Ergodic theory for energetically open fluid systems

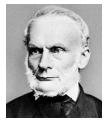
Eduard Feireisl based on joint work with F.Fanelli (Lyon I), M. Hofmanová (TU Bielefeld) and <u>A.Novotný</u> (Toulon)

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

PDEs describing far from equilibrium systems, 8 ECM Portorož, 20 June – 26 June 2021

《日》 《圖》 《臣》 《臣》 三臣

Motto



Rudolf Clasius 1822–1888

Basic principles of thermodynamics of closed systems

Die Energie der Welt ist constant. Die Entropie der Welt strebt einem Maximum zu.

Turbulence - ergodic hypothesis

Time averages along trajectories of the flow converge, for large enough times, to an ensemble average given by a certain probability measure



Andrey Nikolaevich Kolmogorov 1903–1987

Mass conservation

 $\partial_t \varrho + \operatorname{div}_x(\varrho \mathbf{u}) = \mathbf{0}$

Newton's Second law (momentum balance)

 $\partial_t(\rho \mathbf{u}) + \operatorname{div}_x(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla_x \boldsymbol{\rho} = \operatorname{div}_x \mathbb{S} + \rho \mathbf{g}$

Second law of thermodynamics (entropy balance)

$$\partial_t(\varrho s(\varrho, \vartheta)) + \operatorname{div}_x(\varrho s(\varrho, \vartheta) \mathbf{u}) + \operatorname{div}_x\left(\frac{\mathbf{q}}{\vartheta}\right) = \frac{1}{\vartheta}\left(\mathbb{S}: \mathbb{D}_x \mathbf{u} - \frac{\mathbf{q} \cdot \nabla_x \vartheta}{\vartheta}\right)$$

Newton's rheological law

$$\mathbb{S}(\vartheta, \mathbb{D}_{\mathsf{x}} \mathsf{u}) = \mu(\vartheta) \left(\nabla_{\mathsf{x}} \mathsf{u} + \nabla^{t}_{\mathsf{x}} \mathsf{u} - \frac{2}{d} \mathrm{div}_{\mathsf{x}} \mathsf{u} \mathbb{I} \right) + \eta(\vartheta) \mathrm{div}_{\mathsf{x}} \mathsf{u} \mathbb{I}$$

Fourier's law

$$\mathbf{q}(artheta,
abla_{x}artheta) = -\kappa(artheta)
abla_{x}artheta$$

Boundary conditions

Closed systems

impermeability:
$$\mathbf{u} \cdot \mathbf{n}|_{\partial\Omega} = 0$$
, no-slip: $\mathbf{u} \times \mathbf{n}|_{\partial\Omega} = 0$

thermal insulation: $\mathbf{q} \cdot \mathbf{n}|_{\partial\Omega} = 0$

Open systems

$$|\mathbf{u}|_{\partial\Omega} = \mathbf{u}_B$$
, inflow $\Gamma_{in} : \mathbf{u}_B \cdot \mathbf{n} < 0$, outflow $\Gamma_{out} : \mathbf{u}_B \cdot \mathbf{n} > 0$

 $\varrho|_{\Gamma_{\rm in}}=\varrho_B$

 $\begin{array}{l} \mbox{heat flow: } \varrho e(\varrho, \vartheta)(\textbf{u}_B \cdot \textbf{n}) + \textbf{q} \cdot \textbf{n} = f_{i,B}(\textbf{u}_B \cdot \textbf{n}) \mbox{ on } \Gamma_{\rm in}, \ \textbf{q} \cdot \textbf{n} = 0 \mbox{ on } \Gamma_{\rm out} \\ \\ \mbox{ alternatively} \end{array}$

$$\vartheta = \vartheta_B$$
 on $\partial \Omega$

Necessary ingredients

• Global existence: The problem admits global-in-time solutions defined for all $t \ge t_0$ for any admissible data

 Dissipativity (in the sense of Levinson): All solutions are eventually trapped in a bounded absorbing set

• Asymptotic compactness: Global in time solutions are precompact with respect to the time shifts; they approach a compact ω -limit set as $t \to \infty$

《口》 《聞》 《臣》 《臣》 三臣

Long-time behavior, closed systems

Total energy

$$E(\varrho,\vartheta,\mathbf{u}) = \frac{1}{2}\varrho|\mathbf{u}|^2 + \varrho e(\varrho,\vartheta)$$

Dichotomy for the closed systems

$$\mathbf{g} = \mathbf{g}(x)$$

Either

 $\mathbf{g} =
abla_{\mathbf{x}} \mathcal{G} \ \Rightarrow \ \text{all solutions tend to a single equilibrium}$

or

$$\mathbf{g} \neq
abla_{\mathbf{x}} \mathbf{G} \; \Rightarrow \; \int_{\Omega} \mathbf{E}(t, \cdot) \; \mathrm{d} \mathbf{x} \to \infty \; \mathrm{as} \; t \to \infty$$

(日) (日) (日) (日) (日) (日) (日) (日) (日) (日)

Dynamical systems

Dynamical system

 $\mathsf{U}(t,\cdot):[0,\infty) imes X o X$

• Closed system: $U(t, X_0) \rightarrow U_{\infty}$ equilibrium solution as $t \rightarrow \infty$

• Open system:
$$\frac{1}{T} \int_0^T F(\mathbf{U}(t, X_0)) dt \to \int_X F(X) d\mu, \ T \to \infty$$

 μ a.s. in X_0

Principal mathematical problems:

Low regularity of global in time solutions

Global in time solutions necessary. For many problems in fluid dynamics – Navier–Stokes or Euler system – only weak solutions available

Lack of uniqueness

Solutions do not, or at least are not known to, depend uniquely on the initial data. Spaces of trajectories: Sell, Nečas, Temam and others

Propagation of oscillations

Realistic systems are partly hyperbolic: propagation of oscillations "from the past", singularities

Weak formulation

$$\partial_{t} \varrho + \operatorname{div}_{x}(\varrho \mathbf{u}) = \mathbf{0}, \ \varrho|_{\Gamma_{\mathrm{in}}} = \varrho_{B}$$
$$\partial_{t}(\varrho \mathbf{u}) + \operatorname{div}_{x}(\varrho \mathbf{u} \otimes \mathbf{u}) + \nabla_{x} \rho = \operatorname{div}_{x} \mathbb{S} + \varrho \mathbf{g}, \ \mathbf{u}|_{\partial\Omega} = \mathbf{u}_{B}$$
$$\partial_{t}(\varrho s) + \operatorname{div}_{x}(\varrho s \mathbf{u}) + \operatorname{div}_{x}\left(\frac{\mathbf{q}}{\vartheta}\right) \ge \frac{1}{\vartheta} \left(\mathbb{S} : \mathbb{D}_{x} \mathbf{u} - \frac{\mathbf{q} \cdot \nabla_{x} \vartheta}{\vartheta}\right)$$

ballistic energy balance

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\Omega}\left(\frac{1}{2}\varrho|\mathbf{u}-\mathbf{u}_{B}|^{2}+\varrho \boldsymbol{e}(\varrho,\vartheta)-\widetilde{\vartheta}\varrho\boldsymbol{s}(\varrho,\vartheta)\right)\,\mathrm{d}x...$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Abstract setting

Space of entire trajectories

$$\mathcal{T} = C_{\mathrm{loc}}(R; X), \ t \in (-\infty, \infty)$$

◆□▶ ◆舂▶ ◆逹▶ ◆逹▶ 三 글

900

George Roger Sell 1937–2015

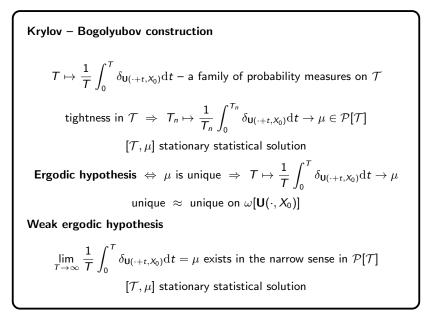
 $\omega\text{-limit set}$

$$\omega[\mathbf{U}(\cdot, X_0)] \subset \mathcal{T}$$
$$\omega[\mathbf{U}(\cdot, X_0)] = \left\{ \mathbf{V} \in \mathcal{T} \mid \mathbf{U}(\cdot + t_n, X_0) \to \mathbf{V} \text{ in } \mathcal{T} \text{ as } t_n \to \infty \right\}$$

Necessary ingredients

- Dissipativity ultimate boundedness of trajectories
- Compactness in appropriate spaces

Strong and weak ergodic hypothesis



Global in time weak solutions

 $U = [\varrho, m = \varrho u, S = \varrho s]$ – weak solution of the Navier–Stokes–Fourier system satisfying ballistic energy balance and defined for $t > T_0$

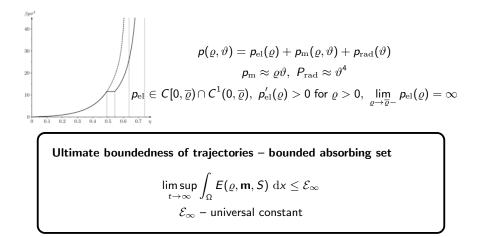
Bounded energy

$$\limsup_{t\to\infty}\int_{\Omega} E(\varrho,\mathbf{m},S) \, \mathrm{d} x \leq \mathcal{E}_{\infty}$$

Available

- Existence: E.F. and A. Novotný, Commun. Math. Phys. 2021
 N. Chaudhuri and E.F. (Dirichlet b.c. for the temperature) Preprint 2021
- Globally bounded solutions: F. Fanelli, E. F., and M. Hofmanová arxiv preprint No. 2006.02278, 2020
 J. Březina, E. F., and A. Novotný, Communications in PDE's 2020
 E.F., A. Novotný, M. Petcu book in preparation

Hard sphere pressure EOS



Trajectory space

Fundamental result on compactness [Fanelli, EF, Hofmanová, 2020]

The ω -limit set $\omega[\varrho, \mathbf{m}, S]$ of each global in time trajectory with globally bounded energy is:

- non empty
- compact in \mathcal{T}
- time shift invariant
- consists of entire (defined for all $t \in R$) weak solutions of the Navier–Stokes–Fourier system

Propagation of oscillations

Equation of continuity

$$\partial_t \varrho + \mathbf{u} \cdot \nabla_x \varrho = -\varrho \operatorname{div}_x \mathbf{u}$$

Renormalized equation of continuity

$$\partial_t b(\varrho) + \operatorname{div}_x(b(\varrho)\mathbf{u}) + (b'(\varrho)\varrho - b(\varrho))\operatorname{div}_x\mathbf{u} = 0$$

Weak convergence

$$\begin{split} b(\varrho_n) &\to \overline{b(\varrho)} \text{ weakly in } L^1 \\ \partial_t \Big[\overline{b(\varrho)} - b(\varrho) \Big] + \operatorname{div}_x \Big(\overline{b(\varrho) \mathbf{u}} - b(\varrho) \mathbf{u} \Big) \\ &= \Big(b'(\varrho) \varrho - b(\varrho) \Big) \operatorname{div}_x \mathbf{u} - \overline{\Big(b'(\varrho) \varrho - b(\varrho) \Big) \operatorname{div}_x \mathbf{u}} \\ & \Big[\overline{b(\varrho)} - b(\varrho) \Big] (0, \cdot) = 0 \text{ is needed!} \end{split}$$

◆□ > ◆□ > ◆目 > ◆目 > ◆□ > ◆○ > ◆○ >

Vanishing oscillation defect, I

Compactness of densities:

$$\begin{split} \varrho_n &\equiv \varrho(\cdot + T_n) \to \varrho \text{ in } C_{\text{weak,loc}}(R; L^{\gamma}(\Omega)) \\ \varrho_n \log(\varrho_n) \to \overline{\varrho \log(\varrho)} \geq \varrho \log(\varrho) \\ \text{oscillation defect: } D(t) &\equiv \int_{\Omega} \overline{\varrho \log(\varrho)} - \varrho \log(\varrho) \, \mathrm{d} x \geq 0 \end{split}$$

Renormalized equation:

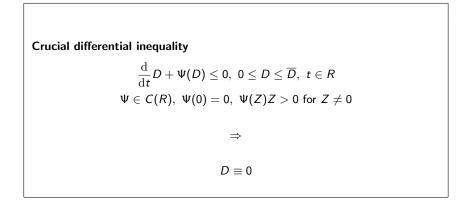
$$\frac{\mathrm{d}}{\mathrm{d}t}D + \int_{\Omega} \left[\overline{\varrho \mathrm{div}_{x} \mathbf{u}} - \varrho \mathrm{div}_{x} \mathbf{u}\right] \,\mathrm{d}x = \mathbf{0}, \ \mathbf{0} \leq D \leq \overline{D}, \ t \in R$$

Lions' identity

$$\overline{\varrho \mathrm{div}_{\mathsf{x}} \mathsf{u}} - \varrho \mathrm{div}_{\mathsf{x}} \mathsf{u} = \overline{\rho(\varrho, \vartheta)\varrho} - \overline{\rho(\varrho, \vartheta)} \ \varrho \geq 0$$

◆□ > ◆□ > ◆目 > ◆目 > ◆□ > ◆○ > ◆○ >

Vanishing oscillation defect, II



・ロト < 団ト < 三ト < 三 ・ つへで

Statistical stationary solutions

Application of Krylov – Bogolyubov method

$$\frac{1}{T_n} \int_0^{T_n} \delta_{\varrho(\cdot+t,\cdot),\mathsf{m}(\cdot+t,\cdot),S(\cdot+t,\cdot)} \, \mathrm{d}t \to \mu \in \mathcal{P}[\mathcal{T}] \text{ narrowly}$$

 $\left[\mathcal{T},\mu\right]$ (canonical representation) – statististical stationary solution

 $\mu(t)|_X$ (marginal) independent of $t\in R$

Application of Birkhoff – Khinchin ergodic theorem

$$\frac{1}{T}\int_0^T F(\varrho(t,\cdot),\mathsf{m}(t,\cdot),S(t\cdot))\mathrm{d}t\to\overline{F} \text{ as } T\to\infty$$

F bounded Borel measurable on X for μ – a.a. (ϱ , **m**) $\in \omega$