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GRAY TENSOR PRODUCTS AND LAX FUNCTORS OF

(∞, 2)-CATEGORIES

ANDREA GAGNA, YONATAN HARPAZ, AND EDOARDO LANARI

Abstract. We give a definition of the Gray tensor product in the setting of
scaled simplicial sets which is associative and forms a left Quillen bifunctor
with respect to the bicategorical model category of Lurie. We then introduce
a notion of oplax functor in this setting, and use it in order to characterize the
Gray tensor product by means of a universal property. A similar characteri-
zation was used by Gaitsgory and Rozenblyum in their definition of the Gray

product, thus giving a promising lead for comparing the two settings.
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Introduction

The theory of 2-categories provides a powerful framework in which one can de-
velop formal category theory, allowing for notions such as adjunctions, Kan ex-
tensions, correspondences and lax (co)limits to be studied in an abstract setting.
The category of 2-categories carries a monoidal structure, given by the Gray tensor
product, which makes use of the 2-dimensional structure available. This monoidal
structure comes in a few flavors, as is often the case in the 2-categorical setting:
there is a pseudo version, which was the first one to be defined by Gray in [6] (hence
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the name), as well as a lax and an oplax version. The Gray tensor product serves
the purpose of representing pseudo/lax natural transformations, and it is thus a re-
placement for the cartesian product of 2-categories when one considers these weaker
notion of morphisms. Moreover, while the cartesian product is badly-behaved with
respect to the folk model category structure on 2-categories, Lack [7] showed that
the pseudo Gray tensor is compatible with the folk model category, and recently
Ara and Lucas [1] proved that the same holds for the lax and oplax version of the
Gray tensor product.

In the last decade, the study of ∞-categories as a building block for homotopy-
coherent mathematics has contributed to the development of spectral and derived
algebraic geometry, culminating in impressive applications, such as the proof by
Gaitsgory and Lurie in [4] of Weil’s conjecture on Tamagawa numbers for func-
tion fields. In the same spirit of organizing ordinary category theory from a 2-
dimensional perspective, the framework of (∞, 2)-categories allows to better under-
stand homotopy coherent constructions performed on (∞, 1)-categories.

In this paper, we introduce and study a particularly well-behaved model of the
(oplax) Gray tensor product for (∞, 2)-categories. We work in the category of
scaled simplicial sets equipped with the bicategorical model structure constructed
in [9], and further developed in [3], and we provide a Gray tensor product which
is associative on-the-nose and is moreover a left Quillen bifunctor. In particular,
with the bicategorical model structure the category of scaled simplicial sets forms
a (non-symmetric) monoidal model category. This implies, for example, that the
Gray tensor product preserve homotopy colimits in each variable separately, and
that the underlying ∞-category Cat(∞,2) of (∞, 2)-categories carries the structure
of a presentably monoidal ∞-category with respect to the Gray product.

Versions of the Gray tensor product in different contexts already appear in the
literature. Verity [15] defines a Gray tensor product in stratified simplicial sets
compatible with the complicial model category structure for (∞,∞)-categories.
This can be truncated to be compatible with the model category structure for 2-
truncated saturated complicial sets established in [13], giving a Gray tensor product
for this model of (∞, 2)-categories. In this paper, we prove that this version of the
Gray tensor is equivalent to ours, via the equivalence established in [3]. Another
approach has been recently provided by Maehara [12] via the combinatorics of Θ2-
sets.

The main motivation behind our interest in the Gray tensor product comes
from the recent book [5], where Gaitsgory and Rozenblyum develop a formalism of
categories of correspondences which makes use of the Gray tensor product. How-
ever, there are some unproven claims in the technical section dealing with (∞, 2)-
categories, and one of the aims of this project is to provide a proof for some of
these statements in the framework of scaled simplicial sets. For example, the
preservation of (homotopy) colimits in each variable provides a reference for [5,
Propositions 10.3.2.6 and 10.3.2.9] in the setting of scaled simplicial sets.

To fully achieve the goal above it is however necessary to compare our Gray ten-
sor product with that of Gaitsgory–Rozenblyum. While we do not provide such a
comparison in the current paper, we pave the way towards one by establishing a uni-
versal property for our Gray product in terms of oplax functors of ∞-bicategories.
This mirrors the approach of Gaitsgory–Rozenblyum for the definition of the Gray
product, and reduces the comparison of the respective Gray products that that of
the two notions of oplax functors. The latter comparison is the subject of current
work in progress and we hope to settle this question in a future paper.



GRAY TENSOR PRODUCTS AND LAX FUNCTORS OF (∞, 2)-CATEGORIES 3

It is worth pointing out that, despite the existence of various models of Gray
tensor product, none of them have been proven to satisfy the characterizing uni-
versal property formulated in [5, Chapter 10, Point 3.2.3], and in particular non
were ever shown to be equivalent to that of loc. cit. This has been one obstacle in
providing proofs for some of the unproven claims in [5, Chapter 10], and we hope
and expect that the present paper will open a path leading to such proofs.

The present paper is organized as follows. In §1 we fix the notation and recall
the categories of marked and scaled simplicial sets, with their respective marked
categorical and bicategorical model structures. We then examine the mapping
spaces between two scaled simplicial sets following [9] and we derive some standard
consequences.

In the §2 we introduce the Gray tensor product and the closely related notion of
(op)lax transformations, and study some of its basic properties. We proceed in §2.2
to compare our definition with that of Verity in the setting of complicial sets, under
the Quillen equivalence between the two models established in [3]. Then, in §2.3
we prove that our Gray tensor product is left Quillen bifunctor, which constitutes
the main result of this paper.

The final §3 is dedicated to the establishment of a universal mapping property for
the Gray product in terms of a suitable notion of oplax functors, which we generalize
from classical 2-category theory to the setting of ∞-bicategories. This universal
characterization allows one in principle to recognize the Gray tensor product in any
given model for (∞, 2)-categories, as soon as this model supports a notion of oplax
functors. Our main motivation here is to initiate a path towards the comparison
of the present Gray tensor product with that of Gaitsgory–Rozenblyum, so that
properties proven on the Gray tensor product at hand (including those derived
from the results of the present paper, such as associativity and compatibility with
colimits), could be applied to that of Gaitsgory–Rozenblyum, thus providing proofs
for the unproven claims listed in [5, 10.0.4.2].

1. Preliminaries

In this section we recall the necessary definitions and theorems that will be used
throughout this paper.

Notation 1.1. We will denote by ∆ the category of simplices, that is the category
whose objects are the finite non-empty ordinals [n] = {0, 1, 2, . . . , n} and morphisms
are the non-decreasing maps. We will denote by Set∆ the category of simplicial
sets, that is the category of presheaves on sets of ∆, and will employ the standard
notation ∆n for the n-simplex, i.e., the simplicial set representing the object [n]
of ∆. For any subset ∅ 6= S ⊆ [n] we will write ∆S ⊆ ∆n to denote the (|S| − 1)-
dimensional face of ∆n whose vertices belong to S. For 0 ≤ i ≤ n we will denote
by Λn

i ⊆ ∆n the i-th horn in ∆n, that is, the subsimplicial set of ∆n spanned by all
the (n − 1)-dimensional faces containing the i-th vertex. For any simplicial set X
and any integer p ≥ 0, we will denote by degp(X) the set of degenerate p-simplices
of X .

By ∞-category we will always mean a quasi-category, i.e., a simplicial set X

which admits extensions for all inclusions Λn
i → ∆n, for all n > 1 and all 0 < i < n

(known as inner horns). Given an ∞-category X , we will denote its homotopy
category by ho(X). This is the ordinary category having as objects the 0-simplices
of X , and as morphisms x→ y the set of equivalence classes of 1-simplices f : x→ y

of X under the equivalence relation generated by identifying f and f ′ if there is a
2-simplex H of X with H|∆{1,2} = f, H|∆{0,2} = f ′ and H|∆{0,1} degenerate on x.
We recall that the functor ho: ∞-Cat → 1-Cat is left adjoint to the ordinary nerve
functor N : 1-Cat →∞-Cat .
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1.1. Marked simplicial sets and ∞-categories.

Definition 1.2. A marked simplicial set is a pair (X,E) where X is simplicial
set and E is a subset of the set of 1-simplices of X , called marked simplices or
marked edges, containing the degenerate ones. A map of marked simplicial sets
f : (X,EX)→ (Y,EY ) is a map of simplicial sets f : X → Y satisfying f(EX) ⊆ EY .

The category of marked simplicial sets will be denoted by Set+∆.

Remark 1.3. The category Set+∆ of marked simplicial sets admits an alternative
description, as the category of models of a limit sketch. In particular, it is a
reflective localization of a presheaf category and it is a cartesian closed category.
In fact, it is a locally cartesian closed category.

Theorem 1.4 ([10]). There exists a model category structure on the category Set+∆
of marked simplicial sets in which cofibrations are exactly the monomorphisms and
the fibrant objects are marked simplicial sets (X,E) in which X is an ∞-category
and E is the set of equivalences of X, i.e., 1-simplices f : ∆1 → X which are
invertible in ho(X).

This is a special case of Proposition 3.1.3.7 in [10], when S = ∆0. We will refer
to the model structure of Theorem 1.4 as the marked categorical model structure,
and its weak equivalences as marked categorical equivalences.

Remark 1.5. Marked simplicial sets endowed with the marked categorical model
structure are a model for (∞, 1)-categories.

1.2. Scaled simplicial sets and ∞-bicategories.

Definition 1.6 ([9]). A scaled simplicial set is a pair (X,T ) where X is simplicial
set and T is a subset of the set of 2-simplices of X , called thin 2-simplices or
thin triangles, containing the degenerate ones. A map of scaled simplicial sets
f : (X,TX)→ (Y, TY ) is a map of simplicial sets f : X → Y satisfying f(TX) ⊆ TY .
We will often refer to a scaled simplicial set just without explicitly mentioning its
thin 2-simplices, when this causes no ambiguity.

We will denote by Set sc∆ the category of scaled simplicial sets.

Notation 1.7. Let X be a simplicial set. We will denote by X♭ = (X, deg2(X))
the scaled simplicial set where the thin triangles of X are the degenerate 2-simplices
and by X♯ = (X,X2) the scaled simplicial set where all the triangles of X are thin.
The assignments

X 7→ X♭ and X 7→ X♯

are the left and right adjoint of the obvious forgetful functor Set sc∆ → Set∆.

Remark 1.8. The category Set sc∆ admits an alternative description, as the category
of models of a limit sketch. In particular, it is a reflective localization of a presheaf
category and so it is cartesian closed. In fact, we can consider the category ∆sc

having {[k]}k≥0 ∪ {[2]t} as set of objects, obtained from ∆ by adding an extra ob-
ject and maps [2]→ [2]t, σi

t : [2]t → [1] for i = 0, 1 satisfying the obvious relations.
The category Set sc∆ is then the reflective localization of the category of presheaves
PSh(∆sc) (of sets) at the arrow [2]t ∐[2] [2]t → [2]t, where we have identified an
object of ∆sc with its corresponding representable presheaf. Equivalently, the lo-
cal objects are those presheaves X : ∆op

sc → Set for which X([2]t) → X([2]) is a
monomorphism.

Notation 1.9. We will often speak only of the non-degenerate thin 2-simplices
when considering a scaled simplicial set. For example, if X is a simplicial set and T

is any set of triangles in X then we will denote by (X,T ) the scaled simplicial set
whose underlying simplicial set is X and whose thin triangles are T together with
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the degenerate triangles. If L ⊆ K is a subsimplicial set then we use T |L := T ∩L2

to denote the set of triangles in L whose image in K is contained in T .

The following set of inclusions will characterize the model structure on scaled
simplicial sets for ∞-bicategories. We are implicitly making use of Corollary 3.0.6
of [3] in that we assume weak ∞-bicategories coincide with ∞-bicategories, as
defined in [9].

Definition 1.10. Let S be the set of maps of scaled simplicial sets consisting of:

(i) the inner horns inclusions
(
Λn
i ,∆

{i−1,i,i+1}
)
→

(
∆n,∆{i−1,i,i+1}

)
, n ≥ 2 , 0 < i < n;

(ii) the map

(∆4, T )→ (∆4, T ∪ {∆{0,3,4}, ∆{0,1,4}}),

where we define

T
def
= {∆{0,2,4}, ∆{1,2,3}, ∆{0,1,3}, ∆{1,3,4}, ∆{0,1,2}};

(iii) the set of maps
(
Λn
0 ∐

∆{0,1}
∆0,∆{0,1,n}

)
→

(
∆n ∐

∆{0,1}
∆0,∆{0,1,n}

)
, n ≥ 3.

We call S the set of generating anodyne morphisms. We make use of it in the
following definition.

Definition 1.11. An ∞-bicategory is a scaled simplicial set (X,T ) which admits
extensions along all maps in S. Diagrammatically, if i : K → L is a map in S, then
for every map f : K → (X,T ) there exists an extension as displayed below by the
dashed arrow in the following diagram:

K (X,T )

L

f

i .

Putting together the results in [9] and [3], we get the following theorem.

Theorem 1.12. There exists a model structure on the category of scaled simplicial
sets whose cofibrations are the monomorphisms and whose fibrant objects are the
∞-bicategories.

This model structure is proved in [3] to be Quillen equivalent to Verity’s one on
stratified sets for saturated 2-trivial complicial sets, as defined in [15] and [13]. We
depict the Quillen equivalence as follows:

(1) Set sc∆

ι
''

U

gg ⊥ Strat2 ,

where U denotes the forgetful functor and ι is an inclusion. Furthermore, Lurie
shows in [9] that there is a scaled homotopy coherente nerve

Nsc : Set+∆-Cat −→ Set sc∆

which is a Quillen equivalence, where the category Set+∆-Cat of category enriched in

marked simplicial sets is endowed with the Set+∆-enriched model category structure
(see [10, §A.3.2]).

Definition 1.13. Let (X,T ) be a scaled simplicial set. We will say that the
collection of triangles T is saturated if both (X,T ) and (Xop, T ) satisfy the extension
property with respect to the (ii) of Definition 1.10.
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Example 1.14. Any ∞-bicategory is saturated.

Remark 1.15. It follows from [9, Remark 3.1.4] that if a scaled simplicial set X

is saturated then X satisfies the extension property with respect to the maps
(∆3, Ti) → ∆3

♯ for i = 1, 2 where Ti is the collection of all triangles in ∆3 ex-

cept ∆{0,i,3}.

Definition 1.16. Let (X,T ) be a scaled simplicial set. We define the saturated
closure of T to be the smallest saturated set of triangles T ′ which contains T (note
that such a set exists because the collection of saturated sets of triangles is closed
under intersection).

Lemma 1.17. Let (X,T ) be a scaled simplicial set and T the saturated closure of
T . Then the map (X,T )→ (X,T ) is a trivial cofibration in Set sc∆ .

Proof. Applying the small object argument with respect to the set S consisting of
the map (ii) of Definition 1.10 and its opposite we may find a map (X,T )→ (X ′, T ′)
which is a retract of transfinite compositions of pushouts of maps in S and such
that T ′ is saturated in X ′. Since the maps in S are isomorphisms on the underlying
simplicial set the same holds for X → X ′, and so we may identify T ′ with a set
of triangles in X . Since every map in S is a trivial cofibration the same holds for
the resulting map (X,T ) → (X,T ′). Now since T ′ is saturated and contains T it
also contains its saturated closure T . On the other hand, since (X,T ) satisfies the
extension property with respect to S it also satisfies the extension property with
respect to (X,T )→ (X,T ′), and so T ′ ⊆ T . We may then conclude that T ′ = T is
the saturated closure of T and hence the desired result follows. �

Definition 1.18. Given a scaled simplicial set X , we define its core to be the
simplicial set Xth spanned by those n-simplices of X whose 2-dimensional faces are
thin triangles.

Remark 1.19. Notice that X and Xth agree on the 1-skeleton. Moreover, whenever
X is an ∞-bicategory, its core Xth (formally, its underlying simplicial set) is an
∞-category.

Definition 1.20. Let C be an ∞-bicategory. We will say that an edge in C is
invertible if it is invertible when considered in the ∞-category Cth, that is, if its
image in the homotopy category of Cth is an isomorphism. We will sometimes
refer to invertible edges in C as equivalences. We will denote by C≃ ⊆ Cth the
subsimplicial set spanned by the invertible edges. Then C≃ is an ∞-groupoid (that
is, a Kan complex), which we call the core groupoid of C. It can be considered as
the∞-groupoid obtained from C by discarding all non-invertible 1-cells and 2-cells.
If (X,T ) is an arbitrary scaled simplicial set then we will say that an edge in X is
invertible if its image in C is invertible for any bicategorical equivalence (X,T )→ C.
This does not depend on the choice of C.

Notation 1.21. Let C be an ∞-bicategory and let x, y ∈ C be two vertices. In
section 4.2 of [9], Lurie gives an explicit model for the mapping ∞-category from
x to y in C that we now recall. Let HomC(x, y) be the marked simplicial set whose
n-simplices are given by maps f : ∆n × ∆1 → C such that f|∆n×{0} is constant
on x, f|∆n×{1} is constant on y, and the triangle f|∆{(i,0),(i,1),(j,1)} is thin for every

0 ≤ i ≤ j ≤ n. An edge f : ∆1 ×∆1 → C of HomC(x, y) is marked exactly when
the triangle f|∆{(0,0),(1,0),(1,1)} is thin. The assumption that C is an ∞-bicategory

implies that the marked simplicial set HomC(x, y) is fibrant in the marked categor-
ical model structure, that is, it is an ∞-category whose marked edges are exactly
the equivalences.
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Remark 1.22. By Remark 4.2.1 and Theorem 4.2.2 of [9], if D is a fibrant Set+∆-en-
riched category and C is an∞-bicategory equipped with a bicategorical equivalence
ϕ : C ≃ Nsc(D) then the maps

MapC(x, y) −→ MapNsc(D)(ϕ(x), ϕ(y)) ←− MapD(ϕ(x), ϕ(y))

are categorical equivalences of marked simplicial sets for every pair of vertices x, y
of C. It then follows that a map ϕ : C → C′ of ∞-bicategories is a bicategorical
equivalence if and only if it is essentially surjective (that is, every object in C′ is
equivalent to an object in the image, see Definition 1.20) and the induced map
MapC(x, y) → MapC′(ϕ(x), ϕ(y)) is a categorical equivalence of (fibrant) marked
simplicial sets for every x, y ∈ C.

Remark 1.23. It follows from Remark 1.22 that if ϕ : C→ C′ is a bicategorical equiv-
alence of∞-bicategories then the induced map ϕth : Cth → (C′)th is an equivalence
of ∞-categories.

It is shown in [9, Proposition 3.1.8] that the cartesian product

× : Set sc∆ × Set sc∆ −→ Set sc∆

of a scaled anodyne map and a monomorphism is contained in the saturation of
the class of scaled anodyne maps. Therefore, thanks to Theorem 5.1 of [3], the
cartesian product is a left Quillen bifunctor with respect to the bicategorical model
structure, i.e. Set sc∆ is a cartesian closed model category. In particular, for a every
two scaled simplicial sets X,Y we have a mapping object Fun(X,Y ) which satisfies
(and is determined by) the exponential formula

HomSet sc
∆
(Z,Fun(X,Y )) ∼= HomSet sc

∆
(Z ×X,Y ).

In addition, when Y is an∞-bicategory the mapping object Fun(X,Y ) is an∞-bi-
category as well, which we can consider as the ∞-bicategory of functors from X to
Y . In this case we will denote by Funth(X,Y ) ⊆ Fun(X,Y ) the core∞-category and

by Fun≃(X,Y ) ⊆ Funth(X,Y ) the core ∞-groupoid of Fun(X,Y ). In particular,

Funth(X,Y ) is an∞-category and Fun≃(X,Y ) is a Kan complex, which we consider
as the space of functors from X to Y . We note the following:

Lemma 1.24. Let f : X → Y be a map of scaled simplicial sets. Then f is a
bicategorical equivalence if and only if for every ∞-bicategory C the induced map

(2) f∗ : Fun≃(Y,C) −→ Fun≃(X,C)

is an equivalence of Kan complexes.

Proof. If f : X → Y is a bicategorical equivalence then Fun(Y,C) → Fun(X,C) is
a bicategorical equivalence for every ∞-bicategory C since Set sc∆ is cartesian closed
and every object is cofibrant. It then follows from Remark 1.23 that (2) is an
equivalence of Kan complexes.

Now suppose that (2) is an equivalence of Kan complexes. By the argument
above the property that (2) is an equivalence of Kan complexes will hold for any
arrow which is levelwise bicategorically equivalent to f ′ in Set sc∆ . We may hence
assume without loss of generality that X and Y are fibrant, that is, they are∞-bi-
categories. Taking C = X in (2) we may conclude there exists a map g : Y → X such
that gf : X → X is in the same component as Id : X → X in Fun≃(X,X). There is
hence an arrow e : ∆1 → Fun≃(X,X) such that e(0) = Id and e(1) = gf . Let K be
a contractible Kan complex which contains a non-degenerate arrow ∆1 ⊆ K, which
we can write as v → u. Then we can extend the map e : ∆1 → Fun≃(X,X) to a
map ẽ : K → Fun≃(X,X). By adjunction we thus get a map H : X ×K → X such
that H|X×{v} = Id and H|X×{u} = gf . Since the map X ×K → X induced by the
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canonical morphism K → ∆0 is a bicategorical equivalence and the compositions
X × {v} → X ×K → X and X × {u} → X ×K → X are both the identity on X ,
we may consider X×K as a cylinder object for X in Set sc∆ , so that gf is homotopic
to the identity with respect to the bicategorical model structure. We now claim
that fg : Y → Y is homotopic to the identity on Y . To see this, we note that by
the above we have that fgf : X → Y is in the same component as f : X → Y in
Fun≃(X,Y ). Using that (2) is an equivalence of Kan complexes for C = Y we may
conclude that fg : Y → Y is in the same component as Id: Y → Y in Fun≃(Y, Y ).
Arguing as above we get that fg is homotopic to the identity with respect to the
bicategorical model structure. We may hence conclude that f is an isomorphism in
Ho(Set sc∆ ) and hence a bicategorical equivalence, as desired. �

2. Gray products and lax natural transformations

2.1. The Gray product. In this section we define the Gray product of two scaled
simplicial sets. In what follows, when we say that a 2-simplex σ : ∆2 → X degener-
ates along ∆{i,i+1} ⊆ ∆2 (for i = 0, 1) we mean that σ is degenerate and σ|∆{i,i+1}

is degenerate. This includes the possibility that σ factors through the surjective
map ∆2 → ∆1 which collapses ∆{i,i+1} as well as the possibility that σ factors
through ∆2 → ∆0.

Definition 2.1. Let (X,TX), (Y, TY ) be two scaled simplicial sets. The Gray prod-
uct (X,TX)⊗ (Y, TY ) is the scaled simplicial set whose underlying simplicial set is
the cartesian product of X × Y and such that a 2-simplex σ : ∆2 → X × Y is thin
if and only if the following conditions hold:

(1) σ belongs to TX × TY ;
(2) either the image of σ in X degenerates along ∆{1,2} or the image of σ in Y

degenerates ∆{0,1}.

Proposition 2.2. The natural associativity isomorphisms of the cartesian product
of marked simplicial set are also isomorphisms of scaled simplicial sets for the Gray
product, and hence the Gray product gives a monoidal structure on Set sc∆ .

Proof. Let (X,TX), (Y, TY ), (Z, TZ) be three scaled simplicial sets. We have to
check that the thin 2-simplices of ((X,TX) ⊗ (Y, TY )) ⊗ (Z, TZ) are the same as
those of (X,TX) ⊗ ((Y, TY ) ⊗ (Z, TZ)). Indeed, direct inspection shows that both
sets of thin 2-simplices coincide with the set of those (α, β, γ) ∈ TX ×TY ×TZ such
that at least one of the following three conditions hold:

(1) both α and β degenerate along ∆{1,2};
(2) both β and γ degenerate along ∆{0,1}; or
(3) α degenerates along ∆{1,2} and γ degenerate along ∆{0,1}.

�

Remark 2.3. The 0-simplex ∆0 can be considered as a scaled simplicial set in a
unique way, and serves as the unit of the Gray product. Consequently, if X is any
discrete scaled simplicial set then X ⊗ Y ∼= X × Y and Y ⊗X ∼= Y × X for any
scaled simplicial set Y .

Remark 2.4. The Gray product is not symmetric in general. Instead, there is a
natural isomorphism

X ⊗ Y ∼= (Y op ⊗Xop)op.

Example 2.5. Consider the Gray product X = ∆1 ⊗∆1. Then X has exactly two
non-degenerate triangles σ1, σ2 : ∆

2 → X , where σ1 sends ∆{0,1} to ∆{0}×∆1 and
∆{1,2} to ∆1 ×∆{1}, and σ2 sends ∆{0,1} to ∆1 ×∆{0} and ∆{1,2} to ∆{1} ×∆1.
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By definition we see that σ2 is thin in X but σ1 is not. If C is an ∞-bicategory
then a map p : X → C can be described as a diagram in C of the form

x y

z w

f0

g0 h g1

f1

≃

whose upper right triangle is thin (here fi = p|∆1×{i} and gi = p|{i}×∆1). We

thus have an invertible 2-cell h
≃
=⇒ g1 ◦ f0 and a non-invertible 2-cell h ⇒ f1 ◦ g0.

Such data is essentially equivalent to just specifying a single non-invertible 2-cell
g1 ◦ f0 ⇒ f1 ◦ g0. We may hence consider such a square as a oplax-commutative
square, or a square which commutes up to a prescribed 2-cell.

It is straightforward to verify that the Gray product preserves cofibrations and
colimits separately in each variable. Consequently, one my associate with ⊗ a
right and a left mapping objects, which we shall denote by Funopgr(X,Y ) and
Fungr(X,Y ) respectively. More explicitly, an n-simplex of Funopgr(X,Y ) is given
by a map of scaled simplicial sets

∆n ⊗X −→ Y.

A 2-simplex ∆2 ⊗X → Y of Funopgr(X,Y ) is thin if it factors through (∆2)♯ ⊗X .
Similarly, an n-simplex of Fungr(X,Y ) is given by a map of scaled simplicial sets

X ⊗∆n −→ Y

and the scaling is determined as above.
Let C be an ∞-bicategory and K a scaled simplicial set. We will see below that

the scaled simplicial sets Funopgr(K,C) and Fungr(K,C) are in fact∞-bicategories.
The objects of Funopgr(K,C) correspond to functors K → C and by Example 2.5
we may consider morphisms in Funopgr(K,C) as oplax natural transformations. If
we take Fungr(K,C) instead then the objects are again functors K → C, but now
the edges will correspond to lax natural transformations. For example, if K = ∆1

and f0, f1 are two morphisms in C then an arrow in Funopgr(∆1,C) from f0 to f1
is a square in C of the form

(3)

x y

z w

f0

g0 h g1

f1

≃

with the upper right triangle thin. This can be considered as a 2-cell g1◦f0 ⇒ f1◦g0.
On the other hand, an arrow in Fungr(∆,C) from f0 to f1 is a square of the form 3
whose lower left triangle is thin, i.e., a 2-cell in the other direction f1 ◦g0 ⇒ g1 ◦f0.

Remark 2.6. Let X , Y and Z be scaled simplicial sets. The associativity isomor-
phism of the Gray product yields a natural isomorphism

Funopgr(X,Fungr(Y, Z)) ∼= Fungr(Y,Funopgr(X,Z)).

2.2. Comparison with the Gray product of stratified sets. In his extensive
work [15], Verity constructs a Gray tensor product in the setting of stratified sets.
In particular, for two stratified sets (X, tX), (Y, tY ), the stratified set (X, tX) ⊗
(Y, tY ) has as an underlying marked simplicial set the product of the underlying
marked simplicial sets, while a 2-simplex (σX , σY ) : ∆

2 → X × Y is marked in
(X, tX)⊗ (Y, tY ) if and only if
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(1) σX and σY are marked in X and Y respectively;
(2) either (σX)|∆{1,2} is marked in X or (σY )|∆{0,1} is marked in Y .

The marking on higher simplices are defined in a similar manner, though they do
not play a significant role if one is only considering stratified sets up to 2-complicial
weak equivalence. Our goal in the present subsection is to compare the Gray
product defined in §2.1 with the above Gray tensor product of stratified sets via
the left Quillen equivalence

Set sc∆ → Strat2
established in [3].

Remark 2.7. The Gray product of stratified sets recalled above is associative, but
does not preserve colimits in each variable, and in particular cannot be a left Quillen
bifunctor. In [15], Verity also considers a variant of the above definition which
preserve colimits in each variable but is not associative. By contrast, the Gray
tensor product of scaled simplicial sets is simultaneously associative and a left
Quillen bifunctor, as we will establish in Theorem 2.14 below.

In what follows, it will be useful to consider several equivalent variants of the
Gray tensor product on scaled simplicial sets. Let (X,TX), (Y, TY ) be scaled sim-
plicial sets and let Tgr ⊆ TX×TY denote the collection of triangles which are thin in
the Gray product (X,TX)⊗ (Y, TY ), see Definition 2.1. Let T− ⊆ TX × TY denote
the subset consisting of those pairs of thin triangles (σX , σY ) for which either both
σX and σY are degenerate or at least one of σX , σY degenerates to a point. On the
other hand, let T+ ⊆ TX×TY be the set of those pairs of thin triangles (σX , σY ) for
which either (σX)|∆{1,2} is degenerate or (σY )|∆{0,1} is degenerate. Then we have
a sequence of inclusions

T− ⊆ Tgr ⊆ T+.

We claim that these three choices for the collection of thin triangles in X × Y

yield equivalent models for the Gray tensor product. More precisely, we have the
following:

Proposition 2.8. The maps (X × Y, T−) →֒ (X × Y, Tgr) →֒ (X × Y, T+) are both
scaled anodyne.

The proof of Proposition 2.8 will require a couple of lemmas.

Lemma 2.9. In the situation of Proposition 2.8, if (X,TX) = ∆2
♭ and (Y, TY ) = ∆1

♭

then the map (X × Y, T−)→ (X × Y, Tgr) is scaled anodyne.

Proof. We note that in this case Tgr contains exactly one triangle that is not in
T−, namely, the triangle σ : ∆2 → ∆2 ×∆1 whose projection to ∆2 is the identity
and whose projection to ∆1 is surjective and degenerates along ∆{0,1}. Let ∆3 →
∆2 × ∆1 be the 3-simplex spanned by the vertices (0, 0), (1, 0), (2, 0), (2, 1). By
definition we have that σ|∆{1,2,3} , σ|∆{0,2,3} and σ|∆{0,1,2} are in T−, while σ|∆{0,1,3}

is exactly the 2-simplex which is in Tgr but not in T−. We then get that the map
(X × Y, T−)→ (X × Y, Tgr) is a pushout along the inclusion

(∆3, {∆{1,2,3},∆{0,2,3},∆{0,1,2}}) →֒ ∆3
♯

which is scaled anodyne by [9, Remark 3.1.4]. �

Lemma 2.10. Let

(Z0, T0) =

(
∆2

∐

∆{1,2}

∆0

)
⊗∆2

and

(Z2, T2) = ∆2 ⊗

(
∆2

∐

∆{0,1}

∆0

)
.
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For i = 0, 2, let Si be the set of 2-simplices consisting of Ti together with the image
of the diagonal 2-simplex diag : ∆2 → ∆2 ×∆2. Then the map of scaled simplicial
sets

(Zi, Ti) −→ (Zi, Si)

is scaled anodyne for i = 0, 2.

Proof. We prove the claim for i = 0. The proof for i = 2 proceeds in a sim-
ilar manner. Let σ : ∆3 → ∆2 × ∆2 be the 3-simplex spanned by the vertices
(0, 0), (1, 0), (1, 1), (2, 2), and let σ′ : ∆3 → Z0 be its image in Z0. By definition
we have that σ′

|∆{1,2,3} , σ
′
|∆{0,1,3} and σ′

|∆{0,1,2} are thin in Z0, and σ′
|∆{0,2,3} is the

image of the diagonal 2-simplex. We then get that the map (Z0, T0) → (Z0, S0) is
a pushout along the inclusion

(∆3, {∆{1,2,3},∆{0,1,3},∆{0,1,2}}) →֒ ∆3
♯

which is scaled anodyne by [9, Remark 3.1.4]. �

Proof of Proposition 2.8. The inclusion (X×Y, T−) →֒ (X×Y, T ) can be obtained
as a sequence of pushouts along the scaled anodyne maps described in Lemma 2.9,
while the inclusion (X × Y, T ) →֒ (X × Y, T+) can be obtained as a sequence of
pushouts along the scaled anodyne maps described in Lemma 2.10. �

Corollary 2.11 (Comparison of scaled and 2-complicial Gray products). For scaled
simplicial sets (X,TX), (Y, TY ), the natural inclusion iX,Y : ι((X,TX)⊗ (Y, TY ))→
ι(X,TX)⊗ ι(Y, TY ) is a weak equivalence in Strat2.

Proof. The map iX,Y coincides with ι((X×Y, Tgr) →֒ (X×Y, T+)). Since ι is a left
Quillen functor and (X × Y, Tgr) →֒ (X × Y, T+) is scaled anodyne by Proposition
2.8 this map is a weak equivalence in the 2-complicial model structure. �

We finish this section with some additional results concerning the relation be-
tween the Gray product of scaled simplicial sets and invertible arrows in∞-bicategories
(see Definition 1.20).

Proposition 2.12. Let C = (C, TC),D = (D, TD) be two ∞-bicategories. Let
T≃ ⊆ TC × TD denote the subset containing those triangles (α, β) such that either
α|∆{1,2} is invertible in C or β|∆{0,1} is invertible in D. Then the map

C⊗D→ (C×D, T≃)

is bicategorical equivalence.

Proof. Let Tgr ⊆ TC×TD be the collection of triangles which are thin in C⊗D. By
Proposition 2.8 it will suffice to show that T≃ is contained in the saturated closure
of T+. For this, let (α, β) ∈ T≃ be a triangle, so that either α|∆{1,2} is invertible in
C or β|∆{0,1} is invertible in D. Assume first that β|∆{0,1} is invertible. Since D is
an ∞-bicategory we have that Dth is an ∞-category (which contains the triangle
β) and hence we may find a map ρ : ∆4 → Dth such that ρ|∆{0,1,4} = β, ρ|∆{0,2}

is degenerate on β(0) and ρ|∆{1,3} is degenerate on β(1). Let η : ∆4 → C be the

composed map η : ∆4 π
→ ∆2 α

→ C where π : ∆4 → ∆2 is the map which is given on
vertices by π(0) = 0, π(1) = π(2) = π(3) = 1 and π(4) = 2. Let

(4) (∆4, T ) −→ (∆4, T ∪ {∆{0,1,4},∆{0,3,4}),

be the scaled anodyne map of Definition 1.10 (ii). We now claim that the map

(η, ρ) : ∆4 → C × D sends T to T+. Indeed, if ∆{i,j,k} ∈ T then either (i, j) ∈
{(0, 2), (1, 3)}, in which case ρ(∆{i,j}) is degenerate, or {j, k} ⊆ {1, 2, 3}, in which
case η(∆{j,k}) is degenerate. It then follows in particular (α, β) = (η, ρ)(∆{0,1,4})
is contained in the saturated closure of T+. Finally, if we assume that it is α|∆{1,2}
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that is invertible instead of β|∆{0,1} , then the argument can be carried out in a
symmetric manner except that we need to use the opposite of the map (4). �

Corollary 2.13. Let C be an ∞-bicategory and K a Kan complex. Then the maps

C⊗K♯ −→ C×K♯

and
K♯ ⊗ C −→ K♯ × C

are scaled anodyne.

2.3. The Gray product as a left Quillen bifunctor. In this section we will
prove the main result of the present paper:

Theorem 2.14. The Gray tensor product is a left Quillen bifunctor

−⊗− : Set sc∆ × Set sc∆ −→ Set sc∆

with respect to the bicategorical model structure.

Combined with Proposition 2.2 this implies that (Set sc∆ ,⊗) is a monoidal model
category. Passing to underlying ∞-categories we conclude:

Corollary 2.15. The Gray product endows the∞-category Cat(∞,2) with a monoidal
structure which is compatible with colimits in each variable.

We will give the proof of Theorem 2.14 below. The following pushout-product
property constitutes the principal component of the proof:

Proposition 2.16. Let f : X → Y be a monomorphism of scaled simplicial sets
and g : Z →W be a scaled anodyne map. Then the pushout-products

f⊗̂g :
(
X ⊗W

) ∐

X⊗Z

(
Y ⊗ Z

)
−→ Y ⊗W

and
g⊗̂f :

(
W ⊗X

) ∐

Z⊗X

(
Z ⊗ Y

)
−→W ⊗ Y

are scaled anodyne maps of scaled simplicial sets.

Proof. We adapt the argument of [9, Proposition 3.1.8] to the context of Gray
products. We can assume that f is either the inclusion ∂∆n

♭ →֒ ∆n
♭ for n ≥ 0 or

the inclusion or the inclusion ∆2
♭ ⊆ ∆2

♯ , and that g is one of the generating scaled
anodyne maps appearing in Definition 1.10. The case where f is the inclusion
∂∆0 →֒ ∆0 is trivial since in this case both f⊗̂g and g⊗̂f are isomorphic to g, see
Remark 2.3. If f is the inclusion ∆2

♭ ⊆ ∆2
♯ then, since all generating anodyne maps

in Definition 1.10 are bijective on vertices, the map f⊗̂g becomes an isomorphism
if we replace the collection of thin triangles in the Gray product by its minimalist
variant T− as in §2.2. The statement that f⊗̂g is scaled anodyne can then be
deduced from Proposition 2.8 (and the same argument works for g⊗̂f). We may
hence assume that f is the map ∂∆n

♭ →֒ ∆n
♭ for n ≥ 1. We now need to address

the three different possibilities for g appearing in Definition 1.10.

(A) Suppose that g is the inclusion (Λm
i , T ′) →֒ (∆m, T ) for 0 < i < m, where T

denotes the union of all degenerate edges and {∆{i−1,i,i+1}} and T ′ = T|(Λm
i ).

We argue the case of g⊗̂f . The proof for f⊗̂g proceeds in a similar manner.
Let

(Z0,M0) = [(∆m, T )⊗ ∂∆n
♭ ]

∐

(Λm
i ,T ′)⊗∂∆n

♭

[(Λm
i , T ′)⊗∆n

♭ ]

We will extend (Z0,M0) to a filtration of (∆m, T )⊗∆n
♭ as follows. Let S denote

the collection of all simplices σ : ∆kσ → ∆m×∆n with the following properties:
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(i) the simplex σ is non-degenerate and induces surjections ∆kσ → ∆n and
∆kσ → ∆m along the projections;

(ii) there exist integers 0 < pσ < kσ and 0 < jσ ≤ m (necessarily unique) such
that σ(pσ − 1) = (i− 1, jσ) and σ(pσ) = (i, jσ).

We make the following observation, which is useful to keep in mind during the
arguments below: if τ : ∆k → ∆m×∆n is an arbitrary simplex, then τ belongs
to Z0 unless its projection to ∆n is surjective and its projection to ∆m contains
the face opposite i. In the latter case, if the image of τ in ∆m is exactly the
face opposite i then there is a unique (k+1)-simplex σ ∈ S of which τ is a face:
indeed, if 0 ≤ p ≤ k + 1 is the maximal number such that τ(p− 1) = (i − 1, j)
for some j ∈ [m], then the only (k+1)-simplex in S which has τ as a face must
send p to (i, j) and have σ as its face opposite p. Otherwise, if the projection
of τ to ∆m is surjective and p is defined in the same manner then either τ itself
belongs to S or τ is the face of exactly two simplices σ, σ′ which belong to S, one
with σ(p) = (i, j) so that pσ = p and jσ = j and one with σ′(p) = (i− 1, j +1)
so that pσ′ = p + 1 and jσ = j + 1. In particular, ∆m ×∆n is obtained from
Z0 by adding all the simplices in S. To proceed, we will need to identify the
right order in which to add them.

Choose an ordering σ1 < ... < σℓ on S such that a < b whenever dim(σa) <
dim(σb) or dim(σa) = dim(σb) and jσa

< jσb
. We then abbreviate ka :=

kσa
, pa = pσa

and ja := jσa
. We now observe that for a = 1, ..., ℓ we have

pa < ka, otherwise the projection of σa to the ∆m coordinate will not be
surjective (since it sends pa to i < n). We then denote by Ta ⊆ ∆ka

2 the

union of all degenerate 2-simplices and the 2-simplex ∆{pa−1,pa,pa+1}, and set
T ′
a = Ta ∩

(
Λka
pa

)
2
. We now claim that each σa ∈ S maps Ta into the set of thin

triangles of (∆m, T ) ⊗ ∆n
♭ . Indeed, it suffice to observe that σa sends the 2-

simplex ∆{pa−1,pa,pa+1} to either a degenerate simplex in ∆m or to ∆{i−1,i,i+1},
and on the other hand sends the same triangle to a 2-simplex of ∆n

♭ which

degenerates along ∆{pa,pa+1}. In particular, we may view each σa as a map of
scaled simplicial sets

σa : (∆
ka , Ta)→ (∆m, T )⊗∆n

♭ .

Now for a = 1, ..., ℓ let Za ⊆ ∆m ×∆n to be the union of Z0 and the images of
the simplices σa′ for a′ ≤ a, and let Ma be the union of the images σa′(Ta′) for
a′ ≤ a. We claim that for a = 1, ..., ℓ we have a pushout square of the form

(
Λka
pa
, T ′

a

)
//

��

(Za−1,Ma−1)

��(
∆ka , Ta

) σa // (Za,Ma)

To prove this, it will suffice to show that all the faces of σa are contained in
Za−1. Indeed, for k′ 6= pa − 1, pa the restriction of σa to the face opposite k′

is either contained in Z0 or is a (ka − 1)-simplex in S. In the latter case it
will correspond to an index a′ < a and will be contained in Za′ ⊆ Za−1. Now
suppose that k′ = pa−1. In this case either σa sends the face opposite k′ to Z0

or pa ≥ 2 and there exists some j′ < ja such that σa(pa−2) = (i−1, j′). In the
latter case the face opposite k′ is also the face of a simplex σa′ : ∆ka′ → ∆m×∆n

in S with ka′ = ka,pa′ = pa − 1 and ja′ = j′ < ja. Then a′ < a and this face
will again belong Za−1. Finally, if k

′ = pa then we claim that the image under
σa of the face opposite l will not belong to Za−1. To see this, we note that
σa(pa + 1) must be either (i, j + 1), (i + 1, j) or (i + 1, j + 1). We then see
that in all three cases the the restriction of σa to the face opposite pa does
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not belong to Z0 and does not belong to S. In addition, by the observation
following the definition of S above, when σa(pa+1) = (i+1, j), (i+1, j+1) the
(ka − 1)-simplex in question is the face of a unique simplex in S, namely, σa,
and when σa(pa+1) = (i, j+1) it is the face of exactly two simplices in S, one
of which is σa and the other is σa′ for which ja′ = j+1 and so a′ > a. We may
thus conclude that the the restriction of σa to the face opposite pa does not
belong to Za. We may hence conclude that the inclusion (Z0,M0) →֒ (Zℓ,Mℓ)
is scaled anodyne.

Now when m ≥ 3 every thin 2-simplex of (∆m, T ) is contained in (Λm
i , T ),

and when n ≥ 2 every thin 2-simplex of ∆n is contained in ∂∆n. In either of
these cases we have that every thin triangle in (∆m, T ) ⊗ ∆n

♭ is contained in
Z0 and so (Zℓ,Mℓ) = (∆m, T ) ⊗∆n

♭ as scaled simplicial sets and the proof is
complete. In the special case n = 1 and m = 2 we have

S = {σ1 < τ2 < τ1 < τ0},

where σ1 is the triangle of ∆2 ×∆1 with vertices

(
(0, 0), (1, 0), (2, 1)

)

and τj , j = 0, 1, 2 are the 3-simplices given by the map

τj(l) =

{
(0, l) l ≤ j,

(1, l − 1) l > j.

We then see that Mℓ contains all the triangles which are thin in ∆2
♯×∆1

♭ except

the one with vertices (0, 0), (2, 0), (2, 1). To finish the proof of this case we then
consider the pushout square

(∆3, {∆{0,1,2},∆{0,1,3},∆{1,2,3}}) //

��

(Zℓ,Mℓ)

��

∆3
♯

// ∆2
♯ ⊗∆1

where the map ∆3
♯ → ∆2

♯ ⊗∆1 is the one determined by the chain of vertices

(0, 0), (1, 0), (2, 0), (2, 1). By [9, Remark 3.1.4] we get that the map (Zℓ,Mℓ)→
∆2

♯ ⊗∆1 is scaled anodyne.

(B) The case where g is the inclusion
(
∆4, T

)
→֒

(
∆4, T ∪ {∆{0,3,4},∆{0,1,4}}

)

where T is the set of triangles specified in Definition 1.10(B). If n ≥ 2 then
both f⊗̂g and g⊗̂f are isomorphisms of scaled simplicial sets and so we may
assume that n = 1.

Let us denote the domain of f⊗̂g by (∆1 ×∆4, T ′) and the domain of g⊗̂f
by (∆4 ×∆1, T ′′). Let p : ∆4 → ∆1 be the unique map which sends 0 to 0 and
1, 2, 3 to 1 and let q : ∆4 → ∆1 be the unique map which sends 0, 1, 2 to 0 and
3 to 1. To show that f⊗̂g and g⊗̂f are scaled anodyne we then observe that
there are pushout diagrams of the form

(
∆4, T

)
(∆1 ×∆4, T ′)

(
∆4, T ∪ {∆{0,3,4},∆{0,1,4}}

)
∆1 ⊗

(
∆4, T ∪ {∆{0,3,4},∆{0,1,4}}

)

p×Id

f⊗̂g
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and
(
∆4, T

)
(∆4 ×∆1, T ′′)

(
∆4, T ∪ {∆{0,3,4},∆{0,1,4}}

) (
∆4, T ∪ {∆{0,3,4},∆{0,1,4}}

)
⊗∆1

Id×q

g⊗̂f .

(C) The case where g is in the inclusion
(
Λm
0

∐
∆{0,1} ∆0, T

)
→֒

(
∆m

∐
∆{0,1} ∆0, T

)

for m ≥ 3, where T denotes the union of all degenerate edges together with the
triangle ∆{0,1,n}. We prove the case of g⊗̂f . The proof for f⊗̂g proceeds in a
similar manner.

We argue as in the proof of case (A). Let S denote the collection of all
simplices σ : ∆kσ → ∆m ×∆n with the following properties:
(i) the simplex σ is non-degenerate, and induces surjections ∆kσ → ∆m and

∆kσ → ∆n;
(ii) there exist integers 0 ≤ pσ < kσ and 0 < jσ ≤ m (necessarily unique) such

that σ(pσ) = (0, jσ) and σ(pσ + 1) = (1, jσ).
We may then choose an ordering σ1 < ... < σq on S such that a < b whenever
dim(σa) < dim(σb) or dim(σa) = dim(σb) and jσa

> jσb
. We then abbreviate

ka := kσa
, pa = pσa

and ja := jσa
. For every index a, let Ta ⊆ ∆ka

2 denote
the collection of all 2-simplices which are either degenerate, have the form
∆{pa−1,pa,pa+1} if pa > 0, or have the form ∆{0,1,m} if pa = 0. Let T ′

a ⊆ Ta

be the subset of those 2-simplices in Ta which lie in Λka
pa
. We claim that each

σa ∈ S maps Ta into the set of thin triangles in (∆m
∐

∆{0,1} ∆0, T )⊗∆n
♭ . To

see this it suffice to observe that σa always sends the 1-simplex ∆{pa,pa+1} to
a degenerate 1-simplex in both ∆m

∐
∆{0,1} ∆0 and ∆n.

Now define a sequence of scaled simplicial sets

(Z0,M0) ⊆ (Z1,M1) ⊆ · · · ⊆ (Zℓ,Mℓ) ⊆

(
∆m

∐

∆{0,1}

∆0, T

)
⊗∆n

♭

where (Z0,Mℓ) is the domain of g⊗̂f and for every a = 1, ..., ℓ we let Za be the
union of Z0 with the images of σa′ for a′ ≤ a and Ma the union of M0 with the
images σa′(Ta′) for all a′ ≤ a. Arguing as in the case (A) we now observe that

(Zℓ,Mℓ) =

(
∆m

∐
∆{0,1} ∆0, T

)
⊗ ∆n

♭ (note that m ≥ 3) and for a = 1, ..., ℓ

we have a pushout diagram
(
Λka
pa
, T ′

a

)
//

��

(Za−1,Ma−1)

��(
∆ka , Ta

) σa // (Za,Ma)

where in the case that pa = 0 the simplex σa sends ∆{0,1} to a degenerate edge
of Za−1. We may then conclude that each (Za−1,Ma−1) → (Za,Ma) is scaled
anodyne and so the desired result follows.

�

Corollary 2.17. Let (X,TX) be a scaled simplicial set and K a Kan complex.
Then the maps

(5) (X,TX)⊗K♯ −→ (X,TX)×K♯

and

(6) K♯ ⊗ (X,TX) −→ K♯ × (X,TX)
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are trivial cofibrations.

Proof. We prove that (5) is a bicategorical equivalence, the proof for (6) proceeds
in a similar manner. Let C be an ∞-bicategory equipped with a scaled anodyne
map (X,TX) →֒ C. We then obtain a commutative square

(X,TX)⊗K♯
//

��

(X,TX)×K♯

��

C⊗K♯
// C×K♯

in which the vertival maps are bicategorical equivalences by Proposition 2.16 and [9,
Proposition 3.1.8] and the bottom horizontal map is a bicategorical equivalence
by Corollary 2.17. It then follows that the top horizontal map is a bicategorical
equivalence as well. �

Proof of Theorem 2.14. Thanks to Proposition 2.16 and the description of the bi-
categorical model structure provided in [3], we are left with proving that the maps

(∂∆n →֒ ∆n)⊗̂({ǫ} → J♯) for n ≥ 0 and ǫ = 0, 1

together with

(∆2 →֒ ∆2
♯ )⊗̂({ǫ} → J♯)

are weak bicategorical equivalences. But by Corollary 2.17 these maps are equiva-
lent to the corresponding ones having ×̂ in place of the Gray tensor product, since
both ∆0 and J♯ are maximally marked Kan complexes. Therefore, the result follows
from the the fact that the bicategorical model structure on scaled simplicial sets is
cartesian closed, as previously observed. �

Corollary 2.18. Let C be an ∞-bicategory and K a scaled simplicial set. Then
Funopgr(K,C) and Fungr(K,C) are ∞-bicategories.

Remark 2.19. Given a pair of vertices x, y in an ∞-bicategory C, the fiber of the
projection Fungr(∆1,C) → C × C induced by ∂∆1 → ∆1 over (x, y) is naturally
isomorphic to the underlying simplicial set of HomC(x, y) (as defined in Notation
1.21).

Remark 2.20. The Gray tensor product and the cartesian product do not “asso-
ciate”, that is

K × (X ⊗ Y ) 6∼= (K ×X)⊗ Y.

for general scaled simplicial sets K,X, Y . For this reason we also have

Map(X ⊗ Y, Z) 6∼= Map(X,Funopgr(Y, Z))

in general (and similarly for Fungr(−,−)). However, by Corollary 2.17 and Propo-
sition 2.16 we have that if K is a Kan complex then the maps

K♯ × (X ⊗ Y )←− K♯ ⊗X ⊗ Y −→ (K♯ ×X)⊗ Y,

are scaled anodyne (and isomorphisms on the level of the underlying simplicial
sets). This means that for every ∞-bicategory C we have an isomorphism of Kan
complexes

Fun≃(X ⊗ Y,C) ∼= Fun≃(X,Funopgr(Y,C)).
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3. Oplax functors and the universal property of Gray products

The goal of this section is to characterize the Gray tensor product defined in §2
by means of a universal property in the ∞-category of (∞, 2)-categories, along the
lines of what is done in Chapter 10 in the Appendix of [5]. Following the approach
of loc. cit. we will introduce a the notion of an oplax functor of∞-bicategories. We
will then show that for two ∞-bicategories C and D, maps from the Gray product
C⊗D to any other ∞-bicategory E can be identified as a suitable subspace of the
space of oplax functor C × D → E. This opens the door to comparing the Gray
product defined here with that of [5] by comparing the two notions of oplax maps.

3.1. Normalised oplax functors of 2-categories. Before we begin, let us recall
the classical notion of normalised oplax 2-functor for 2-categories. We shall denote
the horizontal composition of 1-cells and 2-cells by ∗0 and the vertical composition
of 2-cells by ∗1.

Let A and B be two 2-categories. A normalised oplax 2-functor F : A → B is
given by:

- a map Ob(A) → Ob(B) that to any object x of A associates an object F (a) of
B;

- a map Cell1(A) → Cell1(B) that to any 1-cell f : x → y of A associates a 1-cell
F (f) : F (x)→ F (y) of B;

- a map Cell2(A) → Cell2(B) that to any 2-cell α : f → g of A associates a 2-cell
F (α) : F (f)→ F (g) of B;

- a map that to any composable 1-cells x
f
−→ y

g
−→ z of A associates a 2-cell

F (g, f) : F (g ∗0 f)→ F (g) ∗0 F (f)

of B.

These data are subject to the following coherences:

normalisation: for any object x of A (resp. any 1-cell f of A) we have F (1x) =
1F (x) (resp. F (1f ) = 1F (f)); moreover for any 1-cell f : x→ y of A we have

F (1y, f) = 1F (f) = F (f, 1x) ;

cocycle: for any triple x
f
−→ y

g
−→ z

h
−→ t of composable 1-cells of A we have

(
F (h) ∗0 F (g, f)

)
∗1 F (h, g ∗0 f) =

(
F (h, g) ∗1 F (f)

)
∗1 F (h ∗0 g, f) ;

vertical compatibility: for any pair

a a′

f

g

h

α

β

of 1-composable 2-cells α and β of A, we have F (β ∗1 α) = F (β) ∗1 F (α);
horizontal compatibility: for any pair

• • •

f

f ′

α

g

g′

β

of 0-composable 2-cells α and β of A, we have

F (g′, f ′) ∗1 F (β ∗0 α) =
(
F (β) ∗0 F (α)

)
∗1 F (g, f) .
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Remark 3.1. With the notations of the previous paragraph, consider a diagram

x y

y

g

f

α ≃

in A where the 2-cell α is invertible, that is there is a 2-cell β : g → f such that
β ∗1 α = 1f and α ∗1 β = 1g. The conditions of normalisation and the vertical
compatibility then imply that the normalised oplax 2-functor F maps the above
diagram to a diagram

Fx Fy

y
Fg

Ff

Fα

in B, where Fα is invertible. Said otherwise, the normalised oplax functor F maps
a 2-simplex of the Duskin nerve of A of the form above, to a 2-simplex of the Duskin
nerve of B with the same properties.

Remark 3.2. Normalised oplax functors of 2-categories are not invariant under
biequivalence of 2-categories. For example, suppose that C is a 2-category whose
mapping categories are all singletons (2-categories with this property are called
codiscrete), and D is a 2-category with a single object ∗ whose endomorphism
category is a monoidal category V := MapD(∗, ∗). Then it is a well-known that
normalised oplax functors C  D correspond to Vop-enriched categories having
Ob(C) as class of objects, and such that the identity maps IV → Map(x, x) are
all isomorphisms, where IV denotes the monoidal unit of V. Let us refer to such
enriched categories as normalized categories. Since the 2-category C is codiscrete
it is biequivalent to a point. Nonetheless, every normalized Vop-enriched category
with one object is necessarily trivial (its unique mapping object is IV) while this
is not true in general if C has more than one object (take for example C to be
the codiscete 2-category on two objects, V = Setop, and the normalized category
corresponding to the discrete category on two objects). This phenomenon can be
considered as a consequence of the fact that, in general, normalised oplax 2-functors
fail to preserve invertible 1-morphisms.

Given two normalised oplax 2-functors F : A → B and G : B → C, there is an
obvious candidate for the composition GF : A→ C and one checks that this is still
a normalised oplax 2-functor; furthermore, the identity functor on a category is
clearly an identity element for normalised oplax 2-functor too. Hence, there is a

category 2̃-Cat with small 2-categories as objects and normalised oplax 2-functors
as morphisms.

There is also a standard cosimplicial object ∆→ 2̃-Cat inducing a nerve functor

Ñ2 : 2̃-Cat → Set∆. For any n ≥ 0, the normalised oplax 2-functors [n] → A

correspond precisely to 2-functors On → A (see, for instance, [11, Tag 00BE]),
where by On we denote the 2-truncated Street n-th oriental (see [14]).

Hence, we get a triangle diagram of functors

Set∆

2-Cat 2̃-Cat

N2
Ñ2 ,

where N2 is the Duskin nerve, which is commutative (up to a canonical isomor-
phism).
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Remark 3.3. It is a standard fact that the functor Ñ2 : 2̃-Cat → Set∆ is fully faithful
(see, for instance [2], [8] or [11, Tag 00AU]). With this at hand, one sees that the
preservation of triangles of the kind described in Remark 3.1 can be realized as
an immediate consequence of the simplicial interpretation of normalised oplax 2-
functors.

3.2. Oplax functors of∞-bicategories. The notion of a normalize oplax functor
was generalized to the (∞, 2)-categorical setting by Gaitsgory–Rozenblyum in [5,
Chapter 10]. For this, the authors of loc. cit. use complete Segal ∞-categories
to model (∞, 2)-categories. More precisely, an (∞, 2)-category C is encoded via a

cocartesian fibration C

∮
→ ∆op whose classifing functor ∆op → Cat∞ is a complete

Segal object in Cat∞ in the sense of Definition 1.2.7 and 1.2.10 of [9]. In this model
a functor of (∞, 2)-categories is encoded via a map

(7)
C

∮
D

∮

∆op

φ

over ∆op which preserves cocartesian edges. They then define the notion of an
oplax functor of (∞, 2)-categories by weakening the preservation of cocartesian
edges condition. More precisely, call a map ρ : [m] → [n] of ∆op idle if the image
of ρ is a segment {i ∈ [n]|a ≤ i ≤ b} for some a ≤ b in [n]. The authors of [5] then
define the notion of an oplax functor of (∞, 2)-categories to be a map over ∆op as
in (7) which is only assumed to preserve cocartesian edges lying over idle maps.

In the present section we offer a definition of oplax functors in the setting of
scaled simplicial sets. We expect the two definitions to be equivalent, proof of
which will be the topic of future work. The definition of oplax functors given below
will serve us in §3.3 in order to formulate a universal property of the Gray tensor
product. In [5] the authors use a similar universal property in order to define the
Gray product in their setting. In particular, any future comparison between the
present notion of lax functors with that of [5] will automatically yield a comparison
of the two notions of Gray products.

Definition 3.4. Let C = (C, TC) and E = (E, TE) be two ∞-bicategories. We will
denote by LC ⊆ TC the collection of those thin triangles σ ∈ TC such that either
σ|∆{0,1} or σ|∆{1,2} is invertible in C. By an oplax functor from C to E we will mean

a map of scaled simplicial sets ϕ : (C, LC) → E. The collection of oplax functors

can be organized into an ∞-bicategory Funoplax(C,E) := Fun((C, LC),E) using the
internal mapping objects of Set sc∆ , see §1.2.

We first verify that the above definition is homotopically sound. For this, note
first that every map C → D of ∞-bicategories sends invertible edges to invertible
edges and hence maps LC into LD. We then have the following:

Lemma 3.5. If ϕ : C → D is an bicategorical equivalence of ∞-bicategories then
the induced map (C, LC)→ (D, LD) is a bicategorical equivalence. In particular, in
this case for every ∞-bicategory the restriction functor

Funoplax(D,E)→ Funoplax(C,E)

is an equivalence of ∞-bicategories.

Proof. By Lemma 1.24 any bicategorical equivalence of∞-bicategories admits a ho-
motopy inverse ϕ′ : D→ C such that ϕ◦ϕ′ and ϕ′◦ϕ are equivalent to the identities
in the∞-groupoids Fun≃(C,C) and Fun≃(D,D) respectively. These equivalences are
encoded by maps of scaled simplicial sets η : ∆1

♭ × C→ C and η′ : ∆1
♭ ×D→ D, in
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which η(∆1
♭ ×{c}) (resp. η

′(∆1
♭ ×{d})) is invertible in C (resp. D) for every vertex

c in C (resp. every vertex d in D).
As mentioned above, since ϕ and ϕ′ preserve invertible edges they preserve the

oplax scaling LC and LD on both sides. We now claim that the homotopies η, η′

also preserve the oplax scaling in the sense that they extend to maps of scaled
simplicial sets

(8) ∆1
♭ × (C, LC)→ (C, LC) and ∆1

♭ × (D, LD)→ (D, LD).

We prove the claim for the map on the left, the argument for that on the right
proceeds in a similar manner. Observe that by the definition of LC it will suffice
to show that η sends every arrow in ∆1 × C whose C-component is invertible to an
invertible arrow in C. Indeed, let f : x → y be an invertible arrow encoded by a
map e : ∆1 → C. Consider the composite

σ = (Id, e) : ∆1
♭ ×∆1

♭ → ∆1
♭ × C→ C.

We note that since all triangles in ∆1
♭ are degenerate it follows that all triangles in

∆1
♭ ×∆1

♭ are thin. In particular σ determines a commutative square in Cth of the
form

x
f

//

��

y

��

x′ // y′

in which the top horizontal arrow and both vertical arrows are invertible. By the
2-out-of-3 property for invertible arrows we deduce that all arrows in this square
(including the diagonal arrow x → y′) are invertible in C. We may then conclude
that η sends every arrow in ∆1

♭ ×C whose C-component is invertible to an invertible
edge in C, and in particular restrict to maps of scaled simplicial sets (8).

To finish the proof, we now note that every invertible arrow in C is also invertible
when considered in the non-fibrant scaled simplicial set (C, LC) (in the sense of
Definition 1.20), since the triangles exhibiting their inverses are included in LC

by definition. In particular, these edges are sent to invertible edges by any map
of scaled simplicial sets (C, LC) → E. We may thus conclude that for every ∞-
bicategory E the inverse functor ϕ′ : D→ C and the homotopies η and η′ determine
a homotopy inverse for the restriction functor

Fun((D, LD),E)→ Fun((C, LC),E)

which is consequently an equivalence of ∞-bicategories.
�

Remark 3.6. If we restrict to scaled simplicial sets which are the Duskin nerves
of 2-categories then we recover those normalised oplax 2-functors that preserve
equivalences (rather than just identities), which is what one might expect in light
of the homotopy soundness established in Lemma 3.5. On the other hand, the
fully-faithfulness of the Duskin nerve (see Remark 3.3) might suggests that, for

∞-bicategories C = (C, TC) and D = (D, TD), the direct analogue of the notion of

a normalised oplax functor of 2-categories should simply be maps C → D between
the underlying simplicial sets. In fact, these automatically send thin triangles in C

with one external legs degenerate to thin triangles in D (cf. Remark 3.1), but not
necessarily all thin triangles with one external leg invertible. However, this notion
of an oplax functor C D is not homotopically sound, since the operation C 7→ C

does not send equivalences of∞-bicategories to bicategorical equivalences of scaled
simplicial sets. For example, if J is the nerve of the walking isomorphism with two
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objects then J♯ → ∆0 is an equivalence of ∞-bicategories but J♭ → ∆0 is not a
bicategorical equivalence.

3.3. The universal property of the Gray product. In this section we will
endow the Gray tensor product of §2 with a universal mapping property defined in
terms of the ∞-bicategory of lax functors above. To formulate it, let C = (C, TC)

and D = (D, TD) be two∞-bicategories. Let T≃ ⊆ TC×TD be the subset consisting
of those (α, β) such that either α|∆{1,2} is invertible in C or β|∆{0,1} is invertible in
D. By Corollary 2.12 the inclusion

C⊗D →֒ (C×D, T≃)

is a bicategorical equivalence. Since this map is also an isomorphism on the level of
the underlying simplicial sets we get that for every ∞-bicategory E the associated
restriction map gives an isomorphism of (fibrant) scaled simplicial sets

Fun((C×D, T≃),E) ∼= Fun(C⊗D,E).

On the other hand, the collection of triangles T≃ also contains the set of triangles
LC×D ⊆ TC × TD of Definition 3.4. Given an ∞-bicategory E we then get a
restriction

(9) Fun(C⊗D,E) ∼= Fun((C×D, T≃),E)→ Funoplax(C×D,E).

The universal mapping property of the Gray product can now be formulated as
follows:

Theorem 3.7. For an ∞-bicategory E the restriction functor (9) is fully-faithful
and its essential image consists of those oplax functors ϕ : C×D E which satisfy
the following conditions:

(i) for all objects x ∈ C, y ∈ D, the restrictions of ϕ to {x} ×D and C × {y} are
maps of scaled simplicial sets.

(ii) for all arrows f : x → x′ in C and g : y → y′ in D, the 2-simplex in C × D

depicted by
(
x, y

) (
x′, y

)

(
x′, y′

)

(f,y)

(f,g)
(x′,g)

is mapped by f to a thin triangle in E.

Proof. Since the map (C × D, LC×D) → ((C × D, T≃) is an isomorphism on the
underlying simplicial sets it follows that the restriction functor (9) is an inclusion
of simplicial sets whose image is completely determined by the image on the level
of vertices, and so as a functor between ∞-bicategories it is indeed fully-faithful.
Let

LC×D ⊆ GC×D ⊆ TC × TD

be the intermediate set of triangles consisting of LC×D as well as all those 2-simplices
(α, β) such that either α degenerates to a point, or β degenerates to a point, or α
degenerates along ∆{1,2} and β degenerates along ∆{0,1}. Unwinding the definitions
we see that a map (C×D, LC×D)→ E satisfies conditions (i) and (ii) above if and
only if it sends all the triangles in GC×D to thin triangles in E. To finish the proof
it will hence suffice to show that every thin 2-simplex T≃ is in the saturated closure
of GC×D.
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S

T

0 1

2

3 4

Figure 1. The 4-simplex P (magenta) and the diagonal (cyan)

Pick a 2-simplex (α, β) ∈ T≃. Then either α|∆{1,2} is invertible in C or β∆{0,1} is
invertible in D. To fix ideas assume we are in the former case (the argument in the
latter case is entirely similar). Consider the 4-simplexB : ∆4 → ∆2×∆2 spanned by

the vertices ((0, 0), (1, 0), (1, 1), (1, 2), (2, 2)), and let P
def
= (α×β)◦B : ∆4 → C×D

as depicted in Figure 1.
Here, P|∆{0,1,2} , P|∆{0,1,3} and P∆{1,2,3} belong to GC×D. Using P|∆{0,1,2,3} we

then get that P|∆{0,2,3} is in the saturated closure of GC×D. Considering now the
face P|∆{0,2,3,4} , we see that since P|∆{0,3,4} and P|∆{1,3,4} belong to LC×D ⊆ GC×D

it follows that P|∆{0,2,4} is also in the saturated closure of GC×D, as desired. �
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