Photosynthetica 2019, 57(1):286-294 | DOI: 10.32615/ps.2019.030

Effects of exogenous glucose and sucrose on photosynthesis in triticale seedlings under salt stress

L.H. WANG, G.L. LI, S. WEI, L. J. LI, S.Y. ZUO, X. LIU, W.R. GU, J. LI
College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang Province, China

Salinization disturbs metabolic processes of plants and results in reduced growth and productivity. In our study, the Dongnong 8809 variety of triticale (×Triticosecale Wittmack) was evaluated for its physiological responses to salt stress during the seedling stage. We evaluated biomass production, relative chlorophyll content, chlorophyll fluorescence, and leaf gas-exchange parameters. Our results indicated that salt stress greatly reduced matter accumulation, SPAD value, photosynthetic capacity. However, seedlings treated with exogenous sugars showed significantly enhanced matter accumulation, SPAD value, quantum yield of PSII, electron transport rate, net photosynthetic rate, decreased stomatal limitation value, and improved photosynthetic capacity compared to seedlings treated with salt stress alone. Exogenous glucose and sucrose can alleviate the inhibitory effect of salt stress on the growth of triticale, and of the two exogenous sugars, sucrose had a stronger alleviating effect than that of glucose under salt stress.

Additional key words: exogenous sugar; growth; photosynthesis; tolerance.

Received: October 18, 2017; Accepted: August 16, 2018; Prepublished online: December 7, 2018; Published: January 30, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
WANG, L.H., LI, G.L., WEI, S., LI, L.J., ZUO, S.Y., LIU, X., GU, W.R., & LI, J. (2019). Effects of exogenous glucose and sucrose on photosynthesis in triticale seedlings under salt stress. Photosynthetica57(1), 286-294. doi: 10.32615/ps.2019.030
Download citation

References

  1. Akram K.A., Mohammad H.N., Mohammad H., et al.: Salt effects on seed germination and seedling emergence of two Acacia species. - Afr. J. Plant Sci. 5: 52-56, 2011.
  2. Araya T., Noguchi K., Terashima I.: Effects of carbohydrate accumulation on photosynthesis differ between sink and source leaves of Phaseolus vulgaris L. - Plant Cell Physiol. 47: 644-652, 2006. Go to original source...
  3. Arzani A.: Improving salinity tolerance in crop plants: a biotechnological view. - Vitro Cell. Dev. Biol. Plant. 44: 373-383, 2008.
  4. Baena-González G.E., Sheen J.: Convergent energy and stress signaling. - Cell 12: 1360-1385, 2008.
  5. Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  6. Baque M.A., Elgirban A., Lee E.J. et al.: Sucrose regulated enhanced induction of anthraquinone, phenolics, flavonoids biosynthesis and activities of antioxidant enzymes in adventitious root suspension cultures of Morinda citrifolia (L.). - Acta Physiol. Plant. 34: 405-415, 2011.
  7. Boriboonkaset T., Bunyajinda V., Chaum S. et al.: Effect of exogenous sugar classes and concentrations on salt-tolerant ability of indica rice (Oryza sativa L.). - Acta Horticul. 746: 155-163, 2007. Go to original source...
  8. Bray E.A., Bailey-Serres J., Weretilnyk E: Responses to a biotic stresses in biochemistry and molecular biology of plants. - Am. Soc. Plant Physiol. chybi issue: 1158-1249, 2000.
  9. Campostrini E., Mothé G.P.B., Torres N.A. et al.: Photochemical efficiency and growth characteristics of sugar cane (Saccharum officinarum L.) plants cultivated in vitro under different sucrose concentrations and light quality. - Plant Cell Cult. Micro. 4: 84-91, 2008.
  10. Cavalcanti F.R., Lima J.P.M., Ferreira-Silva S.L. et al.: Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea. - J. Plant Physiol. 164: 591-600, 2007. Go to original source...
  11. Córdoba A., Seffino L.G., Moreno H. et al.: Characterization of the effect of high salinity on roots of Chloris gayana Kunth carbohydrate and lipid accumulation and growth. - Grass Forage Sci. 56:162-168, 2001. Go to original source...
  12. Dabrowski P., Kalaji M.H., Baczewska A.H. et al.: Delayed chlorophyll a fluorescence, MR 820, and gas exchanges in perennial ryegrass under salt stress. - J. Lumin. 183: 322-333, 2017. Go to original source...
  13. Demmig-Adams A.B., Adams W.W.III, Baker D.H. et al.: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. - Physiol. Plantarum 98: 253-264, 1996. Go to original source...
  14. Farissi M., Ghoulam C., Bouizgaren A.: Changes in water deficit saturation and photosynthetic pigments of alfalfa populations under salinity and assessment of proline role in salt tolerance.- Agric. Sci. Res. J. 3: 29-35, 2013.
  15. Farooq M., Wahid A., Kobayashi N. et al.: Plant drought stress: effects, mechanisms and management. - Agron. Sustain. Dev. 29: 185-212, 2009. Go to original source...
  16. Garg A.K., Kim J.K., Owens T.G. et al.: Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. - Appl. Biol. Sci. 99: 15898-15903, 2002. Go to original source...
  17. Gibson S.I.: Control of plant development and gene expression by sugar signalling. - Curr. Opin. Plant Biol. 8: 93-102, 2005. Go to original source...
  18. Gibson S.I., Laby R.J., Kim D.: The sugar-insensitive1 (sis1) mutant of Arabidopsis is allelic to ctr1. - Biochem. Biophys. Res. Co. 280: 196-203, 2001. Go to original source...
  19. Hajiboland R., Aliasgharzadeh N., Laiegh S.F. et al.: Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. - Plant Soil 331: 313-327, 2010. Go to original source...
  20. He Y., Zhu Z., Yang J. et al.: Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. - Environ. Exp. Bot. 66: 270-278, 2009. Go to original source...
  21. Hu H., Liu W., Fu Z. et al.: QTL mapping of stalk bending strength in a recombinant inbred line maize population. - Theor. Appl. Genet. 126: 2257-2266, 2013. Go to original source...
  22. Khan V., Kozai T., Nguyen Q.T. et al.: Growth and net photosynthetic rates of Eucalyptus tereticornis Smith under photomixotrophic and various photoautotrophic micropropagation conditions. - Plant Cell Tiss. Org. Cult. 71: 141-146, 2002. Go to original source...
  23. Kiani-Pouya A., Rasouli F.: The potential of leaf chlorophyll content to screen bread-wheat genotypes in saline condition. - Photosynthetica 52: 288-300, 2014. Go to original source...
  24. Koch K.E.: Carbohydrate-modulated gene expression in plants. - Annu. Rev. Plant Phys. 47: 509-540, 1996. Go to original source...
  25. Li X.B., Wan S.Q., Kang Y.H. et al.: Chinese rose (Rosa chinensis) growth and ion accumulation under irrigation method to reclaim heavy coastal saline soils. - Agr. Water Manage.158: 99-111, 2015.
  26. Liang Y.C., Si J., Nikolic M. et al.: Organic manure stimulates biological activity and barley growth in soil subject to secondary salinization. - Soil Biol. Biochem. 37: 1185-1195, 2005. Go to original source...
  27. Liu L.P., Long X.H., Shao H.B. et al.: Ameliorants improve saline-alkaline soils on a large scale in northern Jiangsu Province, China. - Ecol. Eng. 81: 328-334, 2015.
  28. Martin T., Oswald O., Graham I.A.: Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon: nitrogen availability. - Plant Physiol. 128: 472-481, 2002. Go to original source...
  29. Mason T.G., Maskell E.J.: Studies on the transport of carbonhydrates in the cotton plant: I. A study of diurnal variation in the carbohydrates of leaf, bark, and wood, and of the effects of ringing. - Ann. Bot.-London 42: 189-253, 1928. Go to original source...
  30. Maxwell K., Johnson G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  31. Monje O.S., Bugbee B.: Inherent limitations of nondestructive chlorophyll meters: a comparison of two types of meters. - Sci. Hortic.-Amsterdam 27: 69-71, 1992. Go to original source...
  32. Mortain-Bertrand A., Stammitti L., Telef N. et al.: Effects of exogenous glucose on carotenoid accumulation in tomato leaves. - Physiol. Plantarum 134: 246-256, 2008. Go to original source...
  33. Muchembled, Sahraoui L.H., Grandmoughin-Ferjani A. et al.: Changes in lipid composition of Blumeriagraminis f.sp. triticiconidia produced on wheat leaves treated with heptanoyl salicylic acid. - Phytochemistry 67: 1104-1109, 2006. Go to original source...
  34. Munns R.: Physiological processes limiting plant growth in saline soils: Some dogmas and hypotheses. - Plant Cell Environ. 16: 15-24, 1993. Go to original source...
  35. Munns R., James R.A., Läuchli A.: Approaches to increasing the salt tolerance of wheat and other cereals. - J. Exp. Bot .57: 1025-1043, 2006. Go to original source...
  36. Munns R.: Coparative physiology of salt and water stress. - Plant Cell Environ. 25: 239-250, 2002. Go to original source...
  37. Parvaneh R., Shahrokh T., Seyed M.H.: Studying of salinity stress effect on germination, proline, sugar, protein, lipid and chlorophyll content in purslane (Portulaca oleracea L.) leaves. - J. Physiol. Bioch. 8: 182-193, 2012.
  38. Paul M.J., Foyer C.H.: Sink regulation of photosynthesis. - J. Exp. Bot .52: 1383-1400, 2001. Go to original source...
  39. Pego J.V., Kortstee A.J., Huijser C. et al.: Photosynthesis, sugars and the regulation of gene expression. - J. Exp. Bot. .51: 407-416, 2000. Go to original source...
  40. Rasouli F., Kiani-Pouya A.: Photosynthesis capacity and enzymatic defense system as bioindicators of salt tolerance in triticale genotypes. - Flora 214: 34-43, 2015. Go to original source...
  41. Reddy P.S., Ramanjulu S., Sudhakar C. et al.: Differential sensitivity of stomatal and non-stomatal components to NaCl or Na2SO4 salinity in horsegram, Macrotyloma uniflorum (Lam). - Photosynthetica 35: 99-105, 1998. Go to original source...
  42. Reignault P.H., Cogan A., Muchembled J. et al.: Trehalose induces resistance to powdery mildew in wheat. - New Phytol. 149: 519-529, 2001. Go to original source...
  43. Samad R., Karmoker J.L.: Effects of gibberellic acid and kinetin on seed germination and accumulation of Na+ and K+ in the seedlings of triticale-I under salinity stress. - Bangladesh J. Bot. 41: 123-129, 2012.
  44. Samad R., Karmoker J.L.: Effects of NaCl stress on accumulation of K+, Na+, Cl-, NO3-,sugar and proline contents in the seedings of triticale-Ⅰ. - Bangladesh J. Bot. 42: 189-194, 2013.
  45. Schmildt O., Torress-Netto A., Schmildt E.R. et al.: Photosynthetic capacity, growth and water relations in 'Golden' papaya cultivated in vitro with modifications in light quality, sucrose concentration and ventilation. - Theor. Exp. Plant Physiol. 27: 7-18, 2015. Go to original source...
  46. Setia R, Gottschalk P, Smith P et al: Soil salinity decreases global soil organic carbon stocks. - Sci. Total Environ. 465: 267-272, 2013. Go to original source...
  47. Sharathchandra R.G., Sudisha J., Mostafa A. et al.: Exogenous trehalose treatment enhances the activities of defense-related enzymes and triggers resistance against downy mildew disease of pearl millet. - Front. Plant Sci. .7: 1593, 2016.
  48. Sharkey T.D., Zhang R.: High temperature effects on electron and proton circuits of photosynthesis. - J. Integr. Plant Biol. 52: 712-722, 2010. Go to original source...
  49. Siringam K, Juntawong N., Cha-um S.: Salt tolerance enhancement in indica rice (Oryza sativa L.) seedlings using exogenous sucrose supplementation. - Plant Omics J. 5: 52-59, 2012.
  50. Smeekens S., Ma J., Hanson J. et al.: Sugar signals and molecular networks controlling plant growth. - Curr. Opin. Plant Biol. 13: 1-6, 2009.
  51. Sulmon C., Gouesbet G., Coue´e I.: Sugar-induced tolerance to atrazine in Arabidopsis seedlings: interacting effects of atrazine and soluble sugars on psbA mRNA and D1 protein levels. - Plant Sci. 167: 913-923, 2004. Go to original source...
  52. Sulmon C., Gouesbet G., El Amrani A.: Sugar induced tolerance to the herbicide atrazine in Arabidopsis seedlings involves activation of oxidative and xenobiotic stress responses. - Plant Cell Rep. 25: 489-498, 2006. Go to original source...
  53. Szalai G., Janda T.: Effect of salt stress on the salicylic acid synthesis in young maize (Zea mays L.) plants. - J. Agron. Crop Sci. 195: 165-171, 2009. Go to original source...
  54. Tayeh C., Randoux B., Vincent D. et al.: Exogenous trehalose induces defences in wheat before and during abiotic stress caused by powdery mildew. - Phytopathology 104: 293-305, 2014. Go to original source...
  55. Teng T., Zhai L.H., Liu R.X. et al.: ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. - Plant J. 73: 405-416, 2013. Go to original source...
  56. Trouvelot S., Héloir M.C., Poinssot B. et al.: Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. - Front. Plant Sci. 5: 592, 2014. Go to original source...
  57. Yan K., Xu H., Zhao S. et al.: Saline soil desalination by honeysuckle (Lonicera japonica Thunb.) depends on salt resistance mechanism. - Ecol. Eng. 88: 226-231, 2016. Go to original source...
  58. Yin C., Berninger F., Li C.: Photosynthetic responses of Populus przewalski subjected to drought stress. - Photosynthetica 44: 62-68, 2006. Go to original source...
  59. Zhang L., Li B.P., Wu Z.Q. et al: Changes in growth and photosynthesis of mixotrophic Ochromonas sp. in response to different concentrations of glucose. - J. Appl. Phyco. 28: 2671-2678, 2016. Go to original source...
  60. Zhang R., Sharkey T.D.: Photosynthetic electron transport and proton flux under moderate heat stress. - Photosynth. Res. 100: 29-43, 2009. Go to original source...
  61. Zhang S.Z., Yang B.P., Feng C.L. et al.: Genetic transformation of tobacco with the trehalose synthase gene from Grifola frondosa Fr. enhances the resistance to drought and salt in tobacco. - J. Integr. Plant Biol. 47: 579-587, 2005. Go to original source...
  62. Zhou L., Jang J.C., Jones T.L. et al.: Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. - Proc. Natl. Acad. Sci. USA. 95: 10294-10299, 1998. Go to original source...