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1 To quickly overfly the existence proof of weak solutions to CNSE.
2 To detect the points in the proof, where the properties of

transport and continuity equations play essential role.
3 To recall a part of the theory of renormalized solutions to the

transport equations needed in the proofs.
4 To show some of its generalizations with the goal to target some

applications of potentially physical interest (non zero
inflow-outflow problems, some simple bi-fluid models).
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Barotropic Navier-Stokes equations

Ω ⊂ R3 is a bounded (Lipschitz) domain, I = (0,T).

∂t%+ div(%u) = 0, (1)

∂t(ρu) + div(ρu⊗ u) +∇P(%) = divS(∇xu) (2)

P(%) ≈ %γ , γ > 1, S(Z) = µ(Z + ZT) + λTr(Z)I, µ > 0, λ+
2
3
µ ≥ 0

Initial and boundary conditions :

%(0) = %0, %u(0) = m0, u|∂Ω = 0.

Energy (in)equality :∫
Ω

(1
2
%|u|2 + H(%)

)
dx
∣∣∣τ
0

+

∫ τ

0

∫
Ω

S(∇xu) : ∇xudxdt = 0

H(%) = %

∫ %

1

P(s)
s2 ds ≈ %γ
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CNS :Weak solutions

1 Classical solutions versus weak solutions
2 General requirements on the definition of weak solutions :

1 Existence
2 Compatibility with classical solutions
3 Weak strong uniqueness property

3 Weak formulation :
1 Rewriting of equations in the integral form by using convenient “test

functions”
2 Postulating total energy balance as an inequality
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CNS : bounded energy weak solutions

Functional spaces :

% ≥ 0, % ∈ Cweak(I; Lγ(Ω)), u ∈ L2(I; W1,2
0 (Ω;R3)),

%|u|2 ∈ L∞(I; L1(Ω)), %u ∈ Cweak(I; Lq(Ω)), q > 1.

Continuity equation :∫
Ω

%(τ, ·)ϕ(τ, ·) dx−
∫

Ω

%0(·)ϕ(0, ·) dx =

∫ τ

0

∫
Ω

(
%∂tϕ+ %u · ∇xϕ

)
dxdt

for all τ ∈ I, ∀ϕ ∈ C1
c(I × Ω)
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CNS weak solutions : continued

Momentum equation :∫
Ω

%u · ϕ(τ, ·)dx−
∫

Ω

%0u0 · ϕ(0, ·)dx =

∫ τ

0

∫
Ω

(
%u · ∂tϕ

+ %u⊗ u : ∇xϕ+ P(%)divxϕ− S(∇xu) : ∇xϕ
)

dxdt,

∀τ ∈ I, ϕ ∈ C1
c([0,T)× Ω;R3).

Energy inequality :∫
Ω

(1
2
%|u|2 + H(%)

)
(τ, ·)dx

∣∣∣τ
0

+

∫ τ

0

∫
Ω

S(∇xu) : ∇xudxdt ≤ 0

for a.a. τ ∈ I.
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Renormalized solutions of the continuity equation

1

∂t%+ div(%u) = 0 ×B′(%)

implies

∂tB(%) + div(B(%)u) + (%B′(%)− B(%))divu = 0

with any B ∈ C1[0,∞).
2 We say that % is renormalized solution of the continuity equation

iff
∂tB(%) + div(B(%)u) + (%B′(%)− B(%))divu = 0,

in the weak sense for all B Lipschitz on [0,∞).
3 DiPerna-Lions : If % ∈ L2(I; L2(Ω)) is a weak solution of c.e. with

u ∈ L2(I; W1,2(Ω)) then it is a renormalized solution.
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Existence result, u|∂Ω = 0

Theorem [Lions (1998) γ ≥ 9/5, Feireisl(2000) γ > 3/2, Feireisl,
Petzeltová, N. (2001)]
The compressible Navier-Stokes equations in barotropic regime
admit at least one weak solution with finite energy initial data.

1 (%n,un) is sequence of approximations : Main goal is to show that
%n → % a.e. in QT ⇒ P(%n)→ P(%).

2 Improved estimates of density ( γ ≥ 9/5⇒ % ∈ Lβ(QT), β ≥ 2)
3 Effective viscous flux identity

0 ≤P(%)%− P(%) % = (2µ+ λ)
(
%divu− %divu

)
.

4 If γ ≥ 9/5 solutions of the continuity equation are renormalized
solutions. RCE+ EVF⇒ strong convergence of density.

5 Oscillations defect measure is bounded⇒ Solutions of the
limiting continuity equation are renormalized. RCE+EVF⇒
strong convergence of density.

Alternative approach by D. Bresch and P.E. Jabin for γ ≥ 9/5 (2020).

Antonin Novotny Some tools in mathematical analysis of compressible fluids



Interaction of EVF with renormalization

1 Effective viscous flux identity :

%divu− %divu ≥ 0

2 RCE : ∂tB(%) + div(B(%)u) + (%B′(%)− B(%))divu = 0. :
3 RCE with B(%) = % log % (i.e. %B′(%)− B(%) = %)

1 At level n : ∂t(%n log %n) + div(%n log %nun) = −%ndivun

2 After limit n→∞ with test function 1 :∫
Ω

% log %(τ) dx−
∫
Ω

%0 log %0 dx = −
∫ τ

0

∫
Ω

%divu dxdt

3 At the limiting level with test function 1 :∫
Ω

% log %(τ) dx−
∫
Ω

%0 log %0 dx = −
∫ τ

0

∫
Ω

%divu dxdt

4 Conclusion :∫
Ω

(
% log %− % log %

)
dx =

∫ τ

0

∫
Ω

(
%divu− %divu

)
dxdt ≤ 0
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A bi-fluid system

1

∂tα+ (u · ∇)α = 0, 0 ≤ α ≤ 1, α(0) = α0 ∈ (0, 1),

∂tz + div(zu) = 0, z(0) = z0

∂t%+ div(%u) = 0, %(0) = %0

∂t((%+z)u)+div((%+z)u⊗u)+∇P(f (α)%, g(α)z) = divS(∇xu), m0,

2 Transformed system : R = f (α)%, Z = g(α)z

∂tZ + div(Zu) = 0, Z0 = g(α0)z0,

∂tR + div(Ru) = 0, R0 = f (α0)%0

∂tz + div(zu) = 0, z(0) = z0,

∂t%+ div(%u) = 0, %(0) = %0

∂t((%+ z)u) + div((%+ z)u⊗ u) +∇P(R,Z) = divS(∇xu),

(%+ z)u(0) = m0
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Principal difficulties

1 Apparent difficulty is limit in P(Rn,Zn) = P(Rn, snRn), sn = Zn/Rn.

P(Rn, snRn) = P(Rn, sRn) + [P(Rn, snRn)− P(Rn, snRn)P(Rn, sRn)]

= Π(Rn, t, x) + ∂ZP(Rn, ζn)Rn(sn − s)

A sort of compactness of sn = Zn/Rn is needed
2 Passage from the “transformed system” (with continuity

equations) to the original system (with one pure transport and
one continuity equation). Formally α, α̃,

f (α) =
R
%

and g(α̃) =
Z
z
,

verify the pure transport equation with the same initial data.
A sort of uniqueness for the pure transport equation is
needed
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1 Vasseur, Wen, Yu (2019) :

∂tZ + div(Zu) = 0, Z(0) = Z0,

∂tR + div(Ru) = 0, R(0) = R0

∂t((R + Z)u) + div((R + Z)u⊗ u) +∇P(R,Z) = divS(∇xu),

P(R,Z) = Rγ + Zβ

2 “Almost compactness” : Let (Rn,un), (Zn,un) satisfy continuity
equation and let 0 ≤ Rn ⇀∗ R, 0 ≤ Zn ⇀∗ Z in L∞(I; L2(Ω)),
un ⇀ u in L2(I; W1,2

0 (Ω)). Let 0 ≤ sn, s ≤ C, be functions such that
snRn = Zn, sR = Z, then∫ T

0

∫
Ω

Rn(sn − s)2 dxdt→ 0.

3 Pokorny, N. (2020) - Revisiting Vasseur, Wen, Yu from the point
of view of the theory of renormalized solutions to the transport
equations gives a slightly different formulation of Almost
compactness by Vasseur and collaborators and the property of
Almost uniqueness.
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DiPerna-Lions⇒ Renormalized solutions to CE
1 Let 0 ≤ % ∈ L2(I; L2(Ω)), u ∈ L2(I; W1,2

0 (Ω)) satisfy continuity
equation in the weak sense :∫

QT

(
%∂tϕ+ %u · ∇xϕ

)
dxdt = 0, ∀ϕ ∈ C1

c(I × Ω). (3)

Then it satisfies the continuity equation in the renormalized
sense∫

QT

(
B(%)∂tϕ+ B(%)u · ∇xϕ− (%B′(%)− B(%))divuϕ

)
dxdt = 0 (4)

with any ϕ ∈ C1
c(I × Ω), B ∈ C1[0,∞), B′ ∈ L∞(0,∞).

2 If moreover % ∈ L∞(I,Lγ(Ω)), γ > 1 then % ∈ C(I; L1(Ω)) and
equations (3), (4) hold in the time integrated form (with test
functions in ϕ ∈ C1(QT)) :∫

Ω

B(%)ϕ(τ, x)dx−
∫

Ω

B(%(0, x))ϕ(0, x)dx

=

∫ τ

0

∫
Ω

(
B(%)∂tϕ+ B(%)u · ∇ϕ− (%B′(%)− B(%))divuϕ

)
dxdt
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Regularization procedure

We extend (%,u) by (0, 0) outside Ω. The extended couple verifies

∂t%+ div(%u) = 0 in D′(I × R3).

We regularize equation by using mollifiers :

∂t[%]ε + div([%]εu) = Rε := div([%]εu)− div([%u]ε) a.e. in QT .

This implies (multiplication by B′([%]ε)),

∂tB([%]ε) + div(B([%]ε)u) + ([%]εB′([%]ε)− B([%]ε))divu = RεB′([%]ε).

and we get renormalized continuity equation as ε→ 0, provided
Rε → 0 in L1

loc(I × Ω) :

∂tB(%) + div(B(%)u) + (%B′(%)− B(%))divu = 0 in D′(I × R3).
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PTE : From weak to renormalized time integrated
solutions

1 Let 0 ≤ s ∈ L∞(QT), u ∈ L2(I; W1,2
0 (Ω)) satisfy the pure transport

equation
∂ts + u · ∇xs = 0 weakly in QT .

Then s ∈ C(I; L1(Ω)) and it satisfies the time integrated transport
equation in the renormalized sense up to the boundary :∫

Ω

B(s)ϕ dx
∣∣∣τ
0

=

∫ τ

0

∫
Ω

(
B(s)∂tϕ+ B(s)u · ∇xϕ+ B(s)divuϕ

)
dxdt

for all τ ∈ I, for all ϕ ∈ C1
c(I × Ω) with any B ∈ C1[0,∞).

2 Holds also for B(s1, s2) . . .
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Some formal calculations

[∂tR+u·∇xR+Rdivu = 0]×(− Z
R2 ) ⇒ Z∂t(

1
R

) + Zu · ∇x(
1
R

)− Z
R

divu = 0

[∂tZ + u · ∇xZ + Zdivu = 0]×(
1
R

) ⇒ 1
R
∂tZ +

1
R

u · ∇xZ +
Z
R

divu = 0

∂t(
Z
R

) + u · ∇x(
Z
R

) = 0

What we are doing is :
1 Take B(R,Z) = Z/R.
2 Multiply continuity equation for R and multiply by ∂RB(R,Z).
3 Multiply continuity equation for Z by ∂ZB(R,Z).
4 B(R,Z) is not good renormalizing function (we have to take

Bδ(R,Z) = Z/(R + δ) and then let δ → 0 - by Lebesgeue
dominated convergence theorem)

5 For the Lebesgue dominated convergence one needs the
domination condition 0 ≤ Z ≤ aR
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Lemma 1 : From CE to PTE

Let
R ∈ L2(QT) ∩ L∞(I; Lγ(Ω)), γ > 1,

∀t ∈ I, 0 ≤ Z ≤ aR, u ∈ L2(I,W1,2
0 (Ω)),

satisfy

∂tR + div(Ru) = 0, ∂tZ + div(Zu) = 0 in the weak sense in QT . (5)

Then, in particular, R,Z ∈ C(I,L1(Ω)) and we can define

∀t ∈ I, s(t, x) :=
Z(t, x)

R(t, x)
if R(t, x) > 0, s(t, x) := a ∈ R otherwise. (6)

Then s ∈ C(I; L1(Ω)) and

∂tB(s) + u · ∇xB(s) = 0 (7)

holds with any B ∈ C1[0,∞) in the time integrated form and up to the
boundary.
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Some formal calculation

[∂tB(s) + u · ∇xB(s) = 0]×R ⇒ R∂tB(s) + Ru · ∇xB(s) = 0

[∂tR+u·∇xR+Rdivu = 0]×B(s) ⇒ B(s)∂tR + B(s)u · ∇xR + RB(s)divu = 0

∂t(RB(s)) + div(RB(s)u) = 0
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Lemma 2 : From PTE to CE

1 Let

0 ≤ R ∈ L2(QT)∩L∞(I; Lγ(Ω)), u ∈ L2(I,W1,2
0 (Ω)), 0 ≤ s ∈ L∞(QT)

and let couple (R,u) satisfy the continuity equation and couple
(s,u) the pure transport equation in the weak sense. Then :

2 Then
s,R,RB(s) ∈ C(I; L1(Ω))

and RB(s) satisfies continuity equation in the time integrated form
and up to the boundary.

3 Holds also for RB(s1, s2), B ∈ C1([0,∞)2).
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Lemma 3 : Almost uniqueness for the pure transport
equation

Let u ∈ L2(I; W1,2
0 (Ω; R3). Let 0 ≤ si ∈ L∞(QT), i = 1, 2 be two weak

solutions of the pure transport equation in the weak sense (up to the
boundary). Then si ∈ C(I,L1(Ω). If moreover s1(0, ·) = s2(0, ·) then

for all τ ∈ I s1(τ, ·) = s2(τ, ·) for a.a. x ∈ {%(τ, ·) > 0}, (8)

where % is any time integrated weak solution to the continuity
equation with the same transporting velocity in the class
0 ≤ % ∈ C(I,L1(Ω)) ∩ L2(QT) ∩ L∞(I; Lp(Ω)), p > 1.

1 Lemma 3 can be viewed as extension of the results of Di Perna
-Lions (1989) and Bianchini-Bonicato (2018) in the following
sense :

2 It yields uniqueness under assumption divu ∈ L1(I; L∞)) (which
is classical result of DL, 1989)

3 It yields uniqueness under weaker assumption than DL namely
that ”continuity equation with transporting velocity u admits a
strictly positive and bounded distributional solution” (which is
what can be deduced from BB, 2018).
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Sketch of proof

si ∈ C(I; L1(Ω) is time integrated weak solution of the PTE.
(s1 − s2)2 is also time integrated weak solution of the PTE.
% ∈ C(I; L1(Ω) is time integrated weak solution to the continuity
equation.
%(s1 − s2)2 is time integrated weak solution of the continuity
equation.
Take in the latter ϕ = 1 :

∀τ ∈ I,
∫

Ω

%(s1 − s2)2(τ) dx =

∫
Ω

%(s1 − s2)2(0) dx.

Antonin Novotny Some tools in mathematical analysis of compressible fluids



Lemma 4 : Convergence induced by Lemmas 1 and 2

Let
1

un ∈b L2(I,W1,2
0 (Ω)), %n ∈b L2(QT) ∩ L∞(I; Lq(Ω)), 0 ≤ Zn ≤ a%n

be bounded sequences.
2 Suppose that both couples (%n,un), (Zn,un) satisfy continuity

equation (3) with initial data %0 resp. Z0.
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Convergence induced by L1 and L2 continued

Then we have :
1 Up to a subsequence (not relabeled)

(%n,Zn)→ (%,Z) in Cweak(I; Lq(Ω)), un ⇀ u in L2(I; W1,2(Ω)),

where (%,u) as well as (Z,u) verify continuity equation in the
renormalized sense.

2 Define sequence sn(t, x) and function s(t, x) as in (6). Then
sn, s ∈ C(I; Lq(Ω)), 1 ≤ q <∞ and for all t ∈ I, 0 ≤ sn(t, x) ≤ a,
0 ≤ s(t, x) ≤ a for a. a. x ∈ Ω. Moreover, both (sn,un) and (s,u)
satisfy transport equation up to the boundary.

3 Finally, ∫
Ω

%n|sn − s|2(τ, x)dx→ 0 for all τ ∈ I. (9)
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Sketch of proof

1 Let sn(t) := Zn(t)/%n(t). Then sn ∈ C(I; L1(Ω)) and (sn,un) satisfies
time integrated weak formulation of PTE.

2 %ns2
n ∈ C(I; L1(Ω) and (%ns2

n,un) satisfies time integrated weak
formulation of CE.

3 Z, % ∈ C(I; L1(Ω)) and (Z,u), (%,u) satisfy time integrated weak
formulation of CE

4 s = Z/% ∈ C(I; L1(Ω)) and (s,u) satisfies time integrated weak
formulation of PTE.

5 %s2 ∈ C(I; L1(Ω)) and (%s2,u) satisfies time integrated weak
formulation of CE.

6
∫

Ω
%s2(τ) dx =

∫
Ω
%0s2

0 dx
7
∫

Ω
%ns2

n(τ) dx =
∫

Ω
%0s2

0 dx
8 limn→∞

∫
Ω
%nsns(τ) dx = limn→∞

∫
Ω

Zns(τ) dx =
∫

Ω
Zs(τ) dx =∫

Ω
%s2(τ) dx
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Notes
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CNSE with non zero inflo-outflow

1 Boundary data :

0 ≤ %B ∈ C(R3), uB ∈ C1
c(R3), uB = 0 on g

2 Weak formulation of the continuity equation : There is

0 ≤ % ∈ Cweak(I; Lγ(Ω)), % ∈ Lγ(I; Lγ(Γout; |uB · n|dSx)),

u− uB ∈ L2(I; W1,2
0 (Ω))

such that∫
Ω

%ϕ(·, x) dx
∣∣∣τ
0

+

∫ τ

0

∫
Γin
%BuB · nϕdSxdt +

∫ τ

0

∫
Γout

%uB · nϕdSxdt,

=

∫ τ

0

∫
Ω

(
%∂tϕ+ %u · ∇xϕ

)
dxdt

for all τ ∈ I and ϕ ∈ C1(I × Ω).
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Non-zero inflow/outflow b.c. : Extension lemma

Suppose that (%,u− uB) ∈ [L2(I × Ω)∩ Lγ(I; Lγ(Γout))] ×L2(I; W1,2
0 (Ω))

satisfies continuity equation in the weak sense :∫
I

∫
Ω

(
%∂tϕ+ %u · ∇xϕ

)
dxdt

=

∫
I

∫
Γin
%BuB · nϕ dSxdt +

∫
I

∫
Γout

%uB · nϕ dSxdt,

∀ϕ ∈ C1
c(I × Ω), then it satisfies the renormalized continuity equation∫ T

0

∫
Ω

(
B(%)∂tϕ+ B(%)u · ∇xϕ− ϕ(%B′(%)− B(%)divu

)
dxdt =∫ T

0

∫
Γin

B(%B)uB · nϕ dSxdt +

∫ T

0

∫
Γout

B(%)uB · nϕ dSxdt
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Extension lemma : Sketch of the proof

Extension outside Γ = Γin (recall Γ is C2 parametrized surface).
Step 1. A lemma of differential geometry (Foote) : There are open
sets T+ ⊂ R3 \ Ω, T− ⊂ Ω, T := T+ ∪ T− ∪ Γ open, such that

1 ∀x ∈ T, ∃!P(x) ∈ Γ, |x− P(x)| = dΓ(x).

2 P ∈ C1(T), dΓ ∈ C2(T±)

Step 2. We examine the flow of −uB :

d
dt
X(s; x) = −uB(X), X(0, x) = x.

1 X ∈ C1(R× R3), X(s, ·) is a diffeomorphism R3 7→ R3.
2 The map

Φ : R× Γ→ X(R,Γ) ⊂ R3 : Φ(s, x) = X(s, x)

is a local diffeomorphism with the determinant of the Jacobi
matrix > 0 (proportional to uB · n).
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Extension lemma : Sketch of the proof

Step 3.
1 There is an open set {0} × Γ ⊂ V ⊂ R× Γ such that Φ|V is a

diffeomorphism of V onto (open set) U = Φ(V) ⊂ T. Moreover, if
V± = V ∩ R∗± × Γ, then U± := Φ(V±) ⊂ T±.

2 Thus : for all ξ ∈ U there exists a unique (s, xB) ∈ V such that
ξ = X(s; xB).

3 We set Ω̃ = U+ ∪ Γ ∪ Ω and

ũ(t, x) =

{
u(t, x), x ∈ Ω

uB(x), x ∈ U
+

}

%̃(t, x) =

{
%(t, x), x ∈ Ω

%B(xB)exp
( ∫ s

0 divuB(X(z; xB))dz
)
, x = X(s, xB) ∈ U

+

}
.
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Extension lemma : Sketch of the proof

Step 4 :
We have (%̃, ũ) ∈ C1(I × U+) and

∂t%̃+ div(%̃ũ) = 0 in I × U+ ⇒

∂t%̃+ div(%̃ũ) = 0 in D′(I × Ω̃)

to which we can apply DiPerna-Lions’ regularization technique :∫
I

∫
Ω̃

(
B(%̃)∂tϕ+ B(%̃)u · ∇xϕ− (%̃B′(%̃)− B(%̃))divuϕ

)
dxdt = 0

Seeing that

∂tB(%̃) + div(B(%̃ũ)) + (%̃B′(%̃)− B(%̃))divũ = 0 in I × U+.

we obtain the result.
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