-3 ratio appears on d40 in all 
PL, mainly due to the increase in the 18:2n-6 proportion. 
The value of UI decreases on d40 and does not change 
thereafter. Hyperthyroidism lowers the 20:4/18:2 ratio 
because of the increase in 18:2n-6 in all PL. On the other 
hand, due to the pronounced drop in 18:2n-6, chronic 
hypoxia and LV pressure overload increase the 20:4/18:2 
ratio in PC and PE. Concerning the influence of 
additional workload, UI increased only in PE of pressure-
overloaded (AC) hearts. These results show that the 
period between postnatal d21 and d40 is characterized by 
metabolic conversion from suckling-weaning to the 
adolescence accompanied by nutritional transition from 
high-fat mother’s milk to carbohydrate-rich solid food 
with a high 18:2n-6 content. In this period, the 

 
Fig. 7. Proportion of 18:2n-6 (linoleic acid), 20:4n-6 (arachidonic 
acid) and 22:6n-3 (docosahexaenoic acid) in PC 
(phosphatidylcholine), PE (phosphatidylethanolamine) and CL 
(cardiolipin) in left ventricles of hypothyroid (grey columns), 
euthyroid (white columns) and hyperthyroid (black columns) 21-
day-old rats (adapted from Hamplová et al. 2003). Values are 
means ± S.E.M. from 5 experiments in each group. * p<0.05, 
hypothyroid or hyperthyroid rats vs. euthyroid controls. 
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unsaturation of the membrane lipid bilayer decreases as 
evidenced by the observed decrease in UI, caused by the 
fall of 20:4/18:2 and rise in n-6/n-3 ratios in all PL 
species. The considerably lower polyunsaturation of all 
PL on d40 may be explained by high proportion of 
mitochondrial membranes in the adult heart compared to 
the neonatal one. In agreement, Thesalouhidou et al. 
(2006) have shown that mitochondrial PL from skeletal 
muscle are significantly less polyunsaturated than those 
from the whole tissue. Lower UI in adulthood may 
contribute to higher selective resistance of mitochondrial 
PL toward oxidative stress.  
 Our comparative analysis shows that both the 
physiological increase of the load during normal postnatal 

development and additional workload imposed by various 
interventions early after birth lead to a decrease in the  
n-6/n-3 ratio, i.e. an increase of n-3 PUFA at the expense 
of n-6 PUFA in all myocardial PL. This change can be 
considered as a general adaptive response of cardiac 
membranes to stress. 
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