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CHARACTERIZATION OF (SEMI-)EBERLEIN COMPACTA

USING RETRACTIONAL SKELETONS

CLAUDIA CORREA, MAREK CÚTH, AND JACOPO SOMAGLIA

Abstract. We deeply study retractions associated to suitable models
in compact spaces admitting a retractional skeleton and find several in-
teresting consequences. Most importantly, we provide a new character-
ization of Valdivia compacta using the notion of retractional skeletons,
which seems to be helpful when characterizing its subclasses. Further,
we characterize Eberlein and semi-Eberlein compacta in terms of retrac-
tional skeletons and show that our new characterizations give an alter-
native proof of the fact that continuous image of an Eberlein compact
is Eberlein as well as new stability results for the class of semi-Eberlein
compacta, solving in particular an open problem posed by Kubis and
Leiderman.

1. Introduction

The study of the class of compact spaces that admit a retractional skeleton
was initiated in [24], where the authors proved that a compact space is Val-
divia if and only if it admits a commutative retractional skeleton. Later, in
[22] a notion similar to retractional skeletons in the context of Banach spaces
was introduced; namely, the notion of projectional skeletons. In some sense,
those notions are dual to each other. More precisely, if a compact space
K admits a retractional skeleton, then C(K) admits a projectional skeleton
and if a Banach space X admits a projectional skeleton, then (BX∗ , w

∗)
admits a retractional skeleton. The class of Banach (compact) spaces with
a projectional (retractional) skeleton was deeply investigated from various
perspectives and nowadays we have quite a rich family of natural examples
and interesting results related to various fields of mathematics such as topol-
ogy [26], Banach space theory [15], theory of von Neumann algebras [3] or
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JBW ∗-triples [4]. Let us note that, quite surprisingly, there was indepen-
dently introduced also the notion of monotonically retractable topological
spaces which turned out to be very closely related to the study of compact
spaces that admit a retractional skeleton, see [11], and from there on, several
results and modifications of the corresponding notions were considered, see
e.g. [5, 17, 18].

One of the recent streams in the area is to describe some classes of Banach
(compact) spaces using the notion of projectional (retractional) skeletons,
see e.g. [24, 9, 15, 22] where the characterizations of Plichko spaces (and
Valdivia compacta), WLD spaces (and Corson compacta), Asplund spaces,
WLD+Asplund spaces and WCG spaces were given.

The main two results of this paper (Theorems A and B) are characteriza-
tions of Eberlein and semi-Eberlein compacta, respectively, using the notion
of retractional skeletons. Let us recall that given a set I we define

c0(I) := {x ∈ RI : (∀ε > 0)|{i ∈ I : |x(i)| > ε}| < ω} ⊂ RI

and that a compact space K is Eberlein if it homeomophically embeds into
c0(I), for some set I. This is a central concept in Banach space theory, as it
is known that a compact space is Eberlein if and only if it is homeomorphic
to a weakly compact set of a Banach space, see [1] or [14, Corollary 13.19].
For the notion of shrinkingness we refer the reader to Definition 28.

Theorem A. Let K be a compact space. Then the following conditions are
equivalent:

(1) K is Eberlein.
(2) There exist a bounded set A ⊂ C(K) separating the points of K and

a retractional skeleton s = (rs)s∈Γ on K such that s is A-shrinking.
(3) There exist a countable family A of subsets of BC(K) and a full re-

tractional skeleton s = (rs)s∈Γ on K such that
(a) For every A ∈ A there exists εA > 0 such that s is (A, εA)-

shrinking, and
(b) for every ε > 0 we have BC(K) =

⋃
{A ∈ A : εA < ε}.

Recall that a compact space K is Eberlein if and only if C(K) is WCG
if and only if C(K) is a subspace of a WCG space, thus Theorem A is
naturally connected to the characterization of WCG Banach spaces and their
subspaces presented in [15]. Moreover, from Theorem A one may deduce
that continuous images of Eberlein compacta are Eberlein, see Remark 43
below. Quite many steps of our proof seem to be much more flexible and
we believe that those may be used in order to find characterizations of
other natural subclasses of Valdivia compacta (the most important in this
respect is probably Theorem D mentioned below). This is witnessed by the
characterization of semi-Eberlein compacta presented in Theorem B. Recall
that, following [23], we say a compact space K is semi-Eberlein if there
exists a homeomorphic embedding h : K → RI such that h−1[c0(I)] is dense



CHARACTERIZATION OF EBERLEIN COMPACTA 3

in K. We denote by D(s) the set induced by a retractional skeleton s (see
Definition 1).

Theorem B. Let K be a compact space. Then the following conditions are
equivalent:

(1) K is semi-Eberlein.
(2) There exist a dense subset D ⊂ K, a bounded set A ⊂ C(K) sepa-

rating the points of K and a retractional skeleton s = (rs)s∈Γ on K
with D ⊂ D(s) such that
(a) s is A-shrinking with respect to D, and
(b) lims∈Γ′ rs(x) ∈ D, for every x ∈ D and every up-directed subset

Γ′ of Γ.
(3) There exist a dense set D ⊂ K, a countable family A of subsets of

BC(K) and a retractional skeleton s = (rs)s∈Γ on K with D ⊂ D(s)
such that
(a) For every A ∈ A there exists εA > 0 such that s is (A, εA)-

shrinking with respect to D,
(b) for every ε > 0 we have BC(K) =

⋃
{A ∈ A : εA < ε}, and

(c) lims∈Γ′ rs(x) ∈ D, for every x ∈ D and every up-directed subset
Γ′ of Γ.

Finally, using Theorem B we provide new structural results for the class
of semi-Eberlein compacta, answering in particular the second part of [23,
Question 6.6] in positive. The most important new stability results are
summarized below.

Theorem C. Let K be a semi-Eberlein compact space.

• If L is an open continuous image of K and it has densely many
Gδ-points, then L is semi-Eberlein.
• If K is moreover Corson and L is a continuous image of K, then L

is semi-Eberlein.

As mentioned previously, many steps of the proofs of Theorem A and
Theorem B are of independent interest and we believe those could be used
when trying to characterize other subclasses of Valdivia compacta, which
opens quite a wide area of potential further research. This is outlined in
Section 7.

Let us now briefly describe the content of each section, emphasizing the
general steps mentioned above.

Section 2 contains basic notations and some preliminary results.
In Section 3 we consider retractions associated to (not necessary count-

able) suitable models. The most important outcome is Theorem 15, where
we summarize the properties of canonical retractions associated to suitable
models. As an easy consequence, in Proposition 17 we show a very general
method of obtaining a continuous chain of retractions on a compact space
admitting a retractional skeleton. This part is essentially known as similar
results were obtained e.g. in [5, Lemma 2.5] (using other methods than
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suitable models), but our approach is in a certain sense much more flexi-
ble (most importantly, because it may be combined with other statements
involving suitable models) and we actually use this flexibility later. As a
corollary of our investigations we show in Theorem 21 that we may in a
certain way combine properties of countably many retractional skeletons.

In Section 4, inspired by the proof of [5, Theorem 2.6], we aim at see-
ing as concretely as possible the “Valdivia embedding” of compact spaces
with a commutative retractional skeleton. As a consequence we obtain the
following result which might be thought of as the fourth main result of the
whole paper. The most important part which we use later is the implication
(i)⇒(iv).

Theorem D. Let K be a compact space and s = (rs)s∈Γ be a retractional
skeleton on K. Then the following conditions are equivalent.

(i) D(s) is induced by a commutative retractional skeleton.
(ii) There exists a subskeleton of s which is commutative.

(iii) There exist a subskeleton s2 = (rs)s∈Γ′ of s and a dense set D ⊂ D(s)
such that for every up-directed set Γ′′ ⊂ Γ′ and every x ∈ D we have
lims∈Γ′′ rs(x) ∈ D.

Moreover, if λ ≥ 1 and A ⊂ λBC(K) is a closed, symmetric and convex set
separating the points of K such that f ◦ rs ∈ A, for every f ∈ A and s ∈ Γ,
then those conditions are also equivalent to the following one.

(iv) There exists H ⊂ A such that the mapping ϕ : K → [−1, 1]H defined
as ϕ(x)(h) := h

λ(x), for every h ∈ H and x ∈ K, is a homeomorphic
embedding and ϕ[D(s)] ⊂ Σ(H).

Note that Theorem D provides a characterization of Valdivia compacta,
since a compact space is Valdivia if and only if it admits a commutative
retractional skeleton.

In Section 5 we prove (slightly more general versions of) Theorem A and
Theorem B. Section 6 is devoted to applications (in particular to the proof
of Theorem C) and Section 7 is devoted to open problems and remarks.

2. Notation and preliminary results

We use standard notations from topology and Banach space theory as can
be found in [12] and [14].

For a set I, we define

Σ(I) := {x ∈ RI : | suppt(x)| ≤ ω},
where suppt(x) = {i ∈ I : x(i) 6= 0} is the support of x. Given a subset S of
I we denote the characteristic function of S by 1S .

All topological spaces are assumed to be Tychonoff. Let T be a topological
space. A subset S ⊂ T is said to be countably closed if C ⊂ S, for every
countable subset C ⊂ S. We denote by w(T ) the weight of T , by C(T, T )
the set of continuous functions from T to T and by βT the Čech-Stone
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compactification of T . If T is compact, then as usual C(T ) denotes the
Banach algebra of real-valued continuous functions defined on T , endowed
with the supremum norm. Moreover, if A ⊂ C(T ), we denote by alg(A) the
algebraic hull of A in the algebra C(T ). Recall that a compact space T is
said to be Valdivia if there is a homeomorphic embedding h : T → RI such
that h−1[Σ(I)] is dense in T , we refer to [20] for a survey in this subject.

Let (Γ,≤) be an up-directed partially ordered set. We say that a sequence
(sn)n∈ω of elements of Γ is increasing if sn ≤ sn+1, for every n ∈ ω. We say
that Γ is σ-complete if for every increasing sequence (sn)n∈ω in Γ there exists
supn sn in Γ. We say that Γ′ ⊂ Γ is cofinal in Γ if for every s0 ∈ Γ there
is s ∈ Γ′ with s ≥ s0. If Γ is σ-complete and A ⊂ Γ, we denote by Aσ the
smallest σ-closed subset of Γ containing A. Notice that, by [21, Proposition
2.3], if A is up-directed, then Aσ is up-directed.

Definition 1. Following [11], a retractional skeleton in a countably compact
space K is a family of continuous retractions s = (rs)s∈Γ on K indexed by
an up-directed, σ-complete partially ordered set Γ, such that:

(i) rs[K] is a metrizable compact space for each s ∈ Γ,
(ii) s, t ∈ Γ, s ≤ t then rs = rt ◦ rs = rs ◦ rt,
(iii) given an increasing sequence (sn)n∈ω in Γ, if s = supn∈ω sn ∈ Γ,

then rs(x) = limn→∞ rsn(x), for every x ∈ K,
(iv) for every x ∈ K, x = lims∈Γ rs(x).

We say that
⋃
s∈Γ rs[K] is the set induced by the retractional skeleton s and

we denote it by D(s). We say that s is commutative if we have rs◦rt = rt◦rs
for every s, t ∈ Γ. We say that s is full if D(s) = K.

The following preliminary result will be used in what follows quite fre-
quently. It seems to be new even though it could be known to some experts
as well.

Lemma 2. Let K be a compact space. Suppose that K has a retractional
skeleton s = (rs)s∈Γ. Let Γ

′ ⊂ Γ be an up-directed subset, then the mapping
RΓ′ : K → K defined by RΓ′ (x) = lims∈Γ′ rs(x) is a continuous retraction

and RΓ′ [K] =
⋃
s∈Γ′ rs[K]. Moreover, the following holds.

(i) If Γ′ is countable, then s = sup Γ′ exists and we have RΓ′ = rs.
(ii) If M is an up-directed subset of P(Γ) such that each M ∈ M is

up-directed. Then limM∈MRM (x) = R⋃
M(x), x ∈ K.

(iii) For every s ∈ (Γ′)σ we have that rs[K] ⊂ RΓ′ [K] and rs ◦ RΓ′ =
RΓ′ ◦ rs.

(iv) (rs|RΓ′ [K])s∈(Γ′)σ is a retractional skeleton on RΓ′ [K] with induced

set D(s) ∩RΓ′ [K].
(v) If s is commutative, then D(s) ∩RΓ′ [K] = RΓ′ [D(s)].

Proof. Let us start by proving that the mapping RΓ′ is well-defined. In
order to do that fix x ∈ K and suppose that (rs(x))s∈Γ

′ is an infinite set
(otherwise the assertion would be trivial). Since K is compact, there exists
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a cluster point x1 ∈ K for the net (rs(x))s∈Γ′ . Let us show that such a
cluster point x1 is unique. Indeed, let x1 6= x2 be two cluster points of
(rs(x))s∈Γ′ . Let U1, U2 ⊂ K be two open subsets such that x1 ∈ U1, x2 ∈ U2

and U1 ∩ U2 = ∅. Let (sn)n<ω, (tn)n<ω ⊂ Γ′ be two increasing sequences of
indexes such that sn ≤ tn ≤ sn+1, rsn(x) ∈ U1, and rtn(x) ∈ U2, for every
n ∈ ω. Since Γ is σ-complete, we have that supn∈ω sn = supn∈ω tn = s ∈ Γ.

Then rs(x) ∈ U1 ∩ U2, a contradiction. Therefore RΓ′ is well-defined.
The map RΓ′ is continuous. Indeed, let (xλ)λ∈Λ be a net converging to
x ∈ K. Up to taking a subnet we may assume without loss of general-
ity that RΓ′ (xλ) converges to y. Suppose by contradiction y 6= RΓ′ (x),
then there are two open subsets U, V ⊂ K with y ∈ U and RΓ′ (x) ∈ V ,

such that U ∩ V = ∅. We find recursively two increasing sequences of in-
dexes (sn)n<ω in Γ

′
and (λn)n<ω in Λ such that rsk(xλi) ∈ V if i ≥ k and

rsk(xλi) ∈ U if i < k.
Let us sketch the recursion here. Since RΓ′ (xλ) → y, there exists λ0 ∈ Λ

such that RΓ′ (xλ) ∈ U for every λ ≥ λ0. Since rs(x)
Γ′→ RΓ′(x), there exists

s0 ∈ Γ
′

such that rt(x) ∈ V for every t ≥ s0. Since rs(xλ0)
Γ′→ RΓ′ (xλ0) ∈ U ,

there exists s1 ≥ s0 such that rt(xλ0) ∈ U for every t ≥ s1. By the continuity
of rs1 , we have rs1(xλ) → rs1(x) ∈ V ; hence there exists λ1 ≥ λ0 such that
rs1(xλ) ∈ V for every λ ≥ λ1. We proceed recursively in an obvious way.
Since Γ is σ-complete, s = supk∈ω sk belongs to Γ. Hence rsk(xλi) con-

verges to rs(xλi) ∈ U for every i ∈ ω. Moreover, by compactness we

have
⋂
k∈ω (xλi)i≥k 6= ∅, so we may pick x̃ ∈

⋂
k∈ω (xλi)i≥k. We observe

that rsk(x̃) ∈ V for every k ∈ ω, hence rs(x̃) ∈ V . On the other hand

rsk(xλi)→ rs(xλi) ∈ U for every i ∈ ω; therefore rs(x̃) ∈ U , a contradiction.
Thus, RΓ′ is continuous.
Let us check that RΓ′ is a retraction. Indeed, pick x ∈ K. Then

RΓ′ (RΓ′ (x)) = lim
t∈Γ′

rt( lim
s∈Γ′

rs(x)) = lim
t∈Γ′

lim
s∈Γ′

rt(rs(x))

= lim
t∈Γ′

lim
s∈Γ′,s≥t

rt(rs(x)) = lim
t∈Γ′

rt(x) = RΓ′ (x).

Finally, for every s ∈ Γ′ and x ∈ rs[K] we haveRΓ′(x) = limt∈Γ′,t≥s rt(rs(x)) =

x so we obtain
⋃
s∈Γ′ rs[K] ⊂ RΓ′ [K] and the other inclusion follows from

the definition of RΓ′ .
It remains to prove the “Moreover” part. We first observe (see the proof of
[21, Proposition 2.3] for more details) that (Γ′)σ is directed, σ-closed and
(Γ′)σ =

⋃
α<ω1

Bα, where

• B0 = Γ′;
• Bα+1 = Bα ∪ {sup tn : (tn) is an increasing sequence in Bα};
• Bλ =

⋃
α<λBα, if λ < ω1 is a limit ordinal.

(i): If Γ′ is countable, then we can find an increasing sequence (sn)n∈ω from
Γ with supn sn = s = sup Γ′. Then, using that the sequence {sn : n ∈ ω} is
cofinal in Γ′, we obtain RΓ′ = R{sn : n∈ω} = rs.
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(ii): Suppose that M ⊂ P(Γ) is up-directed and that each M ∈ M is
up-directed. Put M∞ :=

⋃
M∈MM , fix x ∈ K and open set U such that

RM∞(x) ∈ U . Let V be an open neighborhood of RM∞(x) such that V ⊂ U .
Then, there exists s0 ∈ M∞ such that rs(x) ∈ V , for every s ∈ M∞ with
s ≥ s0. By the definition of M∞, there exists M0 ∈M such that s0 ∈M0. If
M ∈M and M0 ⊂M , then s0 ∈M . This implies that the set {s ∈M : s ≥
s0} is cofinal in M and so we have

RM (x) = lim
s∈M

rs(x) = lim
s∈M,s≥s0

rs(x) ∈ V ⊂ U.

This shows that limM∈MRM (x) = RM∞(x).
(iii): We prove inductively that for every α < ω1 and s ∈ Bα, it holds
that rs[K] ⊂ RΓ′ [K] and rs ◦ RΓ′ = RΓ′ ◦ rs. Pick s ∈ B0 = Γ′. Then

rs[K] ⊂ RΓ′ [K], since RΓ
′ [K] =

⋃
s∈Γ′ rs[K]. Moreover, for x ∈ K we have

rs
(
RΓ′(x)

)
= lim

t∈Γ′,t≥s
rs
(
rt(x)

)
= lim

t∈Γ′,t≥s
rt
(
rs(x)

)
= RΓ′

(
rs(x)

)
.

Now, fix α < ω1 and suppose that the result holds for every γ < α. If α is
a limit ordinal, then it follows easily from the induction hypothesis that the
result also holds for α. Suppose that α = γ + 1. Let s ∈ Bα, x ∈ rs[K] and
(sn)n∈ω ⊂ Bγ such that sup sn = s. By the induction hypothesis, we have
that RΓ′(rsn(x)) = rsn(x), for every n ∈ ω and therefore:

RΓ′(x) = lim
n∈ω

RΓ′(rsn(x)) = lim
n∈ω

rsn(x) = rs(x) = x.

With a similar argument, we also conclude that rs ◦RΓ′ = RΓ′ ◦ rs.
(iv): First, we claim that for every x ∈ RΓ′ [K] we have lims∈(Γ′)σ rs(x) = x.

Indeed, since (Γ′)σ is up-directed, it holds that R(Γ′)σ [K] =
⋃
s∈(Γ′)σ

rs[K],

which implies that RΓ′ [K] ⊂ R(Γ′)σ [K] and therefore if x ∈ RΓ′ [K], then
x = R(Γ′)σ(x) = lims∈(Γ′)σ rs(x).

Using (iii) and the previous claim, it is easy to see that s′ := (rs|RΓ′ [K])s∈(Γ′)σ

is a retractional skeleton on RΓ′ [K] with D(s′) =
⋃
s∈(Γ′)σ

rs[RΓ′ [K]] ⊂
D(s) ∩ RΓ′ [K]. On the other hand, since D(s) is Fréchet-Urysohn (see [22,
Theorem 32]), for every x ∈ D(s) ∩ RΓ′ [K] there is a sequence (sn)n∈ω in
Γ′ with rsn(x) → x and therefore x ∈ D(s′), because D(s′) is a countably
closed set. Thus, we have that D(s′) = D(s) ∩RΓ′ [K].
(v): If (rs)s∈Γ is commutative, then for every s ∈ Γ and x ∈ K we have

RΓ′(rs(x)) = lim
t∈Γ′

rt(rs(x)) = rs(lim
t∈Γ′

rt(x)) ∈ D(s),

which implies RΓ′ [D(s)] ⊂ D(s) and so RΓ′ [D(s)] = D(s) ∩RΓ′ [K]. �

3. Retractions associated to suitable models

The most important results concerning projectional skeletons were origi-
nally proved in [22] using the so-called “method of suitable countable mod-
els” which replaces inductive constructions by “suitable countable models”.
The presentation of this method was further simplified in [6] and later it was
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also used in the context of spaces admitting retractional skeletons, see e.g. [7]
or [11]. Here we further generalize and deeply investigate this method. The
main difference of our approach is that we do not consider only countable
models. The main outcome of this section is that for every (not necessarily
countable) suitable model we can define a canonical retraction associated to
this model. Those canonical retractions will be deeply used in the remainder
of the paper.

Properties of retractions associated to suitable models are summarized
in Theorem 15 and, consequently, in Proposition 17 we obtain a continu-
ous chain of retractions associated to suitable models with very pleasant
properties. As an example of an application we show in Theorem 21 that
we may in a certain way combine properties of countably many retractional
skeletons.

3.1. Preliminaries. Here we settle the notation and give some basic ob-
servations concerning suitable models. We refer the interested reader to [6]
and [11], where more details about this method may be found (warning:
in [6, 11] only countable models were considered, while here we consider
suitable models which are not necessarily countable).

Any formula in the set theory can be written using symbols ∈,=,∧,∨,¬,→
,↔, ∃, (, ), [, ] and symbols for variables. On the other hand, it would be very
laborious and pointless to use only the basic language of the set theory. For
example, we often write x < y and we know, that in fact this is a shortcut
for a formula ϕ(x, y,<) with all free variables shown. Thus, in what follows
we will use this extended language of the set theory as we are used to, having
in mind that the formulas we work with are actually sequences of symbols
from the list mentioned above.

Let N be a fixed set and φ be a formula. Then the relativization of φ to
N is the formula φN which is obtained from φ by replacing each quantifier
of the form “∃x” by “∃x ∈ N” (and if we extend our language of set theory
by the symbol “∀” then we replace also each quantifier of the form “∀x” by
“∀x ∈ N”).

If φ(x1, . . . , xn) is a formula with all free variables shown, then φ is abso-
lute for N if

∀a1, . . . , an ∈ N (φN (a1, . . . , an)↔ φ(a1, . . . , an)).

Definition 3. Let Φ be a finite list of formulas and X be any set. Let
M ⊃ X be a set such that each φ from Φ is absolute for M . Then we
say that M is a suitable model for Φ containing X. This is denoted by
M ≺ (Φ;X).

Note that suitable models do exist.

Theorem 4 (see Theorem IV.7.8 in [25]). Let Φ be a finite list of formulas
and X be any set. Then there exists a set R such that R ≺ (Φ;X) and
|R| ≤ max(ω, |X|)) and moreover, for every countable set Z ⊂ R there
exists M ⊂ R such that M ≺ (Φ; Z) and M is countable.
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The fact that certain formula is absolute for M will always be used exclu-
sively in order to satisfy the assumption of the following lemma. Using this
lemma we can force the model M to contain all the needed objects created
(uniquely) from elements of M . We give here the well-known proof for the
convenience of the reader.

Lemma 5. Let φ(y, x1, . . . , xn) be a formula with all free variables shown
and let M be a set that is absolute for φ and for ∃yφ(y, x1, . . . , xn). If
a1, . . . , an ∈M are such that there exists a set u satisfying φ(u, a1, . . . , an),
then there exists a set v ∈ M satisfying φ(v, a1, . . . , an). Moreover, if there
exists a unique set u such that φ(u, a1, . . . , an), then u ∈M .

Proof. It follows from the absoluteness of the formula ∃yφ(y, x1, . . . , xn),
that there exists v ∈ M such that φM (v, a1, . . . , an). Therefore the abso-
luteness of the formula φ(y, x1, . . . , xn) implies that φ(v, a1, . . . , an) holds.
Moreover, if u is the only set such that φ(u, a1, . . . , an), then v = u and thus
u ∈M . �

Convention 6. Whenever we say “for any suitable model M (the following
holds . . . )” we mean that “there exists a finite list of formulas Φ and a
countable set Y such that for every M ≺ (Φ;Y ) (the following holds . . . )”.

If M is a suitable model and 〈X, τ〉 is a topological space (or is 〈X, d〉 a
metric space or is 〈X,+, ·, ‖ · ‖〉 a normed linear space) then we say that M
contains X if 〈X, τ〉 ∈M , 〈X, d〉 ∈M and 〈X,+, ·, ‖ · ‖〉 ∈M , respectively.

The following summarizes certain easy observations. For the proofs we
refer the reader to [6, Sections 2 and 3], where it is assumed that M is
countable but this fact is not used in proofs.

Lemma 7. For any suitable model M the following holds:

(1) Q, ω,R ∈ M and M contains the usual operations and relations on
R.

(2) For every function f ∈ M we have Dom f ∈ M , Rng f ∈ M and
f [M ∩Dom f ] ⊂M .

(3) For every finite set A we have A ∈M if and only if A ⊂M .
(4) For every countable set A ∈M we have A ⊂M . Moreover, if κ ∈M

is a cardinal and κ ⊂M then for every A ∈M with |A| ≤ κ we have
A ⊂M .

(5) For every natural number n > 0 and sets a1, . . . , an we have {a1, . . . , an} ⊂
M if and only if 〈a1, . . . , an〉 ∈M .

(6) If A,B ∈M , then A ∩B ∈M , B \A ∈M and A ∪B ∈M .
(7) If M contains a normed linear space X, then X ∩M is a linear

subspace of X.

Some more easy observations are summarized in the following.

Lemma 8. For any suitable model M the following holds:

(1) If (Γ,≤) is up-directed and (Γ,≤) ∈M , then Γ ∩M is up-directed.
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(2) If f, g ∈M are functions and f ◦ g is well-defined, then f ◦ g ∈M .
(3) If f ∈M is a function which is one-to-one then f−1 ∈M .
(4) If f ∈ M is a function and X ∈ M is a subset of Dom f , then

f [M ∩X] = M ∩ f [X].
(5) If A and B are sets and A,B ∈M , then BA ∈M and A×B ∈M .
(6) For every set I ∈ M and X ⊂ RI with X ∈ M we have π ∈ M ,

where π : I → RX is the mapping given for i ∈ I and x ∈ X as
π(i)(x) := x(i).

(7) Let X ⊂ Σ(I) be such that I ∈ M . Then suppt(x) ⊂ M for every
x ∈ X ∩M .

(8) If (X, τ) is a topological space with {X, τ} ⊂M , then {C(X),+, ·,⊗} ⊂
M (where · is a multiplication by real numbers and ⊗ pointwise mul-
tiplication of functions). Moreover, if X is a compact space then

M contains the normed linear space C(X), C(X) ∩M is a closed
subalgebra of C(X) and 1 ∈ C(X) ∩M .

(9) If (K, τ) is a compact space, A ⊂ C(K) separates the points of K

and {K, τ,A} ⊂M , then alg((A ∪ {1}) ∩M) = C(K) ∩M .
(10) If (K, τ) is a compact space , K ′ ⊂ K is closed and metrizable

with {K ′, τ,K} ∈M then C(K) ∩M separates the points of K ′ and
K ′ ⊂ K ′ ∩M .

(11) If (K, τ) is a compact space, D ⊂ K a dense subset with {K,D, τ} ⊂
M and f ∈ C(K) ∩M , then ‖f‖ = ‖f |D∩M‖

Proof. Let S and Φ be the countable set and the list of formulas from the
statement of Lemma 7, where Φ is enriched by formulas (and their subfor-
mulas) marked by (∗) in the proof below. Let M ≺ (Φ;S). Then M satisfies
(1), (2), (3), (5), and (6). Indeed those items follow easily using Lemma 5
and the absoluteness of the following formulas (and their subformulas)

∀u, v ∈ Γ ∃w ∈ Γw ≥ u, v, (∗)
∃h (h = f ◦ g). (∗)
∃h (h = f−1). (∗)
∃W (W = BA). (∗)
∃W (W = B ×A). (∗)

∃π ∈ (RX)I (∀i ∈ I ∀x ∈ X : π(i)(x) = x(i)). (∗)
(4): By Lemma 7 (2), we have that f [M ∩ Dom f ] ⊂ M so in particular

f [M ∩X] ⊂ M ∩ f [X]. For the other inclusion pick x ∈ f [X] ∩M . Using
Lemma 5 and the absoluteness of the following formula (and its subformulas)

∃y ∈ X (f(y) = x), (∗)
there exists y ∈M ∩X with f(y) = x and so x ∈ f [M ∩X].
(7): Pick x ∈ X ∩M . Using Lemma 5 and absoluteness of the following
formula (and its subformulas)

∃D ⊂ I (i ∈ D ⇔ x(i) 6= 0), (∗)
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we obtain that suppt(x) ∈M . Since suppt(x) is a countable set, by Lemma 7
(4) we obtain that suppt(x) ⊂M .

(8): Using Lemma 5 and absoluteness of the following formulas (and their
subformulas)

∃C(X) ∈ RX(∀f ∈ RX : f ∈ C(X)⇔ f is continuous), (∗)

∃+ ∈ C(X)C(X)×C(X)(∀f, g ∈ C(X) ∀x ∈ X : +(f, g)(x) = f(x) + g(x)), (∗)

∃· ∈ C(X)R×C(X)(∀α ∈ R∀f ∈ C(X) ∀x ∈ X : ·(α, f)(x) = αf(x)), (∗)

∃⊗ ∈ C(X)C(X)×C(X)(∀f, g ∈ C(X) ∀x ∈ X : ⊗(f, g)(x) = f(x)g(x)), (∗)
we obtain that C(X) ∈ M and that {+, ·,⊗} ⊂ M . Morevoer, if X is a
compact space, then using Lemma 5 and the absoluteness of the following
formula (and its subformulas)

∃‖ · ‖∞ ∈ RC(X) (∀f ∈ C(X) : ‖ · ‖(f) = sup
x∈X
|f(x)|), (∗)

we obtain thatM contains the normed linear space C(X). Thus, by Lemma 7

(7), C(X) ∩M is a closed subspace of C(X) and, since ⊗ ∈ M , C(X) ∩
M is closed under multiplication and therefore C(X) ∩M is closed under
multiplication as well. Finally, using Lemma 5 and absoluteness of the
following formula (and its subformulas)

∃f ∈ C(X) (∀x ∈ X f(x) = 1), (∗)

we obtain that 1 ∈ C(X) ∩M .

(9): By (8), C(K) ∩M is a closed subalgebra of C(K) that contains (A ∪
{1}) ∩M , so we have alg((A ∪ {1}) ∩M) ⊂ C(K) ∩M . For the other in-
clusion, pick f ∈ C(K)∩M . By Lemma 5 and absoluteness of the following
formula (and its subformulas)

∃A ⊂ A (A is countable and f ∈ alg(A ∪ {1})), (∗)

there is a countable set A ⊂ A with A ∈ M and f ∈ alg(A ∪ {1}). By
Lemma 7 (4), we have that A ⊂ A ∩M . Therefore, using that 1 ∈ M , we
obtain

alg((A ∪ {1}) ∩M) = alg((A ∩M) ∪ {1}) ⊃ C(K) ∩M.

(10): By (8), Lemma 5 and the absoluteness of the following formula (and
its subformulas)

∃A ⊂ C(K) (A is countable and separates the points of K ′), (∗)

there is a countable set A ⊂ C(K) with A ∈M which separates the points of
K ′. By Lemma 7 (4), we have that A ⊂ C(K)∩M so C(K)∩M separates the

points of K ′. Therefore, since by (8) the set C(K) ∩M is a closed algebra
containing constant functions, Stone-Weierstrass theorem ensures that the
set {f |K′ : f ∈ C(K) ∩M} is dense in C(K ′), which implies that {f |K′ : f ∈
C(K)∩M} is dense in C(K ′) and therefore {f−1(−1/2, 1/2)∩K ′ : f ∈ C(K)∩
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M} is an open basis of K ′. Moreover, for every f ∈ C(K)∩M using Lemma 5
and the absoluteness of the following formula (and its subformulas)

∃x ∈ f−1(−1/2, 1/2) ∩K ′, (∗)

we have that f−1(−1/2, 1/2) ∩ (K ′ ∩M) 6= ∅ for every f ∈ C(K) ∩M and
therefore the set K ′ ∩M is dense in K ′.
(11): Since D ⊂ K is a dense set, we have that ‖f‖ = ‖f |D‖. It follows
from (8) that ‖ · ‖ ∈ M and so ‖f‖ ∈ M . Therefore, using Lemma 5 and
the absoluteness of the following formula (and its subformulas)

∀n ∈ ω ∃x ∈ D (‖f‖ − 1/n < |f(x)| < ‖f‖+ 1/n), (∗)

we obtain that for every n ∈ ω, there exists xn ∈ D∩M such that |f(xn)| →
‖f‖. �

3.2. Retractions associated to suitable models. Here we show that
in a compact space with a retractional skeleton, for every suitable model
there is a canonical retraction associated to it (see Definition 12). The
main outcome of this subsection is Theorem 15, where the properties of a
canonical retraction are summarized.

Lemma 9 and Lemma 10 are inspired by [11, Lemma 4.7], where something
similar was proved for suitable models which are countable.

Lemma 9. For every suitable model M the following holds: Let X be a set
and A ⊂ RX such that {X}∪A ⊂M . Consider the mapping qM : X → RA
defined for x ∈ X as qM (x)(f) := f(x), f ∈ A. Then for every B ⊂ X with

B ∈M we have qM [B] ⊂ qM [B ∩M ].

Proof. In this proof we will use the identification of any n ∈ ω with the set
{0, ..., n − 1}. Further, denote by B the set of all the open intervals with
rational endpoints and by B<ω the set of all the functions whose domain is
some n ∈ ω and whose values are in B.

Let S be the countable set from the statement of Lemma 7 enriched by
{B,B<ω} and let Φ be the list of formulas from the statement of Lemma 7
enriched by formulas (and their subformulas) marked by (∗) in the proof
below. Let M ≺ (Φ;S ∪ {X} ∪ A).

Fix B ⊂ X with B ∈ M , a point x ∈ B and a basic neighborhood of
a point qM (x); that is, let us pick finitely many functions F ⊂ A and a
sequence of rational intervals such that f(x) ∈ If , f ∈ F and consider the
neighborhood

N := {y ∈ RA : y(f) ∈ If for every f ∈ F}.

By Lemma 7 (3), we have that F ∈M and by absoluteness of the formula

∃n ∈ ω∃η (η is a bijection between n and F ), (∗)

and its subformulas, there is n ∈ ω and a bijection η ∈M between n and F .
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Let us further define the mapping ξ : n → B by ξ(i) = Iη(i). Since

ξ ∈ B<ω ∈ M , it follows from Lemma 7 (4) that ξ ∈ M . By Lemma 5 and
the absoluteness of the formula (and its subformulas)

∃x ∈ B (∀i < n : η(i)(x) ∈ ξ(i)), (∗)
there is a point x0 ∈ B ∩M such that qM (x0) ∈ N ; hence, qM [B ∩M ] is
dense in qM [B]. �

Lemma 10. For every suitable model M the following holds: Let (K, τ) be
a compact space and D ⊂ K be a dense subset with {K,D, τ} ⊂M .

If C(K) ∩M separates the points of D ∩M , then there exists a unique
retraction rM : K → D ∩M such that f = f ◦ rM , for every f ∈ C(K)∩M .

Moreover, in this case

(1) for every x ∈ K and A ⊂ C(K) separating the points of K with A ∈
M , rM (x) is the unique point from D ∩M satisfying f(rM (x)) =
f(x), for every f ∈ A ∩M .

(2) if B ⊂ D and B ∈M , then rM [B] = B ∩M .

Proof. Let S and Φ be the union of sets and the lists of formulas from the
statements of Lemma 7, Lemma 8 and Lemma 9. Let M ≺ (Φ;S∪{K,D, τ})
be such that C(K) ∩M separates the points of D ∩M . By Lemma 8 (8),
we have that C(K) ∈M .

Let us consider the mapping qM : K → RC(K)∩M given by qM (x) =
(f(x))f∈C(K)∩M , x ∈ K. Then qM is continuous and, by the assump-
tion, qM |D∩M is one-to-one; hence, qM |D∩M is a homeomorphic embedding.
Moreover, whenever B ⊂ D is such that B ∈M , then by Lemma 9 we have
qM [B ∩M ] ⊃ qM [B] which implies qM [B] = qM [B ∩M ].

Now, put rM := (qM |D∩M )−1 ◦ qM . Then it is a continuous retraction

with rM [K] = D ∩M . Moreover, for every x ∈ K
rM (x) = (qM |D∩M )−1 ◦ qM (x) = y,

where y ∈ K is the unique point such that y ∈ D ∩M and g(y) = g(x), for
every g ∈ C(K) ∩M . Hence, for f ∈ C(K) ∩M we have

f(rM (x)) = f(y) = f(x).

In order to see that rM is unique, let us consider another retraction r′ :
K → D ∩M satisfying that f = f ◦ r′ for every f ∈ C(K) ∩M . Then,
for every x ∈ K, and every f ∈ C(K) ∩M we have f(rM (x)) = f(x) =
f(r′(x)); hence, since C(K)∩M separates the points of rM [K], it holds that
rM (x) = r′(x). Since x ∈ K was arbitrary, we have rM = r′. Moreover,
given y ∈ D ∩M such that f(y) = f(x) for every f ∈ A ∩ M , where
A ⊂ C(K) is a set separating the points of K with A ∈ M , we obtain that

f(y) = f(x) for f ∈ alg((A ∪ {1}) ∩M) = C(K) ∩M (the last equality
follows from Lemma 8 (9)) and so y = rM (x).

Finally, if B ⊂ D is such that B ∈M then by the above we have qM [B] =
qM [B ∩M ] and so rM [B] = rM [B ∩M ] = B ∩M . �
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Let us note that a compact space K admits a retractional skeleton if
and only if there exists a dense set D ⊂ K such that for every suitable
model M which is moreover countable, the set C(K) ∩ M separates the
points of D ∩M , see e.g. [7, Theorem 4.9] or [19, Theorem 19.16] (that
is, the assumption of Lemma 10 is satisfied for suitable models which are
countable). The following shows that we do not need to assume countability
of the model.

Proposition 11. For every suitable model M the following holds: If (K, τ)
is a compact space and D ⊂ K is a subset of a set induced by a retractional
skeleton with {D,K, τ} ⊂M , then C(K)∩M separates the points of D ∩M .

Proof. Let S be the union of sets from the statements of Lemma 7 and
Lemma 8 and let Φ be the union of lists of formulas from the statements
of Lemma 7 and Lemma 8 enriched by formulas (and their subformulas)
marked by (∗) in the proof below. Let M ≺ (Φ;S ∪ {K,D, τ}).

By Lemma 5 and the absoluteness of the following formula (and its sub-
formulas)

∃Γ ∃ ≤ ∃r
(
D is a subset of a set induced by

the retractional skeleton {r(s) : s ∈ Γ}
)
, (∗)

there exist Γ,≤, r ∈M such that {r(s) : s ∈ Γ} is a retractional skeleton on
K inducing a set containing D. For s ∈ Γ we will write below rs instead of
r(s). By Lemma 8 (1), the set Γ ∩M is up-directed. Hence by Lemma 2
there exists a continuous retraction RM : K → K defined by RM (x) :=
lims∈Γ∩M rs(x), for every x ∈ K. Using the absoluteness of the following
formula (and its subformulas)

∀u ∈ D ∃s ∈ Γu ∈ rs[K], (∗)
we obtain that D ∩M ⊂ RM [K] and therefore D ∩M ⊂ RM [K]. Now fix
x, y ∈ D ∩M with x 6= y. Since x = lims∈Γ∩M rs(x) and y = lims∈Γ∩M rs(y)
there exists s ∈ Γ ∩M such that rs(x) 6= rs(y). By Lemma 7 (2), we have
that r(s) = rs ∈ M and rs[K] ∈ M . Thus, by Lemma 8 (10), there exists
f ∈ C(K) ∩M such that f(rs(x)) 6= f(rs(y)). Now using Lemma 8 (2),
we obtain that g = f ◦ rs ∈ C(K) ∩M and g(x) 6= g(y). Thus, C(K) ∩M
separates the points of D ∩M �

The retraction constructed in Lemma 10 (whose assumption is satisfied
by Proposition 11 in compact spaces admitting a retractional skeleton) will
be the key to our considerations. Let us give it a name.

Definition 12. Let K be a compact space and let D ⊂ K be a dense subset
that is contained in the set induced by a retractional skeleton. Given a set
M , we say that rM is the canonical retraction associated to M , K and D if
it is the unique retraction on K satisfying rM [K] = D ∩M and f = f ◦ rM ,
for every f ∈ C(K) ∩M . We say that a set M admits canonical retraction
if there exists the canonical retraction associated to M , K and D.
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In the case when D = K we say that M admits canonical retraction rM
associated to M and K.

The properties of canonical retractions associated to suitable models are
summarized in Theorem 15. We need two lemmas first.

Lemma 13. For every suitable model M the following holds: Let (K, τ) be
a compact space and A ⊂ C(K) be a set separating the points of K with
{A,K, τ} ⊂ M . Then for every compact set K ′ ⊂ K, A ∩M separates the
points of K ′ if and only if C(K) ∩M separates the points of K ′.

Proof. Let S and Φ be the set and the list of formulas from the statements
of Lemma 7 and Lemma 8. Let M ≺ (Φ;S ∪ {K, τ,A}). In order to get a
contradiction, let us assume that C(K) ∩M separates the points of K ′ but

A∩M does not separate the points ofK ′. Then also alg((A ∩M) ∪ {1}) does
not separate the points of K ′ (because if there are x 6= y with f(x) = f(y)
for every f ∈ A ∩M , then also g(x) = g(y) for every g of the form g =
a0 +

∑n
i=1 aiΠ

m
j=1fi,j). But this is a contradiction, because using Lemma 8

(8) and (9) we conclude that alg((A ∩M) ∪ {1}) = C(K) ∩M . �

Lemma 14. For every suitable model M the following holds: Let (K, τ) be
a compact space and let D ⊂ K be a dense subset that is contained in the
set induced by a retractional skeleton such that {K,D, τ} ⊂ M . Then the

mapping Φ : C(K) ∩M → C(D ∩M) defined by Φ(f) := f |D∩M , for every

f ∈ C(K) ∩M , is a surjective isometry.

Proof. Let S and Φ be the union of countable sets and finite lists of formulas
from the statements of Lemma 8 and Proposition 11. Let M ≺ (Φ;S ∪
{K,D, τ}). By Lemma 8 (11), we have that ‖f‖ = ‖f |D∩M‖, for every
f ∈ C(K) ∩M , so the mapping Φ|C(K)∩M is an isometry which implies that
Φ is also an isometry. It remains to show that it is surjective. By Lemma 8
(8), C(K) ∩M is a closed subalgebra of C(K) and so the image of Φ is
a closed subalgebra of C(D ∩M) which, by Proposition 11 separates the
points of D ∩M . Therefore, it follows from Stone-Weierstrass theorem that
Φ[C(K) ∩M ] = C(D ∩M). �

Theorem 15. For every suitable model M the following holds: Let (K, τ)
be a compact space and let D ⊂ K be a dense subset that is contained in the
set induced by a retractional skeleton with {K,D, τ} ⊂M . Then there exists
a unique retraction rM : K → D ∩M with rM [K] = D ∩M and f = f ◦rM ,
for every f ∈ C(K) ∩ M . Moreover, for this retraction rM the following
holds:

(i) Whenever A ⊂ C(K) separates the points of K and A ∈ M , then
for every x ∈ K, rM (x) is the unique point from D ∩M satisfying
f(rM (x)) = f(x), for every f ∈ A ∩M .

(ii) Whenever (Γ,≤) is up-directed and σ-complete and r : Γ→ C(K,K)
is a mapping such that s = {r(s) : s ∈ Γ} is a retractional skeleton
on K with D ⊂ D(s) and {r,Γ,≤} ⊂M , then the following holds.
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(a) For every s ∈ Γ ∩M , r(s)[K] ⊂ D ∩M .
(b)

rM (x) = lim
s∈Γ∩M

r(s)(x), x ∈ K.

(c) If M is countable, then rM = r(s) for s = sup Γ ∩M .
(d) {r(s)|rM [K] : s ∈ (Γ ∩M)σ} is a retractional skeleton on rM [K]

with induced set D(s) ∩ rM [K].
(e) If s is commutative, then rM [D(s)] = D(s) ∩ rM [K].

(iii) Whenever h : K → L is a surjective homeomorphism with h ∈ M ,
then r := h ◦ rM ◦h−1 is the unique retraction on L such that r[L] =

h[D] ∩M and f ◦ r = f , for every f ∈ C(L) ∩M .
(iv) w(rM [K]) ≤ |M |.

Proof. Denote by B the set of all open intervals with rational endpoints.
Let S be the union of sets from the statements of Lemma 7, Lemma 8,
Lemma 10, Lemma 14 and Proposition 11 and let Φ be the union of lists of
formulas from the statements of Lemma 7, Lemma 8, Lemma 10, Lemma 14
and Proposition 11 enriched by the formula (and its subformulas) marked
by (∗) in the proof below. Let M ≺ (Φ;S ∪ {K,D, τ}). It follows directly
from Proposition 11 and Lemma 10 that the retraction rM exists and that
it satisfies (i).

Let {r,Γ,≤} ⊂ M be as in (ii). For s ∈ Γ ∩M , by Lemma 7 (2) we
have that r(s)[K] ∈ M and thus Lemma 8 (10) ensures that r(s)[K] ⊂
r(s)[K] ∩M . Moreover, for every x ∈ r(s)[K] ∩ M , using the countable
tightness of D(s) the following formula holds

∃C ⊂ D (C is countable and x ∈ C). (∗)

Thus, by Lemma 5 there exists a countable set C ⊂ D with C ∈M (which
implies C ⊂ M) such that x ∈ C, which implies that x ∈ D ∩M , so

r(s)[K] ⊂ r(s)[K] ∩M ⊂ D ∩M and (a) holds. By Lemma 8 (1), Γ ∩M
is up-directed and so, using Lemma 2 the limit lims∈Γ∩M r(s)(x) =: RM (x)
exists for every x ∈ K.

We claim that RM = rM . Note that due to the uniqueness of rM , it
is enough to show that RM [K] ⊂ D ∩M and that f ◦ RM = f , for every
f ∈ C(K)∩M . By the definition of RM , using (a), we observe that RM [K] ⊂
D ∩M . Moreover, for every x ∈ D ∩M , by Lemma 5 and the absoluteness
of the following formula (and its subformulas)

∃s ∈ Γ
(
rs(x) = x

)
, (∗)

there is s ∈ Γ ∩M with rs(x) = x and so x ∈ RM [K]. Thus, we have that
RM [K] = D ∩M . Pick f ∈ C(K)∩M . Since (rs)s∈Γ∩M converges pointwise
to RM , using [21, Lemma 5.2] we conclude that (f ◦ rs)s∈Γ∩M converges

in norm to f ◦ RM . Therefore f ◦ RM ∈ C(K) ∩M , since it follows from
Lemma 7 (2) and Lemma 8 (2) that f ◦ rs ∈ C(K)∩M , for every s ∈ Γ∩M .

Thus f and f ◦RM are two functions from C(K) ∩M which have the same
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values on D ∩M and so, by Lemma 14, f = f ◦RM . This proves the claim
and establishes (b) which, using Lemma 2, implies (c), (d) and (e).

The proof of (iii) is easy once we realize that by Lemma 8 (4) we have that
h[D ∩M ] = h[D] ∩M and that f ◦ h ∈ C(K) ∩M , for every f ∈ C(L) ∩M .
We omit the straightforward details.

Finally, (iv) follows from Proposition 11, since rM [K] = D ∩M . �

3.3. Families of canonical retractions. Here we study families of canoni-
cal retractions associated to suitable models. Those are more-or-less straight-
forward consequences of Theorem 15. The most important for what follows
is Proposition 17 which will be repeatedly used further.

Lemma 16. There are a countable set S and a finite list of formulas Φ
such that the following holds: Let (K, τ) be a compact space, (Γ,≤) be an
up-directed set, r : Γ→ C(K,K) be a mapping such that s := {r(s) : s ∈ Γ}
is a retractional skeleton on K and let D ⊂ D(s) be dense in K. Put
S′ = S ∪ {K, τ,D,Γ,≤, r}. Then every M ≺ (Φ;S′) admits the canonical
retraction rM associated to M , K and D.

Moreover, we have the following.

(1) If M,N ≺ (Φ;S′) and M ⊂ N then rM ◦ rN = rN ◦ rM = rM .
(2) LetM be an up-directed set with M ≺ (Φ;S′), for every M ∈M and

let M∞ :=
⋃
M∈MM . Then M∞ ≺ (Φ;S′) and limM∈M rM (x) =

rM∞(x), x ∈ K.
(3) If U is a basis of τ , M is an up-directed set with M ≺ (Φ;S′), for

every M ∈ M and U ⊂
⋃
M∈MM , then limM∈M rM (x) = x, for

every x ∈ K.

Proof. The existence of S and Φ follows from Theorem 15. Let us prove
the moreover part using the additional properties of canonical retractions
established in Theorem 15.
(1) Since rM [K] = D ∩M ⊂ D ∩N = rN [K], we have rM = rN ◦ rM .
Moreover, for every f ∈ C(K) ∩M ⊂ C(K) ∩N we have

f(rM (x)) = f(x) = f(rN (x)) = f(rM (rN (x))), x ∈ K
and so rM (x) = rM (rN (x)), for every x ∈ K.
(2) Since M is up-directed, it follows from [6, Lemma 2.1] and Lemma 5
that M∞ ≺ (S′; Φ). Now, combining Theorem 15 (ii) with Lemma 8 (1) and
Lemma 2 (ii) we obtain that limM∈M rM (x) = rM∞(x), x ∈ K.
(3) Pick x ∈ K, U ∈ U such that x ∈ U and find V ∈ U with x ∈ V ⊂ V ⊂ U .
Since V ∈ U and U ⊂

⋃
M∈MM , there exists M0 ∈ M such that V ∈ M0.

Now fix M ∈M with M0 ⊂M . It follows from Lemma 7 (6) that V ∩D ∈
M . Therefore Lemma 10 ensures that rM (x) ∈ rM [V ∩D] ⊂ V ∩D ⊂ U ,
since x ∈ V ∩D. �

Proposition 17. There exist a countable set S and a finite list of formulas
Φ such that the following holds:
Let (K, τ) be a compact space, (Γ,≤) be an up-directed set and r : Γ →
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C(K,K) be a mapping such that s = {r(s) : s ∈ Γ} is a retractional skeleton
on K. Let κ := w(K) and U : κ→ τ be such that {U(i) : i < κ} is an open
basis of τ . Put S′ := S ∪{K,D(s),Γ,≤, r, τ,U}. Let (Mα)α≤κ be a sequence
of sets satisfying

(Ra) Mα ≺ (Φ;S′), for every α ∈ [0, κ],
(Rb) |Mα| ≤ max(ω, |α|), for every α ∈ [0, κ],
(Rc) Mα+1 ⊃Mα ∪ {α}, for every α ∈ [0, κ),
(Rd) Mα =

⋃
β<αMβ, if α ∈ (0, κ] is a limit ordinal.

Then for every α ∈ [0, κ] there exists a canonical retraction rα associated to
Mα, K and D(s) and the following holds.

(R1) For every α < β, we have that rα ◦ rβ = rβ ◦ rα = rα.
(R2) rα(x)→ x, for every x ∈ K.
(R3) Let α ≤ κ, let η : [0, α)→ κ be an increasing function and let ξ ≤ κ

be a limit ordinal with supβ<α η(β) = ξ. Then limβ<α rη(β)(x) =
rξ(x), for every x ∈ K.

(R4) rκ = id.
(R5) For every α ∈ [0, κ], we have that w(rα[K]) ≤ max(ω, |α|) and

(rs|rα[K])s∈(Γ∩Mα)σ is a retractional skeleton on rα[K] with induced
set D(s) ∩ rα[K].

(R6) If A is a closed subset of C(K) and f ◦ rs ∈ A, for every f ∈ A and
s ∈ Γ, then {f ◦ rα : f ∈ A, α ≤ κ} ⊂ A.

(R7) If x, y are distinct points in K then β := min{α < κ : rα(x) 6= rα(y)}
exists and it is a successor ordinal or β = 0.

(R8) For every α ≤ κ, the set Γ∩Mα is up-directed and rα(x) = lims∈(Mα∩Γ) rs(x),
for every x ∈ K.

(R9) For every α ≤ κ and t ∈ (Γ ∩Mα)σ, it holds that rt ◦ rα = rα ◦ rt.
(R10) Let A ⊂ C(K) be a set that separates the points of K and α < κ. If

A ∈Mα, then A∩Mα separates the points of rα[K] and f ◦ rα = f ,
for every f ∈ A ∩Mα.

Moreover, if s is full or commutative, then rα[D(s)] ⊂ D(s), for every α ∈
[0, κ] and if D ⊂ D(s) is such that rα[D] ⊂ D for every α ∈ [0, κ], then we
also have the following.

(R11) The sets {rα(x) : α < κ} and {α < κ : rα(x) 6= rα+1(x)} are count-
able, for every x ∈ D.

Proof. Let S and Φ be the union of sets and lists of formulas from the state-
ments of Theorem 15 and Lemma 16. Then the existence of rα, α ∈ [0, κ]
follows from Theorem 15. Now, (R1) follows immediately from Lemma 16.
(R2) and (R3) follow from Lemma 16 as well (using for (R2) the fact that
{U(i) : i < κ} ⊂

⋃
α<κMα and for (R3) the fact that

⋃
β<αMη(β) = Mξ).

(R4) follows from (R2) and (R3) applied to η(i) := i, i < κ and ξ = κ. (R5)
and (R10) follow from Theorem 15. For (R6) we observe that by Theo-
rem 15 (ii) the net of continuous retractions (rs)s∈Γ∩Mα converges pointwise
to the continuous retraction rα and so [21, Lemma 5.2] ensures that the
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net (f ◦ rs)s∈Γ∩Mα converges in norm to f ◦ rα, for every f ∈ C(K), which
implies (R6). For (R7) we observe that by (R2) there is i < κ such that
ri(x) 6= ri(y) so β is well defined and if β 6= 0 then it is a successor ordinal
by (R3). For (R8) is suffices to apply Lemma 8 (1) and Theorem 15 (ii).
(R9) follows from Lemma 2 (iii).

Moreover, if s is full then we obviously have rα[D(s)] = rα[K] ⊂ K = D(s)
and if it is commutative then Theorem 15 (ii) ensures that rα[D(s)] ⊂ D(s).
(R11): Pick x ∈ D and note that in order to prove that {rα(x) : α < κ}
is countable, it suffices to show that for every strictly increasing function
η : [0, ω1) → κ, there is ζ < ω1 with rη(ζ)(x) = rη(β)(x), for every ζ <
β < ω1. Let η : [0, ω1) → κ be a strictly increasing function and set
ξ := supβ<ω1

η(β). By (R3), we have rξ(x) = limβ<ω1 rη(β)(x). Hence, since
rξ[D] ⊂ D and D has countable tightness (see [22, Theorem 32]), there
is a ζ < ω1 with rξ(x) ∈ rη(ζ)[K]; so, for ζ ≤ β < ω1, using (R1), we
obtain rη(β)(x) = rη(β)(rξ(x)) = rξ(x). Finally, to conclude that the set
{α < κ : rα(x) 6= rα+1(x)} is countable, note that the mapping ϕ(α) =
rα(x) is an injection from this set into {rα(x) : α < κ}. Indeed, suppose by
contradiction that there exist α, β < κ with α 6= β, rα(x) 6= rα+1(x) and
rβ(x) 6= rβ+1(x) such that rα(x) = rβ(x). Without loss of generality, we
may assume that α < β. Then applying the map rα+1, by (R1), we obtain
rα(x) = rα+1(rα(x)) = rα+1(rβ(x)) = rα+1(x), which is a contradiction. �

3.4. Application - passing to a subskeleton. Here we introduce the no-
tion of a (weak) subskeleton and show that for a countable family of retrac-
tional skeletons inducing the same set there is a common weak subskeleton,
see Theorem 21.

Definition 18. Let K be a compact space and let s = (rs)s∈Γ be a retrac-
tional skeleton on K. We say that (rs)s∈Γ′ is a subskeleton of s, if Γ′ ⊂ Γ is
a σ-closed and cofinal subset.

It is easy to see that every subskeleton is a retractional skeleton.

Definition 19. Let (rs)s∈Γ be a retractional skeleton on a compact space
K. We say that (Ri)i∈Λ is a weak subskeleton of (rs)s∈Γ if (Ri)i∈Λ is a
retractional skeleton on K and there exists a mapping φ : Λ→ Γ such that

• Ri = rφ(i), for every i ∈ Λ;
• φ is ω-monotone, that is, if i, j ∈ Λ with i ≤ j, then φ(i) ≤ φ(j)

and if (in)n∈ω is an increasing sequence from Λ, then supn φ(in) =
φ(supn in);
• {φ(i) : i ∈ Λ} is cofinal in Γ.

Clearly, every subskeleton of a retractional skeleton is also a weak sub-
skeleton. Some basic properties of weak subskeletons are summarized below.

Fact 20. Let (rs)s∈Γ be a retractional skeleton on a compact space K and
(Ri)i∈Λ be a weak subskeleton of (rs)s∈Γ. Then

• (Ri)i∈Λ induces the same subset as (rs)s∈Γ;
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• if (Sj)j∈∆ is a weak subskeleton of (Ri)i∈Λ, then it is a weak sub-
skeleton of (rs)s∈Γ.

The following result shows that we may concentrate properties of count-
ably many retractional skeletons into one skeleton, which is moreover gen-
erated by suitable models.

Theorem 21. Let K be a compact space and let (rns )s∈Γn, n ∈ ω be a
sequence of retractional skeletons on K inducing the same set D. Then
there exists a retractional skeleton which is a weak subskeleton of (rns )s∈Γn,
for every n ∈ ω.

Moreover, for every countable set S and every finite list of formulas Φ,
there exists a family M consisting of countable suitable models for Φ con-
taining S such that every M ∈M admits canonical retraction rM associated
to M , K and D and (rM )M∈M is a weak subskeleton of (rns )s∈Γn, for every
n ∈ ω, where the ordering on M is given by inclusion.

Proof. Let Γn = (Γn,≤n) and rn : Γn → C(K,K) be such that rn(s) := rns ,
for every n ∈ ω and s ∈ Γn. Let τ be the topology on K. Let S′ be the
union of S and the countable set from the statement of Theorem 15 enriched
by {K,D, τ, rn,Γn,≤n : n ∈ ω} and let Φ′ be the union of Φ and the list of
formulas from the statement of Theorem 15. By Theorem 4, there is a set
R ⊃ S′ ∪ τ ∪

⋃
n∈ω Γn such that R ≺ (Φ′;S′) and for every countable set

Z ⊂ R there is a countable set M(Z) ⊂ R satisfying M(Z) ≺ (Φ′;Z). Set

M = {M ∈ [R]ω : M ≺ (Φ′, S′)},

ordered by inclusion. The σ-completeness ofM follows from [6, Lemma 2.4].
To see thatM is up-directed, let N1, N2 ∈M, then the set M(N1∪N2) ∈M
and satisfies N1∪N2 ⊂M(N1∪N2). By Theorem 15, every M ∈M admits
canonical retraction rM associated to M , K and D. Note that for every
U ∈ τ there is M ∈M with U ∈M (it suffices to put M = M({U}∪S′)) and
so τ∩(

⋃
M) = τ is indeed a basis of the topology τ . Therefore it follows from

Theorem 15 (iv) and Lemma 16 that (rM )M∈M is a retractional skeleton
on K. Now for every n ∈ ω, let φn : M → Γn be the mapping defined by
φn(M) := sup(Γn ∩M). By Theorem 15 (ii), we have that rM = rnφn(M),

for every n ∈ ω. Now, let (Mk)k∈ω ⊂ M be an increasing sequence, then
it is easy to see that supk φn(Mk) = φn(M∞), where M∞ =

⋃
k∈ωMk. It

remains to prove that the set {φn(M) : M ∈ M} is cofinal in Γn, for each
n ∈ ω. Let n ∈ ω and s ∈ Γn, then there exists M ∈ M such that s ∈ M
(it suffices to put M = M({s}∪S′)). Therefore φn(M) = sup(Γn ∩M) ≥ s.
This concludes the proof. �

4. Valdivia embedding of compact spaces admitting a
commutative skeleton

Giving a compact space K that admits a commutative retractional skele-
ton s, it is known that there exists a homeomorphic embedding h : K →
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[−1, 1]I such that h[D(s)] ⊂ Σ(I) (that is, K is Valdivia and D(s) is a
Σ-subset of K). The main aim of this section is to have a very concrete
and very flexible way of understanding the mapping h, which is the topic
handled in Subsection 4.2, where the proof of Theorem D is given. Apart
from Theorem D, we would like to highlight Theorem 27 which gives a new
characterization of Valdivia compacta using suitable models.

4.1. Canonical retractions associated to suitable models in Valdivia
compact spaces. The goal here is to obtain the following concrete descrip-
tion of the canonical retractions associated to suitable models in Valdivia
compact spaces.

Lemma 22. For every suitable model M the following holds: Let D ⊂ Σ(I)
be such that K = D is compact and {K,D, I, τ} ⊂ M (where τ is the
topology on K). Then the mapping r : K → K defined as r(x) = x|I∩M , for
every x ∈ K, is the canonical retraction associated to M , K and D.

This was in a certain sense most probably well-known for countable mod-
els (see e.g. [24, Lemma 2.4]), here we show that the situation is the same
for uncountable models as well. The remainder of this subsection is more-
or-less devoted to the proof of Lemma 22. We start with two preliminary
results.

Lemma 23. For every suitable model M the following holds: Let X ⊂ Σ(I)
be such that {X, I} ⊂M . Then we have

X ∩M = {x|I∩M : x ∈ X}.

Proof. Let S and Φ be the union of sets and lists of formulas from the
statements of Lemma 7, Lemma 8 and Lemma 9 and let M ≺ (Φ;S∪{X, I}).
Let π : I → RX be the mapping given by πi(x) = x(i), for every x ∈ X
and i ∈ I. By Lemma 7 (2) and Lemma 8 (6), we have that π ∈ M and
A := π[I ∩M ] ⊂ M . Let qM : X → RA be the mapping from Lemma 9,
that is, for x ∈ X we have qM (x)(πi) = x(i), i ∈ I ∩ M . Consider the
mapping φ : RA → RI given for x ∈ RA by φ(x)(i) := x(πi), if i ∈ I ∩M
and φ(x)(i) := 0, if i ∈ I \M . It is easy to see that φ is continuous. By

Lemma 9, we have qM [X] ⊂ qM [X ∩M ] which implies that

{x|I∩M : x ∈ X} = φ(qM [X]) ⊂ φ(qM [X ∩M ]) = {x|I∩M : x ∈ X ∩M}.

Thus, it suffices to note that for every x ∈ X∩M we have x|I∩M = x, which
follows from the fact that the support of every x ∈ X ∩M is contained in
M , see Lemma 8 (7). �

The following is well-known. We did not find a suitable reference, but it
follows e.g. from the proof of [24, Theorem 6.1] (for the key step see also [2,
Lemma 1.2]). For the convenience of the reader we show a short argument
based on our previous considerations.
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Lemma 24. Let K ⊂ RI be a compact space and let D := Σ(I) ∩ K be
dense in K. Put

Γ := {A ∈ [I]≤ω : x|A ∈ K for every x ∈ K}

and for every A ∈ Γ define rA : K → K by rA(x) := x|A, x ∈ K. Then
(rA)A∈Γ is a commutative retractional skeleton on K inducing the set D.

Proof. It is obvious that each rA is a continuous retraction with rA[K]
metrizable. For every A,B ∈ Γ, we have A ∩ B ∈ Γ and rA ◦ rB = rA∩B
which implies that rA◦rB = rB ◦rA. Having an increasing sequence (An)n∈ω
from Γ and x ∈ K, we have rAnx → x|⋃An and so A∞ :=

⋃
An ∈ Γ and

rAnx → rA∞x. Let us now observe that for every x ∈ D there is A ∈ Γ
with rAx = x. Indeed, any x ∈ D has a countable support, so it suffices
to see that for every countable E ⊂ I there is A ∈ Γ with E ⊂ A. Indeed,
by Theorem 4 and Lemma 23 (applied to X = D), there exists a countable

set M such that E ⊂ M ∩ I and {x|I∩M : x ∈ D} = D ∩M , which implies
that M ∩ I ∈ Γ. Finally, note that the cofinality of Γ in [I]≤ω implies that
the net (rA)A∈Γ converges pointwise to the identity in K. Thus, Γ is cofinal
and σ-closed in [I]≤ω (in particular Γ is a σ-complete up-directed set) and
(rA)A∈Γ is a commutative retractional skeleton on K inducing the the set
D. �

Proof of Lemma 22. Let S and Φ be the union of the countable sets and
finite lists of formulas from the statements of Lemma 7, Lemma 8, Theo-
rem 15 and Lemma 23. Pick M ≺ (Φ;S ∪ {K,D, I, τ}). Since D is dense
in K and contained in the set induced by a retractional skeleton (see e.g.
Lemma 24), by Theorem 15, M admits canonical retraction rM associated
to M , K and D.

By Lemma 23, using the continuity of the mapping K 3 x 7→ x|I∩M and
compactness of K, we have D ∩M = {x|I∩M : x ∈ K} and so the retraction
r is well-defined, continuous and r[K] = D ∩M . Let π : I → RK be the
mapping given for i ∈ I and x ∈ K as π(i)(x) := x(i). By Lemma 8 (4)
and (6), we have π ∈M and π[I]∩M = π[I ∩M ]. Since we obviously have
f ◦ r = f , for every f ∈ π[I ∩M ] = π[I] ∩M and π[I] ∈ M separates the
points of K, using Theorem 15 we obtain that r = rM . �

4.2. Valdivia embedding. This subsection is devoted to the proof of The-
orem D whose proof is based on the proof of [5, Theorem 2.6]. Quite sur-
prisingly, the inductive argument does not give us only the “Valdivia em-
bedding” (that is, Theorem D (i)⇒(iv)), but it also provides us with a new
characterization of Valdivia compacta (that is, Theorem D (i)⇔(iii)) which
we use later. Let us also highlight that there is an analogy of this new char-
acterization in the language of suitable models, see Theorem 27. We start
with a lemma.
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Lemma 25. Let K be a compact space and let A ⊂ C(K) be a set separating
the points of K. Then there exists A′ ⊂ A with |A′| = w(K) which separates
the points of K.

Proof. First, since by the Stone-Weierstrass theorem alg(A ∪ {1}) is dense
in C(K), we easily observe that {f−1(−1/2, 1/2) : f ∈ alg(A ∪ {1})} is a
basis for the topology of K. Thus, by [12, Theorem 1.1.15], there is F ⊂
alg(A ∪ {1}) with |F| = w(K) such that {f−1(−1/2, 1/2) : f ∈ F} is a
basis for the topology of K. Pick A′ ⊂ A such that |A′| = w(K) and
F ⊂ alg(A′ ∪ {1}). Then A′ separates the points of K, because otherwise
alg(A′ ∪ {1}) would not separate the points of K, a contradiction with the
fact that {f−1(−1/2, 1/2) : f ∈ F} is a basis of the topology. �

Proof of Theorem D. (i)⇒(ii) Let s2 be the commutative retractional skele-
ton on K inducing D(s). Then by Theorem 21 there is a weak subskeleton of
both s and s2, which easily implies that there is a cofinal subset Γ′′ ⊂ Γ such
that rs ◦ rt = rt ◦ rs, for every s, t ∈ Γ′′. Thus, it suffices to let Γ′ = (Γ′′)σ.
(ii)⇒(iii): Let s2 = (rs)s∈Γ′ be a commutative subskeleton of s. Pick an
up-directed set Γ′′ ⊂ Γ′ and x ∈ D(s) = D(s2). By Lemma 2 the limit
lims∈Γ′′ rs(x) exists. Since there exists s0 ∈ Γ′ such that x = rs0x, using the
commutativity we obtain

lim
s∈Γ′′

rs(x) = lim
s∈Γ′′

rs(rs0x) = rs0( lim
s∈Γ′′

rs(x)) ∈ D(s).

Thus, s2 satisfies (iii) with D = D(s).
(iii)⇒(iv): First, we may without loss of generality assume that s2 = s. We
will prove the result by induction on κ := w(K). We may without loss of
generality assume that λ = 1. If κ = ω, then by Lemma 25, there exists a
countable set H ⊂ A which separates the points of K and this set does the
job. So let us assume that the result holds for every compact space of weight
strictly smaller than κ. Proposition 17 together with Theorem 4 imply
the existence of sets (Mα)α≤κ satisfying (Ra)-(Rd) and retractions (rα)α≤κ
satisfying (R1)-(R11). Note that using (R8), we obtain that rα[D] ⊂ D.
For every α < κ, define Aα := {f ∈ C(rα[K]) : f ◦ rα ∈ A}. It is easy to see
that, for every α < κ, the set Aα is symmetric, closed, convex and bounded.
The fact that Aα separates the points of rα[K] follows from (R6) and (R9)
implies that f ◦ rs ∈ Aα, for every f ∈ Aα and every s ∈ (Γ ∩Mα)σ. For
every α < κ, define Dα := D ∩ rα[K] ⊂ D(s) ∩ rα[K]. Since rα[D] is dense
in rα[K] and rα[D] ⊂ Dα, we have that Dα is dense in rα[K]. Therefore the
induction hypothesis and (R5) imply that there are sets Tα ⊂ Aα such that
the mapping ϕα : rα[K] → [−1, 1]Tα given by ϕα(x)(t) := t(x), t ∈ Tα and
x ∈ rα[K] is a homeomorphic embedding and ϕα[Dα] ⊂ Σ(Tα), for every
α < κ. We may without loss of generality assume that Tα ∩ Tβ = ∅ for

α 6= β. Now, we put T = T0 ∪
⋃
α<κ Tα+1 and define ϕ : K → [−1, 1]T by

ϕ(x)(t) :=

{
1
2

(
ϕα+1(rα+1(x))(t)− ϕα+1(rα(x))(t)

)
, t ∈ Tα+1,

ϕ0(r0(x))(t), t ∈ T0.
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Then ϕ is of course continuous. Let us verify that it is one-to-one. Indeed,
if x, y are distinct points from K then by (R7) there is a minimal ordinal
α0 < κ for which rα0(x) 6= rα0(y) and α0 = 0 or it is a successor ordinal. If
α0 = 0, then there exists t ∈ T0 such that ϕ0

(
r0(x)

)
(t) 6= ϕ0

(
r0(y)

)
(t) and

so we have ϕ(x)(t) 6= ϕ(y)(t). Otherwise, α0 = β0 + 1 for some β0 < κ and
there is t ∈ Tα0 such that ϕα0(rα0(x))(t) 6= ϕα0(rα0(y))(t). Moreover, since
α0 is minimal, we have rβ0(x) = rβ0(y), hence we obtain ϕ(x)(t) 6= ϕ(y)(t)
and so ϕ(x) 6= ϕ(y). Thus, ϕ is a homeomorphic embedding.

Let us show that ϕ[D(s)] ⊂ Σ(T ). Indeed, by (R11), for every x ∈ D the
set {α < κ : rα+1(x) 6= rα(x)} is countable. Moreover, since rα[D] ⊂ Dα, the
induction hypothesis ensures that the supports of ϕ0

(
r0(x)

)
, ϕα+1(rα+1(x))

and ϕα+1(rα(x)) are countable. Therefore the support of ϕ(x) is countable
and we obtain ϕ[D] ⊂ Σ(T ). Moreover, since D is dense in K, by Lemma 24
there is a commutative retractional skeleton s2 on ϕ[K] such that D(s2) =
ϕ[K]∩Σ(T ). Since ϕ[D(s)]∩D(s2) ⊃ ϕ[D], by [7, Lemma 3.2] we have that
ϕ[D(s)] = D(s2) ⊂ Σ(T ).

Now, let us show that πt ◦ ϕ ∈ A, for every t ∈ T . Firstly, note that
πt ◦ ϕα ∈ Aα, for every t ∈ Tα and every α < κ. If t ∈ T0, then we have
that πt ◦ ϕ = πt ◦ ϕ0 ◦ r0 ∈ A. Pick α < κ and t ∈ Tα+1. Then, similarly as
above, πt ◦ ϕα+1 ◦ rα+1 ∈ A and therefore using (R6), we obtain

πt ◦ ϕ = 1
2

(
πt ◦ ϕα+1 ◦ rα+1 − πt ◦ ϕα+1 ◦ rα+1 ◦ rα

)
∈ A.

Omitting some indices, we may without loss of generality assume that the
mapping T 3 t 7→ ft := πt ◦ ϕ ∈ A is one-to-one and so H := {ft : t ∈ T}
does the job.
(iv)⇒(i): By Lemma 24 there is a commutative retractional skeleton s2 on
ϕ[K] such that D(s2) = ϕ[K]∩Σ(I). Since ϕ[D(s)] ⊂ D(s2), by [7, Lemma
3.2] we have that ϕ[D(s)] = D(s2) and so the set D(s) is induced by a
commutative retractional skeleton.
(iii)⇒(i): follows from (iii)⇒(iv)⇒(i) applied to the set A := BC(K). �

The following corollary might be well-known, but let us mention it for
future reference.

Corollary 26. Let K be a compact space and let s be a full retractional
skeleton on K. Then there exists a commutative subskeleton of s.

Proof. Apply Theorem D (iii) =⇒ (ii) to D := K. �

The proof of Theorem D gives us also the following.

Theorem 27. Let K be a compact space and let D be a set induced by a
retractional skeleton on K. Then the following are equivalent.

(a) D is induced by a commutative retractional skeleton.
(b) For every suitable model M the following holds:

∀x ∈ D ∃y ∈ D ∩D ∩M ∀f ∈ C(K) ∩M : f(x) = f(y).
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Proof. (a)⇒(b): By Theorem 15, there is a finite list of formulas Φ and a
countable set S (depending on the compact space K and the set D) such
that for any M ≺ (Φ, S), M admits canonical retraction rM and we have
rM [D] ⊂ D. Then (b) follows from Theorem 15 (i) applied to A := C(K).
(b)⇒(a): Follows from the fact that in the proof of Theorem D (iii)⇒(iv)
we used condition (iii) only to ensure that for a suitable model Mα we
have rα[D] ⊂ D, which by Theorem 15 (i) follows from the condition (b)
above. �

5. Characterization of (semi-)Eberlein compacta

Here, we apply the results of the preceding sections and characterize
(semi)-Eberlein compacta using the notion of an A-shrinking retractional
skeleton.

Definition 28. Let K be a countably compact space. Let ∅ 6= A ⊂ C(K)
be a bounded set. The pseudometric ρA on K is given as

ρA(k, l) := sup
f∈A
|f(k)− f(l)|, k, l ∈ K.

If (rs)s∈Γ is a retractional skeleton on K and D ⊂ K, we say that (rs)s∈Γ

is A-shrinking with respect to D if for every x ∈ D and every increasing se-
quence (sn)n∈ω in Γ with s := supn∈ω sn, we have that limn∈ω ρA(rsn(x), rs(x)) =
0. If (rs)s∈Γ is A-shrinking with respect to K, then we just write that (rs)s∈Γ

is A-shrinking.
Finally, given ε > 0 we say that (rs)s∈Γ is (A, ε)-shrinking with respect

to D if for every x ∈ D and every increasing sequence (sn)n∈ω in Γ with
s := supn∈ω sn, we have that lim supn∈ω ρA(rsn(x), rs(x)) ≤ ε.

Note that if the nonempty and bounded set A separates the points of K,
then ρA is a metric on K.

The aim of this section is to prove the following result from which Theo-
rem A and Theorem B easily follow.

Theorem 29. Let K be a compact space and let D ⊂ K be a dense set.
Consider the following conditions.

(i) There exists a homeomorphic embedding h : K → [−1, 1]I such that
h[D] = c0(I) ∩ h[K].

(ii) There exist a bounded set A ⊂ C(K) separating the points of K and
a retractional skeleton s = (rs)s∈Γ on K with D ⊂ D(s) such that
(a) s is A-shrinking with respect to D,
(b) lims∈Γ′ rs(x) ∈ D, for every x ∈ D and every up-directed subset

Γ′ of Γ.
(iii) There exist a countable family A of subsets of BC(K) and a retrac-

tional skeleton s = (rs)s∈Γ on K with D ⊂ D(s) such that
(a) For every A ∈ A there exists εA > 0 such that s is (A, εA)-

shrinking with respect to D,
(b) for every ε > 0 we have BC(K) =

⋃
{A ∈ A : εA < ε}, and



26 C. CORREA, M. CÚTH, AND J. SOMAGLIA

(c) lims∈Γ′ rs(x) ∈ D, for every x ∈ D and every up-directed subset
Γ′ of Γ.

(iv) There exists a homeomorphic embedding h : K → [−1, 1]J such that
h[D] ⊂ c0(J).

Then (i)⇒(ii)⇒(iii)⇒(iv).

Let us first give some comments.

Remark 30. The notion of a shrinking retractional skeleton is inspired by
[15], where the definition of a shrinking projectional skeleton was given and
WCG Banach spaces were characterized using this notion.

Given a retractional skeleton (rs)s∈Γ on a compact space K, it is well
known that (Ps)s∈Γ given by Ps(f) := f ◦ rs, s ∈ Γ is a projectional skeleton
on C(K), see e.g. [21, Proposition 5.3]. Moreover, if ∅ 6= A ⊂ C(K) is a
bounded set and (Ps)s∈Γ is A-shrinking in the sense of [15, Definition 16],
it is not very difficult to observe that (rs)s∈Γ is A-shrinking in the sense of
Definition 28. It is not clear whether the converse holds as it is (at least
formally) a stronger condition. Thus, Theorem A allows us in a certain
sense to strengthen implication (ii)⇒(i) from [15, Theorem 21]. Since the
other implication is easier, Theorem A may be thought of as a topological
counterpart and in a certain sense also strengthening of [15, Theorem 21] in
the context of C(K) spaces.

Notice that the shrinkingness of a retractional skeleton is not a specific
property of one particular skeleton. First, observe that any A-shrinking
retractional skeleton is also full, whenever A ⊂ C(K) separates the points
of K, this is generalized in the following.

Lemma 31. Let K be a compact space, A ⊂ C(K) be a bounded set separat-
ing the point of K and let s = (rs)s∈Γ be a retractional skeleton on K which
is A-shrinking with respect to a set D with D ⊃ D(s). Then D = D(s) and
lims∈Γ′ rs(x) ∈ D, for every x ∈ D and every up-directed subset Γ′ of Γ.

Proof. Fix x ∈ D and an up-directed set Γ′ ⊂ Γ. Since s is A-shrinking with
respect to D, it is not very difficult to observe (see e.g. [15, Proposition 20])
that there exists an increasing sequence (sn)n∈ω in Γ′ with s = supn sn ∈ Γ
such that ρA − limt∈Γ′ rt(x) = rs(x). Therefore, since the limit limt∈Γ′ rt(x)
exists, we obtain f(limt∈Γ′ rt(x)) = f(rs(x)), for every f ∈ A. Since A
separates the points of K, we deduce that limt∈Γ′ rt(x) = rs(x) ∈ D(s) ⊂ D.
Finally, for Γ′ = Γ we obtain x = lims∈Γ rs(x) ∈ D(s) and so D ⊂ D(s). �

Lemma 32. Let K be a compact space and A ⊂ C(K) be a bounded set sep-
arating the points of K. If there exists an A-shrinking retractional skeleton
on K, then every full retractional skeleton on K admits a weak subskeleton
which is A-shrinking and commutative.

Proof. By Lemma 31, there exists an A-shrinking and full retractional skele-
ton (r̃i)i∈I on K. Moreover, by Corollary 26 we may without loss of general-
ity assume that (r̃i)i∈I is commutative. Now, let (rs)s∈Γ be a full retractional
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skeleton on K. By Theorem 21, there exists a retractional skeleton (Ri)i∈Λ

which is a weak subskeleton of both (rs)s∈Γ and (r̃i)i∈I . It is easy to see
that (Ri)i∈Λ is commutative and A-shrinking. �

In the remainder of this section we provide the proof of Theorem 29. Let
us start with the proof of the implication (i)⇒(ii).

Lemma 33. Let K be a compact space and D ⊂ K be a dense subset.
If there exists a homeomorphic embedding h : K → [−1, 1]I such that
h[D] = h[K]∩ c0(I), then there are A ⊂ BC(K), s = (rs)s∈Γ such that (ii) in
Theorem 29 holds with A, s = (rs)s∈Γ and we moreover have f ◦ rs ∈ A for
every f ∈ A and s ∈ Γ.

Proof. We may without loss of generality assume thatK ⊂ [−1, 1]I , D = K∩
c0(I). Pick the commutative retractional skeleton (rA)A∈Γ from Lemma 24
and put S := {πi|K : i ∈ I} ∪ {0} ⊂ C(K). Clearly S is bounded and
separating. Moreover D is obviously contained in the set K ∩ Σ(I) (which
is the set induced by (rA)A∈Γ) and it is easy to observe that if A ∈ Γ and
f ∈ S, then f ◦ rA ∈ S.

Now, let us show that (rA)A∈Γ is S-shrinking with respect to D. Pick x ∈
D, an increasing sequence (An)n∈ω in Γ and put A = supnAn =

⋃
n∈ω An.

Fix ε > 0 and let n0 ∈ ω be such that {i ∈ A : |x(i)| > ε} ⊂ An0 . Then for
every n ≥ n0 we obtain rAnx(i)− rAx(i) = 1A\An · x(i), therefore for every
i ∈ I we have |rAnx(i)− rAx(i)| < ε; hence supf∈S |f(rAnx)− f(rAx)| < ε.

Finally, we note that whenever Γ′ ⊂ Γ is up-directed and x ∈ D, then
y := limA∈Γ′ rAx exists by Lemma 2 and moreover if i ∈ suppt y, then
y(i) = x(i). Therefore, we have that y ∈ K ∩ c0(I) = D. �

The most demanding is the proof of the implication (iii)⇒(iv) in Theo-
rem 29. We start with an easy observation.

Lemma 34. Let K be a compact space, A ⊂ C(K) be a bounded set, ε > 0
and D be a subset of K. Suppose that (rs)s∈Γ is a retractional skeleton on

K that is (A, ε)-shrinking with respect to D. For an up-directed set Γ
′ ⊂ Γ

let RΓ
′ be as in Lemma 2. Then for every x ∈ D we have the following.

(Sa) If Γ
′ ⊂ Γ is up-directed, then there exists s0 ∈ Γ′ such that we have

ρA(RΓ′ (x), rs(x)) ≤ 7ε, s ≥ s0, s ∈ Γ′

(Sb) If M ⊂ P(Γ) is such that M is up-directed and each M ∈ M is
up-directed, then there exists M0 ∈ M such that for every M ∈ M
with M ⊃M0 we have

ρA(RM (x), R⋃
M(x)) ≤ 14ε.

Proof. Pick x ∈ D.
(Sa) First, let us observe that there exists s0 ∈ Γ′ such that

(1) ρA(rs(x), rs0(x)) < 3ε, s ≥ s0, s ∈ Γ′.
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Indeed, if this is not the case we inductively construct an increasing sequence
(sn) in Γ′ with ρA(rsn(x), rsn+1(x)) ≥ 3ε, n ∈ N which is in contradiction
with (A, ε)-shrinkingness.

Pick f ∈ A and s1 ≥ s0, s1 ∈ Γ′. Since lims∈Γ′ rs(x) = RΓ′(x), there
exists s2 ≥ s1, s2 ∈ Γ′ with |f(rs2(x)) − f(RΓ′(x))| < ε. Therefore, by (1)
we obtain

|f(rs1(x))− f(RΓ′(x))| ≤ ρA(rs1(x), rs0(x)) + ρA(rs0(x), rs2(x)) + ε < 7ε.

Since f ∈ A was arbitrary, this proves (Sa).
(Sb) By (Sa), there exists s0 ∈

⋃
M such that ρA(rs(x), R⋃

M(x)) ≤ 7ε,
for every s ≥ s0, s ∈

⋃
M. Let M0 ∈ M be such that s0 ∈ M0. Then, for

every M ∈ M with M ⊃ M0 by (Sa) there exists sM ≥ s0, sM ∈ M with
ρA(rsM (x), RM (x)) ≤ 7ε, which implies that

ρA(RM (x), R⋃
M(x)) ≤ 14ε. �

The following proposition together with Theorem D is the core of our
argument. The idea to use such a result is related to a characterization
of Eberlein compacta by Farmaki [16, Theorem 2.9] (see also [13, Theorem
10]). Note however, that our methods enable us to present a self-contained
proof.

Proposition 35. Let K ⊂ [−1, 1]I be a compact space and for I ′ ⊂ I define

SK,I′ = {πi|K : i ∈ I ′}.

Suppose that K admits a retractional skeleton s = (rs)s∈Γ such that D(s) ⊂
Σ(I) and let D ⊂ D(s). Assume that there is a countable family A consisting
of subsets of I such that

(1) For every A ∈ A, there exists εA > 0 such that (rs)s∈Γ is (SK,A, εA)-
shrinking with respect to D;

(2) For every ε > 0, it holds that I =
⋃
{A ∈ A : εA < ε};

(3) lims∈Γ′ rs(x) ∈ D, for every x ∈ D and every up-directed subset Γ′

of Γ.

Then for every ε > 0 there is a decomposition I =
⋃∞
n=0 I

ε
n such that

∀n ∀x ∈ D : |{i ∈ Iεn : |x(i)| > ε}| < ω.

Proof. By [19, Proposition 19.5], we may pick a set J ⊂ I such that |J | =
w(K) and supptx ⊂ J , for every x ∈ K. By [7, Lemma 3.2], we have that
D(s) = Σ(I) ∩ K and hence Lemma 24 ensures that D(s) is induced by
a commutative retractional skeleton. Therefore it follows from Theorem D
that we may assume the retractional skeleton s is commutative. Now, let us
prove the result by induction on the weight of K. If K has countable weight,
then the set J is countable and we may enumerates it as J := (jn)n≥1. For
each ε > 0, let Iε0 = I \J , and Iεn = {jn}, for every n ≥ 1. Then I =

⋃∞
n=0 I

ε
n

and

∀n ∀x ∈ K : |{i ∈ Iεn : |x(i)| > ε}| ≤ 1.
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Now suppose that w(K) = κ ≥ ω1 and that the result holds for compact
spaces of weight less than κ. Proposition 17 together with Theorem 4 imply
the existence of sets (Mα)α≤κ satisfying (Ra)-(Rd) and retractions (rα)α≤κ
satisfying (R1)-(R11). Note that we can assume that J ⊂

⋃
α<κMα, by

replacing (Rc) by the following (stronger) condition:

Mα+1 ≺ (Φ; {jα, α} ∪Mα), ∀α < κ,

where J = {jα : α < κ}. Note that, by Lemma 22, we may assume that
rα(x) = x|I∩Mα , for every x ∈ K and α < κ. For each α < κ, it is easy
to see that for every A ∈ A the retractional skeleton (rs|rα[K])s∈(Γ∩Mα)σ

given by (R5) is (Srα[K],A, εA)-shrinking with respect to the set D∩rα[K] ⊂
D(s)∩rα[K] ⊂ Σ(I)∩[−1, 1]I . Moreover, if Γ′ ⊂ (Γ∩Mα)σ is up-directed and
x ∈ D ∩ rα[K], then using (R9) we conclude that lims∈Γ′ rs(x) ∈ D ∩ rα[K].
Now fix ε > 0 and let I =

⋃
n≥1 I

ε
n,0 be the decomposition given by induction

hypothesis applied to r0[K] (using that by (R5) we may apply the inductive
hypothesis to r0[K]), that is, for every y ∈ D ∩ r0[K] and n ≥ 1 the set

{i ∈ Iεn,0 : |y(i)| > ε}

is finite. Fix α < κ, similarly let I =
⋃
n≥1 I

ε
n,α+1 be the decomposition

given by the induction hypothesis applied to rα+1[K], that is, for every
y ∈ D ∩ rα+1[K] and n ≥ 1 the set

{i ∈ Iεn,α+1 : |y(i)| > ε}

is finite. For A ∈ A with εA < ε/14 define Iε(0,A) = I \J and for every n ≥ 1
put

Iε(n,A) = (A ∩ J ∩ Iεn,0 ∩M0) ∪
⋃
α<κ

(
A ∩ J ∩ Iεn,α+1 ∩ (Mα+1 \Mα)

)
.

Note that I =
⋃
{Iε(n,A) : n ≥ 0, A ∈ A, 14εA < ε}, since J ⊂

⋃
α<κMα and

I =
⋃
{A ∈ A : 14εA < ε}. Fixed x ∈ D, A ∈ A with εA < ε/14 and n ≥ 0,

let us show that the set

S(n,A) = {i ∈ Iε(n,A) : |x(i)| > ε}

is finite. Since suppt(x) ⊂ J , we have that S(0,A) is empty. Fixed n ≥ 1,
note that in order to conclude that S(n,A) is finite it suffices to prove that
the set

Λ(n,A) = {α < κ : |x(i)| > ε for some i ∈ A ∩ J ∩ Iεn,α+1 ∩ (Mα+1 \Mα)}

is finite. Indeed, using that r0(x) = x|I∩M0 = x|J∩M0 we obtain that:

S(n,A) ∩ (A ∩ J ∩ Iεn,0 ∩M0) ⊂ {i ∈ Iεn,0 : |r0(x)(i)| > ε}

and therefore, since r0(x) = lims∈(Γ∩M0) rs(x) ∈ D∩r0[K], we conclude that
S(n,A) ∩ (A ∩ J ∩ Iεn,0 ∩M0) is finite. Similarly, for α < κ we have

S(n,A) ∩ (A ∩ J ∩ Iεn,α+1 ∩Mα+1 \Mα) ⊂ {i ∈ Iεn,α+1 : |rα+1(x)|I\Mα
(i)| > ε}

⊂ {i ∈ Iεn,α+1 : |rα+1(x)(i)| > ε}
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and therefore S(n,A) ∩ (A ∩ J ∩ Iεn,α+1 ∩Mα+1 \Mα) is finite. It remains to
prove that Λ(n,A) is finite. In order to do that suppose by contradiction that
Λ(n,A) is infinite, so there is a strictly increasing sequence (αk)k≥1 of elements
of κ and a sequence (ik)k≥1 such that ik ∈ A∩ J ∩ Iεn,αk+1 ∩ (Mαk+1 \Mαk)

and |x(ik)| > ε, for every k ≥ 1. Put α = supk αk. Then we have (because
ik ∈Mαk+1 \Mαk ⊂Mα \Mαk):

ε < |x(ik)| = |rα(x)(ik)− rαk(x)(ik)| ≤ ρS(K,A)
(rα(x), rαk(x)),

for every k ≥ 1. This is a contradiction, because using (R8) and Lemma 34
(Sb) applied to M = {Mαk ∩ Γ : k ≥ 1}, we conclude that

lim sup
k→∞

ρS(K,A)
(rα(x), rαk(x)) ≤ 14εA < ε,

since s is (SK,A, εA)-shrinking with respect to D. �

The following is based on [13, Theorem 10].

Proposition 36. Let K ⊂ [−1, 1]I be a compact space and D be a subset of
K. If for every ε > 0, there exists a decomposition I =

⋃
n∈ω I

ε
n such that

for every x ∈ D and every n ∈ ω the set

{i ∈ Iεn : |x(i)| > ε}

is finite, then there is a homeomorphic embedding Φ : K → [−1, 1]I×ω such
that Φ[D] ⊂ c0(I × ω).

Proof. Let k ∈ ω and define the function τk : R→ R as

τk(t) =


t+ 1

k , if t ≤ − 1
k ,

0, if − 1
k ≤ t ≤

1
k ,

t− 1
k , if t ≥ 1

k .

Define then Φ : K → [−1, 1]I×ω by

Φ(x)(i, k) =
1

nk
τk(x(i)),

if i ∈ I1/k
n , n ∈ ω and k ∈ ω. Since the map π(i,k) ◦Φ : K → R is continuous,

for every (i, k) ∈ I × ω, the map Φ is continuous as well. The map is
also one-to-one. Indeed, for distinct x1, x2 ∈ K there exists an i ∈ I with
x1(i) 6= x2(i). Let k ∈ ω be such that 1/k < max{|x1(i)|, |x2(i)|} and pick

n ∈ ω with i ∈ I
1/k
n . Then τk(x1(i)) 6= τk(x2(i)), therefore Φ(x1)(i, k) 6=

Φ(x2)(i, k).
It remains to prove that Φ[D] is contained in c0(I × ω). In order to do

that, let x ∈ D and fix ε > 0. If n, k ∈ ω, and n > 1/ε or k > 1/ε, then

|Φ(x)(i, k)| < ε, for any choice of i ∈ I
1/k
n . Let n, k < 1/ε (observe that

there are only finitely many n and k such that this inequality holds). Then
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we have

{i ∈ I1/k
n : |Φ(x)(i, k)| > ε} ⊆ {i ∈ I1/k

n : τk(x(i)) 6= 0}

= {i ∈ I1/k
n : x(i) > 1/k} ∪ {i ∈ I1/k

n : x(i) < −1/k}

= {i ∈ I1/k
n : |x(i)| > 1/k}.

Therefore, the set {i ∈ I1/k
n : |Φ(x)(i, k)| > ε} is finite and thus we conclude

that Φ(x) ∈ c0(I × ω). �

Proof of Theorem 29. Lemma 33 ensures that (i)⇒ (ii).
Now let us prove that (ii)⇒(iii). Let A and s = (rs)s∈Γ be as in the

assumption and let λ ≥ 1 be such that A ⊂ λBC(K). We may without loss
of generality assume that the constant 1 function is member of A. For every
n ∈ N put

An :=

{
k∑
i=1

aiΠ
n
j=1fi,j : fi,j ∈ A, k ∈ N ,

k∑
i=1

|ai| ≤ n

}
and for m ∈ N we further put

An,m := (An + 1
2mBC(K)) ∩BC(K).

Now, we claim that the family Ã := {An,m : n,m ∈ N} and the retrac-
tional skeleton s satisfy the condition from (iii). Pick n,m ∈ N. Then
s is (An,m, 1

m)-shrinking with respect to D. Indeed, given x ∈ D and an
increasing sequence (sk) in Γ with s = sup sk, we have

ρAn,m(rsk(x), rs(x)) ≤ ρAn(rsk(x), rs(x))+ 1
m ≤ n

2λn+1ρA(rsk(x), rs(x))+ 1
m ,

so using that s is A-shrinking with respect to D, we obtain

lim sup
k

ρAn,m(rsk(x), rs(x)) ≤ 1
m .

Finally, since
⋃
n∈NAn = alg(A) is norm-dense in C(K) we easily observe

that BC(K) =
⋃
n∈NAn,m for every m ∈ N from which the condition (b)

follows.
Now let us prove that (iii)⇒(iv). Let A and s = (rs)s∈Γ be as in the

assumption. By Theorem D, there exists H ⊂ BC(K) such that the mapping

ϕ : K → [−1, 1]H given by ϕ(x)(h) := h(x), for h ∈ H and x ∈ K, is a
homeomorphic embedding and ϕ[D(s)] ⊂ Σ(H). For every s ∈ Γ, define
qs = ϕ ◦ rs ◦ ϕ−1 : ϕ[K] → ϕ[K] and note that the retractional skeleton
(qs)s∈Γ is (S(ϕ[K],H∩A), εA)-shrinking with respect to the set ϕ[D] ⊂ ϕ[D(s)]
for every A ∈ A. Indeed, fix x ∈ D and an increasing sequence (sn)n≥1 of
elements of Γ with s = supn sn. Then we have

ρS(ϕ[K],H∩A)

(
qsn
(
ϕ(x)

)
, qs
(
ϕ(x)

))
= sup

h∈H∩A

∣∣∣ϕ(rsn(x)
)
(h)− ϕ

(
rs(x)

)
(h)
∣∣∣ =

= sup
h∈H∩A

∣∣∣h(rsn(x)
)
− h
(
rs(x)

)∣∣∣ ≤ ρA(rsn(x), rs(x)),



32 C. CORREA, M. CÚTH, AND J. SOMAGLIA

so since s is (A, εA)-shrinking with respect to the setD, (qs) is (S(ϕ[K],H∩A), εA)-
shrinking with respect to the set ϕ[D]. Obviously, we have H =

⋃
{A ∩

H : εA < ε} for every ε > 0. Finally, for every up-directed set Γ′ ⊂ Γ
and every x ∈ D we have that lims∈Γ′ qs(ϕ(x)) = ϕ(lims∈Γ′ rs(x)) ∈ ϕ[D].
Therefore, the result follows from Proposition 35 and Proposition 36. �

6. Applications to the structure of (semi)-Eberlein compacta

We collect our applications to the structure of (semi-)Eberlein compacta.
Most importantly, we prove Theorem C.

6.1. Eberlein compacta. As mentioned above, using Theorem A it is not
very difficult to show that any continuous image of Eberlein compacta is
Eberlein. The reason is that for continuous images of Eberlein compacta
it is quite standard to verify the condition (iii) from Theorem 29. We will
not provide here the full argument as it is possible to further generalize
this observation, see Remark 43 below. The remainder of this subsection is
devoted to the proof of Theorem 39, which is a generalization of Theorem A,
where instead of compactness we assume countable compactness. In order
to show the argument, we need a lemma first. Recall that every real-valued
continuous function defined on a countably compact space D is bounded so
we may consider the supremum norm on C(D).

Lemma 37. Let D be a countably compact space. Suppose that there exist
a bounded set A ⊂ C(D) separating the points of D and a full retractional
skeleton s = (rs)s∈Γ on D such that f ◦ rs ∈ A, for every f ∈ A and s ∈ Γ.
Then A′ = {βf : f ∈ A} separates the points of βD.

Proof. By [11, Proposition 4.5], there exists a retractional skeleton S =
(Rs)s∈Γ on βD such that D(S) = D and Rs|D = rs, for every s ∈ Γ. Let
x, y ∈ βD be distinct points. Since lims∈ΓRs(x) = x and lims∈ΓRs(y) = y,
there exists s ∈ Γ such that Rs(x) 6= Rs(y). Since Rs(x), Rs(y) ∈ D, there
exists a function f ∈ A such that f(Rs(x)) 6= f(Rs(y)). Therefore we have
βf(Rs(x)) 6= βf(Rs(y)). It is easy to see that (βf ◦ Rs)|D = f ◦ rs, which
implies that βf ◦Rs = β(f ◦ rs) ∈ A′, since f ◦ rs ∈ A. �

Remark 38. Note that the assumption “f ◦ rs ∈ A, for every f ∈ A and
s ∈ Γ” in Lemma 37 is essential. Indeed, consider D = [0, ω1) and

A = {1{0}∪[α+1,ω1) : α < ω1}.
Then it is easy to see that A separates the points of D and that D admits
the full retractional skeleton (rα)α<ω1 given by the formula

rα(β) =

{
β β ≤ α
α+ 1 α < β < ω1,

for every α < ω1. However, we have βD = [0, ω1] and the set

A′ = {β1{0}∪[α+1,ω1) : α < ω1} = {1{0}∪[α+1,ω1] : α < ω1}
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does not separate 0 from ω1.

Theorem 39. Let D be a countably compact space. Then the following
conditions are equivalent.

(i) There exists a set I such that D embeds homeomorphically into
(c0(I), w).

(ii) D is an Eberlein compact space.
(iii) There exist a bounded set A ⊂ C(D) separating the points of D and

a full retractional skeleton s = (rs)s∈Γ on D such that
(a) s is A-shrinking,
(b) f ◦ rs ∈ A, for every f ∈ A and s ∈ Γ.

Proof. (i) ⇒ (ii) follows from the classical Eberlein-Šmulian theorem and
(ii) ⇒ (iii) follows from Theorem 29 and Lemma 31. If (iii) holds, pick
the corresponding set A and the full retractional skeleton (rs)s∈Γ on D. By
[11, Proposition 4.5], there exists a retractional skeleton S = (Rs)s∈Γ on
βD such that D(S) = D and Rs|D = rs, for every s ∈ Γ. Consider now
the set A′ := {βf : f ∈ A} ⊂ C(βD) and the retractional skeleton S. By
Lemma 37, A′ separates the points of βD. Obviously, S is A′-shrinking with
respect to D and it is easy to see that for every f ∈ A and s ∈ Γ we have
βf ◦Rs = β(f ◦ rs) ∈ A′. By Lemma 31 we have that lims∈Γ′ Rs(x) ∈ D, for
every x ∈ D and every up-directed subset Γ′ of Γ. Therefore, Theorem 29
ensures that (i) holds. �

6.2. Semi-Eberlein compacta. In this subsection we provide new stabil-
ity results for the class of semi-Eberlein compacta. The most important in
this respect is probably Corollary 44 which implies Theorem C.

Lemma 40. For every suitable model M the following holds: Let (K, τ)
and (L, τ ′) be compact spaces, D ⊂ K a dense subset that is contained in
the set induced by a retractional skeleton, and ϕ : K → L a continuous map
such that ϕ[D] ⊂ L a dense subset that is contained in the set induced by
a retractional skeleton. If {K,L, τ, τ ′, D, ϕ} ⊂ M , then there are canonical
retractions rM and RM associated to M , K and D and to M , L and ϕ[D],
respectively, and we have RM ◦ ϕ = ϕ ◦ rM .

Proof. Let S and Φ be the union of countable sets and finite lists of formu-
las from the statements of Lemma 8 and Theorem 15. Let M ≺ (Φ;S ∪
{K,L, τ, τ ′, D, ϕ}).

The existence of rM and RM follows from Theorem 15. Moreover, given
x ∈ K and f ∈ C(L) ∩M , by Lemma 8 we have f ◦ ϕ ∈ C(K) ∩M and
so by the definition of rM , f ◦ ϕ ◦ rM = f ◦ ϕ which implies that y =
ϕ(rM (x)) ∈ ϕ[D ∩M ] ⊂ ϕ[D] ∩M is a point satisfying f(y) = f(ϕ(x)) for
every f ∈ C(L) ∩M and so by the uniqueness property of RM (ϕ(x)) (see
Theorem 15 (i)) we obtain that RM (ϕ(x)) = ϕ(rM (x)). �

Theorem 41. Let K be a compact space and D ⊂ K be a dense subset
such that there exists a homeomorphic embedding h : K → [−1, 1]J such



34 C. CORREA, M. CÚTH, AND J. SOMAGLIA

that h[D] = c0(J) ∩ h[K]. Let us suppose that ϕ : K → L is a continuous
surjection and ϕ[D] is subset of the set induced by a retractional skeleton on
L.

Then there is a homeomorphic embedding H : L→ [−1, 1]I with H[ϕ[D]] ⊂
c0(I). In particular, L is semi-Eberlein.

Proof. By Lemma 33, there exists a set A ⊂ BC(K) separating the points of
K and a retractional skeleton s = (rs)s∈Γ on K with D ⊂ D(s) such that s
is A-shrinking with respect to D and lims∈Γ′ rs(x) ∈ D for every x ∈ D and
every up-directed subset Γ′ of Γ. Using Lemma 40 and an argument similar
to the one presented in the proof of Theorem 21, we conclude that there are
countable set S, finite list of formulas Φ and a set R such that

M = {M ∈ [R]ω : M ≺ (Φ, S)}
ordered by inclusion is an up-directed and σ-complete set and moreover we
have

• every M ∈ M admits canonical retractions rM and RM associated
to M , K and D and to M , L and ϕ[D], respectively;
• sK := (rM )M∈M is a weak subskeleton of s and sL := (RM )M∈M is

a retractional skeleton on L;
• for every M ∈M we have RM ◦ ϕ = ϕ ◦ rM .

In particular, we have that D(s) = D(sK), sK is A-shrinking with respect
to D and limM∈M′ rM (x) ∈ D for every x ∈ D and every up-directed subset
M′ of M. We obviously have ϕ[D] ⊂ D(sL). Consider now the isometric
embedding ϕ∗ : C(L)→ C(K) given by the formula ϕ∗f := f ◦ ϕ, f ∈ C(L).
Further, similarly as in the proof of (ii)⇒(iii) of Theorem 29 for every n ∈ N
put

An :=

{
k∑
i=1

aiΠ
n
j=1fi,j : fi,j ∈ A, k ∈ N ,

k∑
i=1

|ai| ≤ n

}
,

for m ∈ N we further put

An,m := (An + 1
2mBC(K)) ∩Bϕ∗C(L), Bn,m := (ϕ∗)−1(An,m)

and we observe that BC(L) =
⋃
n∈N Bn,m for every m ∈ N. Moreover, observe

that for every n,m ∈ N the retractional skeleton sL is
(
Bn,m, 1

m

)
-shrinking

with respect to ϕ[D]. Indeed, given x ∈ D and an increasing sequence
(Mk)k∈N in M with M = supk∈NMk, we have

ρBn,m(RMk
(ϕ(x)), RM (ϕ(x))) = sup

f∈C(L),f◦ϕ∈An,m

∣∣f(ϕ(rMk
(x)))− f(ϕ(rM (x)))

∣∣
≤ ρAn,m(rMk

(x), rM (x)) ≤ ρAn(rMk
(x), rM (x)) + 1

m

≤ n2ρA(rMk
(x), rM (x)) + 1

m ,

so using that s is A-shrinking with respect to D, we obtain

lim sup
k

ρBn,m(RMk
(x), RM (x)) ≤ 1

m .
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Finally, for every x ∈ D and up-directed subset M′ of M we have

lim
M∈M′

RM (ϕ(x)) = ϕ( lim
M∈M′

rM (x)) ∈ ϕ[D].

Hence, application of Theorem 29 (iii) =⇒ (iv) finishes the proof. �

Corollary 42. Let K be a semi-Eberlein compact space, ϕ : K → L be a
continuous surjection and D ⊂ K be a dense subset such that there exists a
homeomorphic embedding h : K → [−1, 1]J with h[D] = c0(J)∩ h[K]. Then
S := h−1[Σ(J)] is the unique set induced by a retractional skeleton in K
with D ⊂ S. Assume that one of the following conditions holds:

(1) ϕ∗C(L) = {f ◦ ϕ : f ∈ C(L)} is τp(S)-closed in C(K);
(2) The set {(x, y) ∈ S × S : ϕ(x) = ϕ(y)} is dense in {(x, y) ∈ K ×

K : ϕ(x) = ϕ(y)}.
Then there is a homeomorphic embedding H : L→ [−1, 1]I with H[ϕ[D]] ⊂
c0(I). In particular, L is semi-Eberlein.

Proof. By Lemma 24, Σ(J) ∩ h[K] is induced by a retractional skeleton
and so its preimage S is induced by a retractional skeleton as well. The
uniqueness of S follows from [7, Lemma 3.2]. If (1) holds, then by [8,
Theorem 4.5] the set ϕ[S] is induced by a retractional skeleton and so we
may apply Theorem 41. Finally, by [20, Lemma 2.8] condition (2) implies
(1). �

Remark 43. Note that as a very particular case we obtain that a continuous
image of an Eberlein compact space is Eberlein, since in this case we have
D = K and thus condition (2) in Corollary 42 is trivially satisfied.

The following answers the second part of [23, Question 6.6].

Corollary 44. Let K be a semi-Eberlein compact space, ϕ : K → L be a
continuous surjection. Assume that one of the following conditions holds:

(1) K is Corson.
(2) ϕ is open and K or L has a dense set of Gδ points.

Then L is semi-Eberlein.

Proof. Let D ⊂ K be a dense subset such that there exists a homeomorphic
embedding h : K → [−1, 1]J with h[D] = c0(J) ∩ h[K] and put S :=
h−1[Σ(J)]. Note that S is a dense Σ-subset of K and, by Corollary 42, it is
the unique set induced by a retractional skeleton with D ⊂ S.

If K is Corson then it admits a full retractional skeleton, so by the unique-
ness of S we have that S = K and thus condition (2) from Corollary 42 is
obviously satisfied.

If ϕ is open and L has dense set of Gδ points, then by [8, Lemma 6.1]
the set ϕ[S] is induced by a retractional skeleton and thus we may apply
directly Theorem 41 (note that inspecting the proof of [8, Lemma 6.1] one
can observe that even the condition (2) from Corollary 42 is satisfied).

Finally, if ϕ is open and K has dense set of Gδ points then it is easy to
see that L has dense set of Gδ points and we may apply the above. �
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Let us note that if D is a dense Σ-subset of K and ϕ : K → L is a
continuous retract, it may happen that ϕ[D] is not Σ-subset of K, see [20,
Remark 3.25]. Thus, it is not possible to apply directly Theorem 41 for
the case when ϕ is a retraction and this is basically the reason why we do
not know how to answer also the first part of [23, Question 6.6] using our
methods.

7. Open questions and remarks

In Section 3 we obtained as an application of our methods that for a
countable family of retractional skeletons inducing the same set there is a
common weak subskeleton, see Theorem 21. It would be interesting to know
whether we can find even a subskeleton (not only a weak one).

Question 45. In Theorem 21, is it possible to obtain a subskeleton instead
of a weak subskeleton?

When working with retractional skeletons, their index sets are quite mys-
terious. For Banach spaces with a projectional skeleton, the index set may
be chosen to consist of the ranges of the involved projections (ordered by
inclusion), see [10, Theorem 4.1]. We wonder whether something similiar
holds for spaces with a retractional skeleton.

Question 46. Let K be a compact space and let D ⊂ K be induced by a
retractional skeleton on K. Does there exist a family of retractions {rF : F ∈
F} indexed by a family of compact spaces F ordered by inclusion satisfying
the following conditions?

(i) whenever (Fn)n∈ω is an increasing sequence from F , then supn Fn =⋃
n Fn ∈ F ,

(ii) for every F ∈ F we have rF [K] = F ,
(iii) (rF )F∈F is a retractional skeleton on K inducing the set D.

Note that in Proposition 35 we proved a result in a sense very similar to
the characterization of Eberlein compacta from [16, Theorem 2.9] (see also
[13, Theorem 10]). We wonder whether an analogoue of [13, Theorem 10]
holds also in the context semi-Eberlein compacta. Note that one implication
follows from Proposition 36, so a positive answer to the following question
would give a characterization of semi-Eberlein compact subspaces of [−1, 1]I .

Question 47. Let K ⊂ [−1, 1]I be a compact space such that Σ(I) ∩ K
is dense in K. Let K be semi-Eberlein. Does there exist D ⊂ Σ(I) ∩ K
which is dense in K such that for every ε > 0 there exists a decomposition
I =

⋃∞
n=0 I

ε
n satisfying

∀n ∈ ω ∀x ∈ D : |{i ∈ Iεn : |x(i)| > ε}| < ω?

Finally, let us emphasize that we believe that Theorem D gives quite a
big flexibility to consider other subclasses of Valdivia compact spaces and
characterize them using the notion of retractional skeletons. The reason
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why we believe so is, that by Theorem D we may consider any set induced
by a retractional skeleton to be a subset of Σ(I) (where A ⊂ C(K) plays
the role of the set I); moreover, for subsets of Σ(I) several classes of com-
pact spaces were characterized using their evaluations on the set I, see [13].
Thus, there is enough room for further possible research by considering those
classes of compacta and try to develop the right notion which would give a
characterization using retractional skeletons.
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[14] M. Fabian, P. Habala, P. Hájek, V. Montesinos, and V. Zizler, Banach
space theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC,
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