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Abstract: The observation of the immunomodulatory effects of opioid drugs opened the discussion
about possible mechanisms of action and led researchers to consider the presence of opioid receptors
(OR) in cells of the immune system. To date, numerous studies analyzing the expression of OR
subtypes in animal and human immune cells have been performed. Some of them confirmed the
expression of OR at both the mRNA and protein level, while others did not detect the receptor mRNA
either. Although this topic remains controversial, further studies are constantly being published.
The most recent articles suggested that the expression level of OR in human peripheral blood
lymphocytes could help to evaluate the success of methadone maintenance therapy in former opioid
addicts, or could serve as a biomarker for chronic pain diagnosis. However, the applicability of these
findings to clinical practice needs to be verified by further investigations.
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1. Introduction

Natural and synthetic opioids represent the potent analgesics commonly used for the
treatment of acute, chronic and inflammatory pain. Morphine is the prototypical opioid
agonist to which all others are compared. Many patients, particularly those suffering from
chronic pain, require long-term, high-dose analgesic therapy. However, for their addi-
tional qualities (positive emotional effect, even euphoria), opioids are also misused by
healthy people, which leads to addiction, or even to intoxication. The clinical utility of
morphine and other opioids is thus limited by undesired side effects, such as the devel-
opment of analgesic tolerance, physical dependence (addiction), respiratory depression,
constipation, and severe withdrawal symptoms manifesting after discontinuation of drug
administration [1,2].

To replace the classical opioids for the treatment of pain and avoid the negative side
effects, new drugs have been designed and synthesized. These included several morphine
derivatives, and peptidomimetic analogues of enkephalins and endorphins. Although
many of these substances were introduced into clinical practice as analgesics [3], only some
of them (methadone, buprenorphine) have also been implemented for the treatment of
addictive disorders. Methadone, a synthetic derivative of diphenyl heptane, synthesized in
the 1960s, is an opioid analgesic used for the detoxification and substitution treatment of
addiction to opioids, to slash craving and normalize physiological homeostasis (for review
see Kreek [4]). Methadone is effective via oral consumption, and tolerance to and physical
dependence on it develop more slowly than in the case of morphine. The symptoms of drug
withdrawal after the abrupt discontinuation of methadone are milder, but are longer than
those of morphine [5,6]. To date, methadone substitution therapy remains the preferable
choice for the treatment of opioid addiction worldwide [7].

Optimistic expectations that the problems of tolerance, addiction and side effects of
opioids will be solved remain unfulfilled [8]. Consequently, there is a need for a more safe
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medical treatment of addiction and withdrawal symptoms, and, most importantly, for the
prevention of relapse. Since most approved medical treatments show only moderate effects
on the chronic basis, a delineation of the proper biomarkers of addiction to opioid drugs
is desirable.

2. Opioid Receptors and Biochemical Mechanisms of Homeostatic Adjustments to
Chronic Opioid Stimulation

Opioid agonists such as morphine bind to and function through specific G protein-
coupled receptors, the opioid receptors (OR). To date, four pharmacologically distinct types
of OR have been identified, i.e., classical µ-, δ-, and κ-OR, and the non-classical receptor
for nociceptin/orphanin FQ (NOP receptor) [9,10]. These receptors are localized in specific
brain regions [11,12], the peripheral nervous system [12,13], the gastrointestinal tract [14],
and can also be detected in some other cell types [15]. Agonist binding shifts the balance be-
tween active (R*) and non-active (R) forms of receptor towards the active conformation R*,
which initiates intracellular signal transduction via the α and βγ subunits of the pertussis
toxin-sensitive class of trimeric G proteins (Gi/o). After activation, Gα and Gβγ dissociate
from each other and regulate, directly or indirectly, adenylyl cyclases (AC), calcium and
potassium ion channels, protein-kinases, phospholipases C, and mitogen-activated protein
kinases [16–19]. The physiological significance of the signaling pathways initiated by OR
lies in the modulation of the nociception, neuroendocrine and autonomic functions [20].
The opioid receptors also play an important role in reward and motivation [21–23], and
affect emotional responses and cognition [22,24]. The involvement of the opioid receptors
in pain control, drug abuse and mood disorders has been extensively studied and reviewed
elsewhere [25–30].

The activation of OR normally results in the inhibition of AC activity, but the prolonged
exposure of cultured cells or mammalian organisms to morphine was shown to induce
the hyper-sensitization or super-activation of AC activity instead [31–36]. This effect was
considered a biochemical basis for the development of opioid tolerance and dependence.

Our previous work on isolated plasma membranes (PM) from the forebrain cortex of
rats exposed to increasing doses of morphine for 10 days indicated a desensitization of
the G protein response to µ-OR (DAMGO) and δ-OR (DADLE) stimulation [37], and a spe-
cific increase in ACI (8×) and ACII (2.5×) isoforms [38]. The κ-OR (U-69593)-stimulated
[35S]GTPγS binding and the expression level of ACIII-X in PM was unchanged. Behavioral
tests of morphine-treated animals indicated that these animals were fully drug-dependent
(opiate abstinence syndrome), and developed a tolerance to subsequent additions of drugs
(analgesic tolerance; hot-plate and hind paw withdrawal tests) [37].

The increase in ACI and ACII was interpreted by us as a specific compensatory response
to prolonged stimulation of the brain cortex OR by morphine. Importantly, the elevation
of ACI and ACII was not detected in the membranes prepared from rats that received
morphine for 10 days and were subsequently nurtured for 20 days in the absence of the
drug. Thus, the marked increase in ACI and ACII faded away 20 days after the last dose
of morphine.

The proteomic analysis of plasma membranes isolated from the forebrain cortex of rats
treated with morphine for 10 days indicated the down-regulation of trimeric Gβ subunits
(two-fold). Besides that, the up-regulation of proteins functionally related to oxidative stress
and apoptotic cell death was noticed [39]. A subsequent study showed that, depending
on the method used for protein detection and quantification, 28 (MALDI-TOF MS/MS)
or 113 (MaxLFQ) proteins were identified as altered by chronic morphine. Importantly,
in rats sacrificed 20 days after the last dose of morphine, the numbers of altered proteins
decreased to 14 (MALDI-TOF MS/MS) and 19 (MaxLFQ), respectively [40]. We interpreted
these results as the ability of living organism to (i) oppose the morphine-induced change in
the target-tissue’s protein composition and (ii) elicit the partial return to the physiological
norm after the complete withdrawal of the drug.

Although the phenomena of tolerance, dependence and withdrawal in the context of
chronic opioid drug administration were intensively studied, it is still a major challenge
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to identify the neurobiological mechanisms that underlie the addiction. Unlike animals,
neurobiological adaptations cannot be directly examined in humans. Therefore, there is
a tendency to discover some peripheral markers that could help to evaluate the health
status of human subjects chronically exposed to opioid drugs. In this context, one direction
of research is represented by the studies oriented towards the analysis of the expression
and function of OR in cells of the immune system.

3. The Multiplicity of Effects of Opioid Drugs on Cells of the Immune System

The first paper demonstrating the effects of opioids on the immune system was pub-
lished in 1979 [41], and had a great impact on the following studies of OR in immune
cells. The literature data published at the end of the last century mainly described the
negative effects of opioids on the immune system [42,43]. These studies analyzed the
effects of morphine and other opioids on individual cell populations and the functions of
immune cells in vivo and in vitro. The reactivity of natural killer (NK) cells, macrophages,
antibody-producing B cells and T cell subpopulations was characterized after the admin-
istration of opioids in mice, rats and humans. The majority of these studies showed the
negative effects of opioids and the suppression of immune cell functions. The impact of
opioids on NK cells was documented by their decreased cytotoxicity in morphine-treated
mice [44]. The involvement of OR in this suppression was proven by the observation
that µ-OR knock-out mice did not respond to morphine with a decreased NK cell activ-
ity [45]. The effects of opioids on NK cells were either direct or were mediated by signals
through the neural system. Similarly, phagocytosis and other functions of macrophages
were suppressed by morphine [46,47]. As in the case of innate immunity, the functions
of cells of the adaptive immune system were also affected by opioids. However, the ef-
fects of opioids on the cells of adaptive immunity in morphine-treated animals were not
always inhibitory, as was described for decreased antibody production [48] or impaired
T cell functions [42,49]. Some publications showed that the influence of opioids on im-
mune cells is more complicated [50,51]. With detailed knowledge of the immune system
and after recognition of its individual cell populations, it has become apparent that the
effects of opioids on some immune cell types could be suppressive, while the impacts of
opioids on other immune cell populations and their functions are rather immunostimula-
tory. For example, we demonstrated that the production of pro-inflammatory cytokines
(such as IL-2, IL-12) by spleen cells, or the secretion of NO by macrophages from mice
treated with heroin, was significantly increased, while the production of anti-inflammatory
cytokines (IL-4 and IL-10) was simultaneously rather suppressed [52]. As a consequence,
skin allografts in heroin-treated mice were rejected more promptly than in control un-
treated or vehicle-treated recipients. Similarly, we showed the enhanced Concanavalin A
(Con A)-induced proliferation of peripheral blood lymphocytes (PBL) isolated from heroin
addicts in comparison with PBL from the control group of healthy donors [53]. In addition,
the production of IL-2 and IFN-γ was higher in the group of heroin addicts than in the
healthy controls. The enhanced proliferation of PBL, or the increased production of cy-
tokines, observed in heroin addicts, were partially or completely normalized in the group
of patients maintained on methadone [53]. On the other hand, the production of cytokines
IL-1β, IL-6 and IL-8 was increased in the plasma of heroin addicts undergoing methadone
replacement therapy [54]. The complexity of the effects of opioids on the immune system
was supported by the data of Borner et al. [55], who showed that the treatment of human
T lymphocytes with the opioids fentanyl, methadone, loperamide, and beta-endorphin
resulted in a strong induction of IL-4 expression. In contrast, morphine and buprenorphine
induced significantly lower levels of IL-4 mRNA. The changes in the expression of IL-4
suggest its possible role in the epigenetic modulation of µ-OR induction [56].

As reviewed by Liang et al. [57] and Eisenstein [58], the effect of OR ligands on cells
of the immune system is not only immunosuppressive, as it was originally regarded, but
is more complex. The summary of the up-to-date experience with treatment of acute and
chronic pain caused by trauma, surgery or cancer indicates that the participation of OR in
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the function of the immune system is more complicated and unequivocal—ranging from
immunosuppression on one side to immunostimulation on the other side.

4. Expression of OR in Cells of the Animal and Human Immune System

The direct effects of opioids on isolated immune cells in vitro exclude an indirect
immunomodulation mediated by the nerve or neuroendocrine system, and suggest the
presence of OR on leukocytes. The presence of OR on the surface of immunocompetent
cells was proved for the first time by Carr et al. [59]. Since then, µ-, δ- and κ-OR have been
found to be expressed in various immune cell types. These include animal and human
immune cell-derived cell lines, as well as immune cells isolated from untreated animals
and healthy human subjects (see Table 1).

Additionally, the inducible expression of OR in immune cells was reported. Transcripts
of δ-OR were detected in the CD4+ T cells purified from murine splenocytes treated with mi-
togen Con A [60]. Increased expression induced by mitogen was reported also for κ-OR [61].
Recently, we described the inducible expression of δ- and µ-OR in rat spleen lymphocytes.
The analysis of µ-, δ- and κ-OR content in these cells showed that the immunoblot sig-
nals of µ- and δ-OR proteins were undetectable in fresh/primary spleen lymphocytes;
however, stimulation with Con A resulted in the up-regulation of µ- and δ-OR. The κ-OR
were expressed already in primary cells, and their expression was increased 2.4-fold by
Con A. The validity of immunoblot data was confirmed by flow cytometry. The stim-
ulation of spleen cells with Con A caused a highly significant increase in the number
of µ-, δ- and κ-OR-expressing cells—7.0-, 8.5- and 5.7-fold, respectively [62]. However,
we observed this increase only in cells that were permeabilized prior to immunolabeling.
In un-permeabilized lymphocytes, this effect of Con A stimulation was not detectable.
Altogether, the flow cytometry results could be interpreted as evidence of the intracellular
localization of the newly synthesized OR in Con A-stimulated cells. This provides an
explanation of why the specific OR agonists DAMGO (µ-OR), DADLE (δ-OR) and U59693
(κ-OR) were unable to stimulate trimeric G proteins, and why membrane fractions prepared
from Con A-stimulated cells did not exhibit the specific binding for the commonly used
radioligands, [3H]diprenorphine and [3H]naloxone [62]. Our results were fully consistent
with the literature’s data indicating that the ligand binding sites of OR in cells of the im-
mune system differ from those present in the brain [63–65]. The Con A-induced increase in
the expression of µ-, δ- and κ-OR was associated with a specific decrease in the expression
levels of their cognate trimeric G proteins, Gi1α/Gi2α. The Gα and Gβ subunits belonging
to other G protein families were unchanged. The level of β-arrestin-1/2 was also decreased
by Con A. Thus, the down-stream regulatory proteins of the OR signaling cascades, i.e.,
Gi1α/Gi2α and β-arrestin-1/2, were expressed in high amounts already in un-stimulated
spleen cells, and were significantly decreased by mitogen stimulation [62].

Besides mitogens, the expression of OR in cells of the immune system was shown to
be induced by various other stimuli. Transcripts of δ-OR were detected in murine-purified
T cells co-stimulated with monoclonal antibodies (mAbs) anti-CD3 and anti-CD28 [66].
In murine thymocytes, co-stimulation with CD3/CD28 mAb resulted in the expression of
µ-OR [67]. Moreover, µ-OR expression was also found to be induced by the activation of
thymocytes with various cytokines, such as IL-1β, IL-2, IL-7, IFNγ, TNFα, and TGFβ [67].
These cytokines are known to be present at functional levels in the thymus gland and to
play a role in T cell development. The strongest up-regulation of µ-OR transcript levels was
detected in thymocytes incubated with TGFβ. A substantial increase in µ-OR expression
was also induced by IFNγ, IL-1β, and IL-2. On the other hand, a much weaker effect on
µ-OR expression was exhibited by TNFα and IL-7 [67]. Overall, these results provided
evidence that the expression of OR in immune cells is induced by their activation.

In contrast to the findings presented in Table 1, it was reported that human peripheral
blood mononuclear cells (PBMC) isolated from healthy volunteers express NOP receptor
mRNA, but do not express mRNA of either µ-, δ- or κ-OR [68]. The absence of µ-OR transcripts
in primary unstimulated human T cells was also described by Borner et al. [69]. However,
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the µ-OR expression was found to be inducible by the stimulation of primary human T cells
with IL-4 [69], or activation with CD3/CD28 mAb [70]. When compared to neuronal cells,
the µ-OR expression level in immune cells was found to be 15 to 200 times lower [69].
In contrast to that, the NOP receptor expression levels in human immune cells were shown
to be comparable to the levels detected in cells of the central nervous system [71].

Additionally, OR expression was found to be increased by morphine treatment. When
CEMx174 cells (the human T/B hybrid cell line) were treated with morphine, µ- and
κ-OR were significantly up-regulated, at the level of both mRNA and protein [72,73].
The question arises of whether the expression of OR in immune cells is modulated also
under in vivo conditions by the long-term exposure of the human body to opioid drugs or
pathological pain states. An overview of the studies that attempted to answer this question
is presented in the following two sections.

Table 1. Expression of OR in immune cell-derived cell lines and in untreated immune cells isolated
from animals and humans.

Opioid Receptor Origin Cell Type References

µ-OR Rat Peritoneal macrophages [74]

Monkey PBMC, polymorphonuclear cells [75]

Human T/B hybrid cell line (CEMx174 cells) [75]

Polymorphonuclear cells,
monocytes/macrophages,

CD4+ T cells
[75]

PBL [76]

PBMC [77]

T and B cells [78]

NK cells [79]

δ-OR Mouse T and B cell lines [80]

Splenocytes [81,82]

Monkey PBMC [83]

Human T, B, and monocytic cell lines,
T/B hybrid cell line (CEMx174 cells) [80,83,84]

PBL [76]

NK cells [79]

κ-OR Mouse Thymoma and macrophage cell lines [85,86]

Splenocytes [87,88]

Thymocytes [88–90]

Rat Spleen lymphocytes [62]

Monkey PBMC [91]

Human T and B cell lines,
T/B hybrid cell line (CEMx174 cells) [80,84,91]

PBMC, CD4+ T cells [91]

PBL, monocytes [80,92]

T and B cells, macrophages [93]

NK cells [79]

NOP receptor Human T, B, and monocytic cell lines [71]

PBL, monocytes [71,94]

Polymorphonuclear cells [95]

PBMC [68]

NK cells [79]
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5. Detection of OR in Cells of the Immune System of Drug-Addicted Humans

The immunological effect of opioid addiction was originally investigated by Mazzone et al. [96]
in granulocytes isolated from chronic heroin abusers, long-term methadone-maintained
former heroin users and age-matched healthy individuals. Only HIV seronegative subjects
were enrolled in the study to avoid the confounding factor of HIV infection. One of the
examined parameters was the expression of OR. For this purpose, polymorphic nucleo-
cytes were labeled with fluorescent analogue of naloxone and analyzed by flow cytometry.
Compared to the healthy controls, the number of OR was significantly higher in the granu-
locytes from both heroin users and methadone maintenance subjects. This increase was
inversely correlated with the reduced chemotactic responsiveness of polymorphic nucleo-
cytes. The increased expression of OR was also detected in the neutrophils, monocytes, and
lymphocytes of former heroin addicts undergoing chronic treatment with naltrexone [97].
Again, only HIV seronegative subjects were examined.

In contrast to the abovementioned studies that strictly avoided the HIV-infected
addicts, the work of Beck et al. [98] assessed the effect of HIV infection on the expression
of opioid receptors on the peripheral white blood cells of intravenous drug users (IVDUs)
undergoing methadone therapy. The analysis of lymphocytes, monocytes and granulocytes
of HIV-positive and HIV-negative IVDUs treated with methadone was carried out by
flow cytometry using polyclonal antibodies against human µ-, δ- and κ-OR. Much higher
absolute numbers of OR-positive cells were detected in the HIV-negative IVDU group.
The most striking difference was observed for δ-OR, which was markedly increased on
the lymphocytes, monocytes and granulocytes of HIV-negative methadone-treated IVDUs
when compared with HIV-positive methadone-treated subjects and healthy individuals.
A substantial increase was also detected in the case of κ-OR in lymphocytes, whereas
µ-OR levels were almost unchanged. The authors concluded that methadone treatment up-
regulates OR expression in the immune cells of former IVDUs, and that this up-regulation
is counteracted by HIV infection.

Contrarily, Toskulkao et al. [76] showed that the µ-OR and δ-OR mRNA levels in
the PBL isolated from former heroin addicts on methadone substitution therapy were sig-
nificantly lower (<50%) than in the lymphocytes collected from control, naive subjects.
A corresponding result was provided by in vitro experiments. In cultured lymphocytes col-
lected from naive human subjects, methadone significantly down-regulated both mRNA and
protein levels of µ- and δ-OR. This effect was prevented by naloxone or by the pre-treatment
of lymphocytes in culture with pertussis toxin. On the other hand, the up-regulation of one
of the four known µ-OR splice variants (hMOR-1A) was described in PBL prepared from
methadone-maintained subjects when compared with control subjects [99]. The authors hy-
pothesized that the upregulation of hMOR-1A may serve as a feedback mechanism to restore
the normal MOR membrane densities, which are lowered by methadone administration.

Recently, Shahkarami et al. [92] examined κ-OR and dynorphin mRNA levels in hu-
man PBL in relation to severe opioid use disorder (SOD). This study evaluated the blood
samples of four different groups: subjects with SOD, subjects on methadone maintenance
therapy, long-term (12 month) abstinent subjects with former SOD, and healthy controls.
In contrast to the controls, κ-OR mRNA expression was significantly decreased in subjects
with SOD and in methadone maintenance subjects. Unlike κ-OR, the expression of dynor-
phin peptide was markedly increased. The authors concluded that the down-regulation of
κ-OR may be a compensatory response to the up-regulation of dynorphin that occurred
after the chronic consumption of opioids. These changes seemed to be stable, as they
were detected also in the abstinent subjects even after 12 months of abstinence. As such,
the authors suggested that these long-term changes in the κ-OR and dynorphin expression
levels in PBLs could serve as a biomarker of SOD development in the periphery.

6. Detection of OR in Cells of the Immune System of Chronic Pain Patients

Gunji et al. [93] analyzed the expression of κ-OR in peripheral blood cells and its
relationship to the inflammatory activity and chronic pain in patients with rheumatoid



Int. J. Mol. Sci. 2021, 22, 315 7 of 13

arthritis. When compared to the healthy volunteers, κ-OR mRNA expression was markedly
decreased in rheumatoid arthritis patients. This decrease was inversely related with the
severity of symptoms. The lowest levels of κ-OR mRNA were found in patients with
severe inflammatory changes and high pain scores. Regarding the expression pattern
of κ-OR on peripheral blood cells, the mRNA was detected on T and B lymphocytes,
and on the macrophages of both patients and healthy subjects. Moreover, κ-OR mRNA
was found in the natural killer (NK) cells of rheumatoid arthritis patients. These results
suggest the correlation of the expression levels of κ-OR mRNA and natural killer cell
activity together with the anti-inflammatory effects and anti-nociception in rheumatoid
arthritis. A corresponding result was also obtained from patients with osteoarthritis of
the knee. The level of κ-OR mRNA in the peripheral blood mononuclear cells of patients
was considerably lower than in healthy subjects, and was not affected by treatment with
analgesics acetaminophen (paracetamol) or rofecoxib [100].

The report of Campana et al. [77] revealed that chronic pain had no effect on the
expression of µ-OR in human PBMC. The levels of µ-OR mRNA in patients with chronic
non-cancer pain were similar to those detected in healthy subjects. However, long-term
treatment with intrathecal morphine or morphine plus local anesthetic bupivacaine in-
duced a significant up-regulation of µ-OR mRNA. Moreover, the amount of µ-OR mRNA
transcripts after 12 months of treatment was considerably higher in patients treated with
morphine plus bupivacaine than in those treated with morphine alone. Elevated levels of
µ-OR mRNA were confirmed in both groups of patients after another 12 months, i.e., after
24 month of treatment in total.

Most recently, Malafoglia et al. [101] presented a randomized clinical trial to find out
whether the pre-surgical administration of opioids to osteoarthritic patients, enrolled for
hip replacement, can prevent the onset of chronic pain and opioid tolerance or addiction
development after surgery. Based on the hypothesis that the presence of OR on the surface
of immune cells provides the strongest evidence of the correlation between pain and the
activation of the immune system, the authors proposed lymphocyte OR as innovative
biological markers of osteoarthritic pain.

The role of OR as biomarkers in patients with chronic pain was investigated by Raffaeli et al. [78].
This study analyzed the presence of µ-OR in the lymphocytes of patients with fibromyal-
gia and osteoarthritis, and in healthy subjects, representing the pain-free control group.
Based on immunophenotyping analysis by flow cytometry, very low percentages (<2%) of
T lymphocytes from all three groups of subjects were found to express µ-OR. In the case
of B lymphocytes, considerably higher percentages (~20–44%) of cells expressing µ-OR
were detected. The expression levels in both groups of patients were significantly lower
than in the control group. Moreover, the percentage of µ-OR-positive B lymphocytes was
inversely related to the intensity of pain. The amounts of µ-OR-positive B lymphocytes in
moderate/severe pain fibromyalgia and moderate/severe pain osteoarthritis patients were
comparable, and simultaneously they were significantly lower than in the control group
or mild pain patients. The authors suggested that the determination of the percentage of
µ-OR-positive B lymphocytes in patients suffering from chronic pain could be used as
a biomarker in order to improve the objectivity of the diagnosis of chronic pain states.

Besides the immune cells of the peripheral blood, changes in µ-OR expression associ-
ated with the chronic pain state were observed in the immune cells of the gastrointestinal
tract. The analysis of the colonic mucosa of patients with irritable bowel syndrome re-
vealed significantly increased mRNA and protein levels of µ-OR when compared with
the asymptomatic controls. In addition, the increased expression was also reported for β-
endorphin, an endogenous ligand of µ-OR. Microscopic analysis identified the presence of
µ-OR and β-endorphin immunoreactivities in CD4+, EMR-1+, and CD31+ cells, indicating
the expression of µ-OR and β-endorphin by mucosal T-helper lymphocytes, eosinophils,
and leukocytes, respectively. This result suggests the involvement of the opioid system
in the immune-related compensatory role in visceral pain in irritable bowel syndrome
patients [102].
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In the case of the non-classical NOP receptor, its expression in peripheral blood cells
was examined in the end-stage cancer patients suffering from chronic pain, and in septic
patients. A significantly higher expression of NOP receptor mRNA was found in cancer and
septic patients in comparison with healthy controls. On the other hand, a lower expression
of pre-pronociceptin mRNA was found in both groups of patients than in control subjects.
As the RNA for the analysis was isolated from the whole blood, the cell types expressing
NOP receptor and pre-pronociceptin could not be identified. Although no association of
mRNA levels with severity of pain was observed, there was some association with the
inflammatory markers. These results suggested the role of the NOP-N/OFQ-system in
inflammatory states [103]. Detailed information about the participation of NOP receptor
activation in inflammatory diseases can be found in the review by Gavioli et al. [104].
The regulation of NOP receptor expression in response to the inflammatory stimulus was
also studied in human PBL in order to identify the involved regulatory signaling pathways.
The ERK and p38 were detected as the major signaling pathways regulating the expression
of the NOP receptor under inflammatory conditions [94].

7. OR in Progenitor and Stem Cells; Inflammation and Injury

The expression of OR was also demonstrated in various types of stem cells, which
play an important role in the development of the organism, and in adulthood they partici-
pate in hematopoiesis and tissue regeneration and repair. For example, Steidl et al. [105]
described the expression of G protein-coupled receptors of neuromediators in primary hu-
man CD34+ hematopoietic stem and progenitor cells. Similarly, Liu et al. [106] concluded
that methionine enkephalin could be an effective inducer of dendritic cells derived from
mouse bone marrow progenitors. All three types of OR have also been detected in embry-
onic stem cells, and in various progenitor and stem cells within the neural system [107–109].
We therefore studied the expression of OR in mouse and human mesenchymal stem cells
(MSCs). These cells can be found in nearly all tissues in the body, where they contribute to
tissue regeneration and immunological homeostasis. It has been shown that MSCs possess
potent immunoregulatory and anti-apoptotic properties, produce numerous cytokines and
growth factors and have the ability to migrate to the sites of inflammation or injury, where
they inhibit the local inflammatory reactions and support the healing process [110,111].
Using immunoblot and flow cytometry analyses, we showed that human bone marrow-
derived MSCs express µ-, δ- and κ-OR, and that this expression was enhanced in the
presence of pro-inflammatory cytokines. In addition, morphine modified the MSC phe-
notype and altered the differentiation and secretory properties of these cells. While the
expression of some immunoregulatory molecules, such as indoleamine-2,3-dioxygenase
or cyclooxygenase-2, was increased in MSCs in the presence of morphine, the secretion of
growth factors, such as hepatocyte growth factor or vascular endothelial growth factor,
was inhibited by morphine [112]. Furthermore, we recently demonstrated that morphine
decreases the expression of adhesive molecules on MSCs, and that the migration and
organ distribution of exogenous MSCs systemically administered in syngeneic mice are
altered in morphine-treated recipients [113]. In addition, the migration of therapeutically
administered MSCs to the site of injury was significantly decreased in recipients treated
acutely or chronically with morphine. All these observations indicate that the decreased
and aberrant healing of damaged tissue observed after opioid administration [114–116]
could be caused by the negative effect of opioids on stem cells, which are involved in
healing and regenerative processes.

8. Conclusions

The optimistic expectations that the problems of tolerance, addiction and side effects
of opioids will be solved remain unfulfilled. Consequently, there is a need for a safer
medical treatment of addiction and withdrawal symptoms, and, most importantly, for the
prevention of relapse. Since most approved medical treatments show only moderate effects
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on the chronic basis, the delineation of the proper biomarkers of addiction to opioid drugs
is desirable.

Neurobiological adaptations cannot be directly examined in humans. Therefore, there is
a need to discover some peripheral markers that could help to evaluate the health status
of human subjects chronically exposed to opioid drugs. In this context, one direction of
research is oriented towards the analysis of the expression and functional state of OR in
the cells of the immune system.

The analysis of peripheral blood cells of drug-addicted subjects on methadone mainte-
nance therapy provided evidence that the long-term exposure of the human body to opioid
drugs modulates the expression of OR in the cells of the immune system. However, the results
were equivocal, as increased as well as decreased expression levels of OR were detected.

Recent data support the view that the effects of OR ligands on cells of the immune
system are not only immunosuppressive, as was originally thought, but are more com-
plex. The summary of up-to-date experience with the treatment of acute and chronic pain
caused by trauma, surgery or cancer indicates that the final outcome ranges from immuno-
suppression to immunostimulation.

The expression of OR in human immune cells was also shown to be modulated by
pathological pain states, such as rheumatoid arthritis, osteoarthritis or fibromyalgia. In this
case, more consistent results were obtained, as the receptor expression levels were inversely
related to the pain intensity and the severity of symptoms.

Altogether, studies of OR in the cells of the immune system suggested that the OR in
human immune cells may serve as possible biomarkers of opioid drug addiction in periph-
ery, or as an advantageous diagnostic tool for the characterization of chronic pain states.

Further studies are needed to verify/delineate the applicability of these findings to
clinical practice and to determine the role/involvement of the individual OR subtypes in
these pathological situations in more details.
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