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(1+)-COMPLEMENTED, (1+)-ISOMORPHIC COPIES OF L1

IN DUAL BANACH SPACES

DONGYANG CHEN, TOMASZ KANIA, AND YINGBIN RUAN

Abstract. The present paper contributes to the ongoing programme of quantification
of isomorphic Banach space theory focusing on Pełczyński’s classical work on dual Ba-
nach spaces containing L1 (= L1[0, 1]) and the Hagler–Stegall characterisation of dual
spaces containing complemented copies of L1. We prove the following quantitative ver-
sion of the Hagler–Stegall theorem asserting that for a Banach space X the following
statements are equivalent:
• X contains almost isometric copies of (

⊕∞
n=1 `

n
∞)`1 ,

• for all ε > 0, X∗ contains a (1 + ε)-complemented, (1 + ε)-isomorphic copy of L1,
• for all ε > 0, X∗ contains a (1 + ε)-complemented, (1 + ε)-isomorphic copy of
C[0, 1]∗.

Moreover, if X is separable, one may add the following assertion:
• for all ε > 0, there exists a (1 + ε)-quotient map T : X → C(∆) so that T ∗[C(∆)∗]

is (1 + ε)-complemented in X∗,
where ∆ is the Cantor set.

1. Introduction

In 1968, Pełczyński [15] showed that if a Banach space X contains an isomorphic
copy of `1, then the dual space X∗ contains an isomorphic copy of L1 and proved that
the converse holds as well subject to a mild technical condition that was later removed
by Hagler [6]. More precisely, the result stated that the isomorphic containment of `1

is equivalent to the following assertions: X∗ contains a subspace isomorphic to L1, X∗

contains a subspace isomorphic to C[0, 1]∗. When X is separable, these are further
equivalent to the assertions: X∗ contains a subspace isomorphic to `1([0, 1]), C[0, 1] is
a quotient of X.

Shortly after, Hagler and Stegall [8] obtained a ‘complemented’ version of aforemen-
tioned theorem, that is the following result.

Theorem 1.1 (Hagler–Stegall). Let X be a Banach space. Then the following assertions
are equivalent:

(1) X contains a subspace isomorphic to (
⊕∞

n=1 `
n
∞)`1;

(2) X∗ contains a complemented subspace isomorphic to L1;

Date: August 6, 2021.
2010 Mathematics Subject Classification. 46B15 (primary), 46C05 (secondary).
Key words and phrases. Isomorphic copies of L1; Complemented subspaces; Quotient maps; Banach

spaces.
Dongyang Chen was supported by the National Natural Science Foundation of China (Grant No.

11971403) and the Natural Science Foundation of Fujian Province of China (Grant No. 2019J01024).
Tomasz Kania acknowledges with thanks funding received from SONATA 15 No. 2019/35/D/ST1/01734.

1



2 DONGYANG CHEN, TOMASZ KANIA, AND YINGBIN RUAN

(3) X∗ contains a complemented subspace isomorphic to C[0, 1]∗;
(4) X∗ contains an infinite set K such that K is equivalent to the usual basis of `1(Γ)

for some Γ, [K] is complemented in X∗, and K is dense-in-itself in the weak*
topology on X∗;

If, in addition, X is separable, then the assertions (1)–(4) are equivalent to

(5) There exists a surjective operator T : X → C[0, 1] such that T ∗[C[0, 1]∗] is com-
plemented in X∗.

Subsequently, Dilworth, Girardi, and Hagler [5] proved the following isometric version
of Pełczyński’s result mentioned earlier by means of the notion of asymptotically isometric
copies of `1.

Theorem 1.2. Let X be a Banach space. Then the following are equivalent:

(1) X contains an asymptotically isometric copy of `1;
(2) X∗ contains an isometric copy of L1;
(3) X∗ contains an isometric copy of C[0, 1]∗.

The result was refined further by Hagler [7] who provided the following quantitative
characterisations of dual spaces containing complemented isometric copies of L1.

Theorem 1.3 (Hagler). Let X be a Banach space and λ > 1. The following assertions
are equivalent:

(1) X contains (1, λ)-asymptotic copies of `1 ⊕ (
⊕∞

n=1 `
n
∞)`1;

(2) X∗ contains λ-complemented subspaces isometric to L1;
(3) X∗ contains λ-complemented subspaces isometric to C[0, 1]∗;
(4) X∗ contains an infinite set K such that K is isometrically equivalent to the usual

basis of `1(Γ) for some Γ, [K] is λ-complemented in X∗, and K is dense in itself
in the weak* topology on X∗.

If, in addition, X is separable, then the above assertions are equivalent to

(5) There exists a quotient map T : X → C(∆) such that T ∗[C(∆)∗] is λ-complemented
in X∗.

The purpose of this note is to quantify the aforementioned results, especially Theorem
1.1, in the spirit of the recent research on quantitative versions of various theorems and
properties of Banach spaces (see [2, 10, 11] and references therein).

In order to state the main results of the paper, we employ the following four quantities
denoted by lower-case Greek letters and defined as suprema of certain sets; when the
sets happen to be empty, we use the convention that then each of the quantities is 0.
Hereinafter X and Y will stand for Banach spaces; B(X, Y ) is the space of (bounded,
linear) operators from X to Y .
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• αY (X) = sup{‖T−1‖−1 : T ∈ B(Y,X) an isomorphism with ‖T‖ 6 1}.
αY , being directly related to the Banach–Mazur distance, measures how far Y is
from being isomorphically embeddable into X. Obviously, αY (X) = 1 if and only
if X contains almost isometric copies of Y , that is, for every ε > 0, X contains
a subspace (1 + ε)-isomorphic to Y .
• βY (X) = sup{(‖A‖‖B‖)−1 : A ∈ B(X, Y ), B ∈ B(Y,X), AB = IY }.
βY (X) measures how far Y is from being isomorphic to a complemented subspace
of X: βY (X) = 1 if and only if for every ε > 0, there exists a subspace M of X
so that M is (1 + ε)-isomorphic to Y and (1 + ε)-complemented in X.
• γY (X) = sup{δ(T ) : T ∈ B(X, Y ) is a surjective operator with ‖T‖ 6 1},
where δ(T ) = sup{c > 0: cBY ⊆ TBX}. γY (X) measures how far Y is from being
isomorphic to a quotient of X: γY (X) = 1 if and only if Y is a (1 + ε)-(linear)
quotient of X for every ε > 0.
• θY (X) = sup{(‖A‖‖S‖)−1 : A ∈ B(X, Y ), S ∈ B(X∗, Y ∗), SA∗ = IY ∗}.
We have θY (X) = 1 if and only if, for every ε > 0, there exists a (1 + ε)-quotient
map T : X → Y so that T ∗[Y ∗] is (1 + ε)-complemented in X∗.

A straightforward argument shows that

(1.1) βY (X) 6 θY (X) 6 βY ∗(X
∗).

By using the aforementioned four quantities, we quantify the aforementioned results
as follows.

Theorem A. Let X be a Banach space. Then

α`1(X) = αL1(X
∗) = αC[0,1]∗(X

∗).

If, in addition, X is separable, then

α`1(X) = α`1([0,1])(X
∗) = γC[0,1](X).

Theorem B. Let X be a Banach space. Then

α(⊕∞n=1`
n
∞)l1

(X) = βC[0,1]∗(X
∗) = βL1(X

∗).

If, in addition, X is separable, then

θC(∆)(X) = βL1(X
∗).

The following two corollaries follows immediately from Theorem A:

Corollary A. Let X be a Banach space. The following are equivalent:

(1) X contains a subspace isomorphic to `1;
(2) X∗ contains almost isometric copies of L1;
(3) X∗ contains almost isometric copies of C[0, 1]∗;
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If, in addition, X is separable, then the assertions (1)–(3) are equivalent to:

(4) X∗ contains almost isometric copies of `1([0, 1]);
(5) C[0, 1] is a (1 + ε)-quotient of X for every ε > 0.

Corollary B. Let X be a Banach space and let Y be one of the spaces: L1 or C[0, 1]∗.
If Y is isomorphic to a subspace of X∗, then X∗ contains an almost isometric copy of Y .
If, in addition, X is separable, then an analogous assertion is valid for Y = `1([0, 1]).

The following (1 + ε)-version of Theorem 1.1 follows from Theorem B.

Corollary C. Let X be a Banach space. Then the following assertions are equivalent:

(1) X contains almost isometric copies of (
⊕∞

n=1 `
n
∞)l1;

(2) X∗ contains a (1 + ε)-complemented subspace that is (1 + ε)-isomorphic to L1 for
every ε > 0;

(3) X∗ contains a (1+ε)-complemented subspace that is (1+ε)-isomorphic to C[0, 1]∗

for every ε > 0.

If, in addition, X is separable, then

(4) For every ε > 0, there exists a (1 + ε)-quotient map T : X → C(∆) so that
T ∗[C(∆)∗] is (1 + ε)-complemented in X∗.

2. Preliminaries

Our notation and terminology are standard and mostly in-line with [1] and [14].
Throughout the paper, all Banach spaces are infinite-dimensional. We work with real
scalar but the result can be easily amended to the complex too. By a subspace we
understand a closed, linear subspace and by an operator we understand a bounded,
linear map. Let X be a Banach space. We denote by BX the closed unit ball of X. IX
stands for the identity operator on X and JX : X → X∗∗ is the canonical embedding. For
a subset K ⊆ X, [K] stands for the closed linear span of K. For a subspace M ⊆ X,
we denote by iM the inclusion map from M into X. For λ > 1, we say that a surjective
operator T : X → Y is a λ-quotient map if ‖T‖ co(T ) 6 λ, where

co(T ) = inf{c > 0: BY ⊆ c · TBX}.

Quotient maps are 1-quotient maps according to the above terminology. A norm-one
surjective operator T : X → Y is a quotient map if and only if T is a (1+)-quotient map,
that is, (1 + ε)-quotient map for every ε > 0.

The Banach–Mazur distance d(X, Y ) between two isomorphic Banach spaces X and
Y is defined by inf ‖T−1‖, where the infimum is taken over all norm-one isomorphisms
T from X onto Y . As defined by Lindenstrauss and Rosenthal [13], for 1 6 p 6 ∞ and
λ > 1, a Banach space X is said to be a Lp,λ-space whenever for every finite-dimensional



(1+)-COMPLEMENTED, (1+)-ISOMORPHIC COPIES OF L1 IN DUAL BANACH SPACES 5

subspace E of X there is a finite-dimensional subspace F of X such that F ⊇ E and
d(F, ldimF

p ) 6 λ. We say that a Banach space X is an Lp,λ+-space if it is an Lp,λ+ε-space
for all ε > 0.

Following the notation from [8], we denote

F = {(n, i) : n = 0, 1, . . . ; i = 0, 1, . . . , 2n − 1}

and, for (n, i), (m, j) ∈ F we write (n, i) > (m, j) whenever

• n > m,
• 2n−mj 6 i 6 2n−m(j + 1)− 1.

Let ∆ = {0, 1}N be the Cantor set endowed with the metric

d((an)∞n=1, (bn)∞n=1) =
∞∑
n=1

1

2n
|an − bn|

(
(an)n, (bn)n ∈ ∆

)
.

By Miljutin’s Theorem ([1, Lemma 4.4.7]), C[0, 1] is isomorphic (but not isometric) to
C(∆). It is well-known that C(∆)∗ and C[0, 1]∗ are linearly isometric, though.

3. Proof of Theorem A

The present section is devoted to the proof of Theorem A and is conveniently split
into more digestible parts.

Proof. Step 1. α`1(X) 6 αL1(X
∗).

Let 0 < c < α`1(X). Then there exists an operator T : `1 → X such that ‖T‖ 6 1

and c‖z‖ 6 ‖Tz‖ (z ∈ `1). Setting Y = T`1 yields an operator A : L1 → Y ∗ so that

(3.1) ‖f‖ 6 ‖Af‖ 6 c−1‖f‖ (f ∈ L1).

Indeed, we may define S : `1 → Y by Sz = Tz (z ∈ `1). Take an isometric embedding
U : L1 → l∞ (l∞ is universal for all separable Banach spaces and their conjugate spaces).
Then A = (S∗)−1U is the required operator. By the 1-injectivity of L∞, we obtain an
operator B : X∗∗ → `∞ so that Bi∗∗Y = A∗ and ‖B‖ = ‖A∗‖ = ‖A‖:

X∗∗

∃B

""
Y ∗∗

i∗∗Y

OO

A∗ // L∞

Passing to the adjoints, we get a commutative diagram:

L1

JL1 // L∗∗1
B∗

""

A∗∗ // Y ∗∗∗
J∗Y // Y ∗

X∗∗∗

i∗∗∗Y

OO

J∗X // X∗

i∗Y

OO

Let R = J∗XB
∗JL1 : L1 → X∗. Clearly, ‖R‖ 6 ‖B‖ = ‖A‖ 6 c−1. Moreover, it

follows from chasing the above diagram as well as from (3.1) that

‖Rf‖ > ‖i∗Y J∗XB∗JL1f‖ = ‖J∗Y i∗∗∗Y B∗JL1f‖ = ‖J∗YA∗∗JL1f‖ > ‖f‖ (f ∈ L1).
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Consequently, αL1(X
∗) > c. Since c was arbitrary, the proof of the inequality is

complete.

Step 2. αL1(X
∗) 6 α`1(X).

Let 0 < c < αL1(X
∗) and ε > 0. Then there is an operator T : L1 → X∗ with

‖T‖ 6 1 so that ‖Tf‖ > c‖f‖ (f ∈ L1). We set Y = TL1. We may then take a sequence
(yn)∞n=1 that is dense in Y and choose zn ∈ BX so that |〈yn, zn〉| > (1− ε)‖yn‖ (n ∈ N).
Letting Z = [zn : n ∈ N], one may observe that the restriction map J : Y → Z∗, y 7→ y|Z
satisfies ‖Jy‖ > (1− ε)‖y‖ (y ∈ Y ). The composite operator S = JT : L1 → Z∗ satisfies

‖f‖ > ‖Sf‖ > (1− ε)‖Tf‖ > c(1− ε)‖f‖ (f ∈ L1).

This means that αL1(Z
∗) > c(1− ε). It follows from [4, Theorem 1.1] that

γC(∆)(Z) = αL1(Z
∗) > c(1− ε).

We take an operator R : Z → C(∆) with ‖R‖ 6 1 so that RBZ ⊇ c(1 − ε)BC(∆) and
an isometric embedding U : `1 → C(∆). For each n ∈ N, pick xn ∈ BZ so that Rxn =

c(1− ε)Ue∗n, where (e∗n)∞n=1 is the unit vector basis of `1. It is easy to check that

c(1− ε)
n∑
k=1

|ak| 6 ‖
n∑
k=1

akxk‖ (n ∈ N, a1, . . . , an ∈ R).

Finally, if we define A : `1 → X by assigning en 7→ xn (n ∈ N) and extend linearly
to the linear span and then, by density, to the whole of `1, then

c(1− ε)‖z‖ 6 ‖Az‖ 6 ‖z‖ (z ∈ `1).

Consequently, α`1(X) > ‖A−1‖−1 > c(1− ε). Letting ε→ 0, we arrive at α`1(X) > c. As
c is arbitrary, the proof of Step 2 is complete.
Step 3. α`1(X) 6 αC[0,1]∗(X

∗).
Let 0 < c < α`1(X). There exists a contractive operator T : `1 → X that is bounded

below by c, that is, c‖z‖ 6 ‖Tz‖ (z ∈ `1). Set Y = T [`1]. Take a quotient map
Q : `1 → C[0, 1]. Since C[0, 1]∗∗ is 1-injective, we get an operator S : X → C[0, 1]∗∗ so
that ‖S‖ = ‖JC[0,1]QT

−1‖ and S|Y = JC[0,1]QT
−1. Let us summarise this in the diagram:

X
∃S

**
Y

iY

OO

T−1
// `1

Q // C[0, 1]
JC[0,1] // C[0, 1]∗∗

Let us consider the composite map A = S∗JC[0,1]∗ : C[0, 1]∗ → X∗ and fix ε > 0. For
each µ ∈ C[0, 1]∗, we get

‖Aµ‖ > sup
y∈BY

|〈JC[0,1]QT
−1y, µ〉| > sup

z∈B`1
|〈µ,Qz〉| > 1

1 + ε
sup

f∈BC[0,1]

|〈µ, f〉| = ‖µ‖
1 + ε

.
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Moreover, it is easy to see that ‖A‖ 6 c−1. Hence we arrive at

1

1 + ε
‖µ‖ 6 ‖Aµ‖ 6 c−1‖µ‖ (µ ∈ C[0, 1]∗).

This implies αC[0,1]∗(X
∗) > c/(1 + ε). The arbitrariness of c and ε completes the proof of

Step 3.

Step 4. αC[0,1]∗(X
∗) 6 αL1(X

∗).
This is trivial since L1 can be isometrically embedded into C[0, 1]∗.

Step 5. α`1([0,1])(X
∗) 6 α`1(X) if X is separable.

Let 0 < c < α`1([0,1])(X
∗). Similarly as before, we may take a contractive operator

T : `1([0, 1]) → X∗ so that ‖Tf‖ > c‖f‖ (f ∈ `1([0, 1])). Set K = (T ∗JX)[BX ]. Then
K is separable, bounded, convex, and Kw∗ ⊇ cB`∞([0,1]), i.e., the weak* closure of c−1K

contains the unit ball of `∞([0, 1]). In order to complete the proof of Step 5, we require
to make two claims that are slight modifications of Hagler’s results from [6].

Claim 1. Let C be a separable, bounded and convex subset of `∞([0, 1]) whose weak*
closure contains B`∞([0,1]). Let Γ1, . . . ,Γn,Γn+1, . . . ,Γn+m be pairwise disjoint subsets of
[0, 1] with cardinality c, the continuum. Then, for every 0 < ε < 1, there exists f ∈ C
such that for all i = 1, 2, . . . , n one has

card{γ ∈ Γi : f(γ) > 1− ε} = c,

whereas for all i = n+ 1, . . . , n+m

card{γ ∈ Γi : f(γ) 6 ε− 1} = c.

Claim 2. Let C be a separable, bounded, and convex subset of `∞([0, 1]) whose weak*
closure contains B`∞([0,1]). Given m > 1 and a finite collection Γ0,Γ1, . . . ,Γ2m−1 of pair-
wise disjoint subsets of [0, 1] each having the cardinality c, for every 0 < ε < 1, there
exists f ∈ C so that for every i = 0, . . . , 2m − 1

card{γ ∈ Γi : (−1)if(γ) > 1− ε} = c.

Indeed, one may define

Γ′i = Γ2i, 0 6 i 6 2m−1 − 1
Γ′2m−1+i = Γ2i+1, 0 6 i 6 2m−1 − 1.

Then it readily follows from Claim 1 that there is f ∈ C so that for all 0 6 i 6 2m−1 − 1

card{γ ∈ Γ′i : f(γ) > 1− ε} = c
card{γ ∈ Γ′2m−1+i : f(γ) 6 ε− 1} = c.

In other words, card{γ ∈ Γk : (−1)kf(γ) > 1 − ε} = c for all 0 6 k 6 2m − 1, so the
claim is justified.
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Let 0 < ε < 1. By [15, Propositon 2.2], there exists a sequence (fn)∞n=1 in c−1K so
that

(3.2) (1− ε)
m∑
n=1

|an| 6 ‖
m∑
n=1

anfn‖ 6
1

c

m∑
n=1

|an|

for all m and all scalars a1, a2, . . . , am. For each n, pick xn ∈ BX so that cfn = T ∗JXxn.
It follows from (3.2) that

(3.3) c(1− ε)
m∑
n=1

|an| 6 ‖
m∑
n=1

anxn‖ 6
m∑
n=1

|an|

for all m and all scalars a1, a2, . . . , am.

We are now in a position to define an operator S : `1 → X by the assignment e∗n 7→ xn.
By (3.3), we have

α`1(X) > ‖S−1‖−1 > c(1− ε).

As 0 < c < α`1(X) and 0 < ε < 1 were arbitrary, we proved that α`1(X) > α`1([0,1])(X
∗).

Step 6. αC[0,1]∗(X
∗) 6 α`1([0,1])(X

∗).
This inequality follows immediately from the elementary fact that `1([0, 1]) can be

isometrically embedded into C[0, 1]∗ via Dirac delta functionals.

Step 7. αL1(X
∗) = γC[0,1](X), whenever X is separable.

This is [4, Theorem 1.1 (b)]. �

4. Proof of Theorem B

We proceed as in the proof of Theorem A by splitting it into a number of independent
steps.

Proof of Theorem B. Step 1. α(
⊕∞
n=1 `

n
∞)`1

(X) 6 βC(∆)∗(X
∗).

Since Z = (
⊕∞

n=1 `
2n

∞)`1 embeds isometrically into (
⊕∞

n=1 `
n
∞)`1 , it suffices to prove

that αZ(X) 6 βC(∆)∗(X
∗). For this, let us fix 0 < c < αZ(X). Then there exists

a contractive operator R : Z → X that is bounded below by c.
Let us consider a double-indexed family (∆n,i)

∞,2n−1
n=0,i=0 of clopen subsets of the Cantor

set such that

(1) ∆0,0 = ∆, ∆n,i = ∆n+1,2i ∪∆n+1,2i+1 ((n, i) ∈ F) and ∆n,i ∩∆n,j = ∅ if i 6= j;
(2) the diameter of ∆n,i is 1/2n (0 6 i 6 2n − 1).

We set gn,i = 1∆n,i
, which is a continuous function, [gn,i]

2n−1
i=0 ⊆ [gn+1,i]

2n+1−1
i=0 , (gn,i)

2n−1
i=0 is

isometrically equivalent to the unit vector basis of `2n

∞ for all n and
∞⋃
n=0

[gn,i]
2n−1
i=0 is dense

in C(∆). We may then define an operator T : Z → C(∆) by the assignment Ten,i = gn,i.
Clearly, ‖T‖ = 1.
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Claim 1. If W is a finite-dimensional Banach space and S : W → C(∆) is an operator,
then for every ε > 0, there exists an operator Ŝ : W → Z so that ‖Ŝ‖ 6 (1 + ε)‖S‖ and
‖S − T Ŝ‖ 6 ε.

Proof of Claim 1. Let us fix an Auerbach basis (wk, w
∗
k)
N
k=1 for W (dimW = N). Let

δ > 0 be such that δN 6 ε‖S‖ and δN 6 ε. Then, there exist a positive integer n and
(fk)

N
k=1 in [gn,i]

2n−1
i=0 so that ‖Swk − fk‖ < δ (k = 1, 2, . . . , N). Write

fk =
2n−1∑
i=0

tk,ign,i, (k = 1, 2, . . . , N).

Define an operator Ŝ : W → Z by Ŝwk =
∑2n−1

i=0 tk,ien,i. We claim that ‖Ŝ‖ 6 (1 + ε)‖S‖
and ‖S − T Ŝ‖ 6 ε. Indeed, for w =

∑N
k=1 akwk ∈ W , we have

‖Ŝw‖ = ‖
N∑
k=1

akfk‖

6 ‖
N∑
k=1

ak(fk − Swk)‖+ ‖
N∑
k=1

akSwk‖

6 (δN + ‖S‖)‖w‖
6 (1 + ε)‖S‖‖w‖.

Furthermore,

‖Sw − T Ŝw‖ = ‖
N∑
k=1

ak(Swk −
2n−1∑
i=0

tk,ign,i)‖

= ‖
N∑
k=1

ak(Swk − fk)‖

6 δN‖w‖
6 ε‖w‖. �

Let ε > 0. Since C(∆) has the metric approximation property, there exists a net
(Tα)α of finite-rank operators on C(∆) such that

• lim sup
α
‖Tα‖ 6 1 + ε,

• dimTα(C(∆))→∞,
• Tα → IC(∆) strongly.

For each α, we may apply Claim 1 to the inclusion map Iα : Tα[C(∆)]→ C(∆) to get an
operator Îα : Tα[C(∆)]→ Z so that ‖Îα‖ 6 1+ε and ‖Iα−T Îα‖ 6 (1+dimTα[C(∆)])−2.
Let S be a σ(B(Z∗, C(∆)∗), Z∗⊗̂πC(∆))-cluster point of the net ((ÎαTα)∗)α. A standard
argument shows that ST ∗ = IC(∆)∗ .

Claim 2. There exists an operator T̃ : C(∆)∗ → X∗ so thatR∗T̃ = T ∗ and ‖T̃‖ 6 (1+ε)/c.
The proof of the claim is a variation of the Lindenstrauss’ compactness argument

(see [9, Proposition 1] and [12, Lemma 2]). Since some amendments are required, we
present the full reasoning.
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Proof of Claim 2. We use the fact that C(∆)∗ is isometric to L1(µ) for some infinite
measure µ, and as such, it is a L1,1+-space. Let Λ be the collection of all finite-dimensional
subspaces of C(∆)∗. Then, for each γ ∈ Λ there exist Eγ ∈ Λ with γ ⊆ Eγ together with
an isomorphism Uγ : `

dimEγ
1 → Eγ so that ‖Uγ‖‖U−1

γ ‖ 6 1 + ε. Let Sγ : Z → E∗γ be an
operator such that S∗γ = T ∗|Eγ (γ ∈ Λ). By the 1-injectivity of `dimEγ

∞ , there is an operator
Rγ : X → `

dimEγ
∞ so that RγR = U∗γSγ and ‖Rγ‖ 6 ‖U∗γSγ‖‖R−1‖ 6 ‖Uγ‖‖T‖‖R−1‖. Let

Tγ = R∗γU
−1
γ : Eγ → X∗. Then R∗Tγ = T ∗|Eγ and ‖Tγ‖ 6 1+ε

c
‖T‖. For each γ, we define

a non-linear, discontinuous function from C(∆)∗ to X∗ by

T̃γf =

{
Tγf, f ∈ Eγ
0, otherwise.

Then (T̃γ)γ is a net in the compact space∏
f∈C(∆)∗

1 + ε

c
‖T‖‖f‖BX∗ .

and as such, it has a cluster point T̃ . Standard arguments show that T̃ is linear, R∗T̃ = T ∗

and ‖T̃‖ 6 1+ε
c
‖T‖ = 1+ε

c
. �

Finally, we get SR∗T̃ = ST ∗ = IC(∆)∗ and hence

βC(∆)∗(X
∗) > (‖T̃‖‖SR∗‖)−1 >

c

(1 + ε)3
.

Letting ε→ 0, we get βC(∆)∗(X
∗) > c. As c is arbitrary, we get Step 1.

Step 2. βC[0,1]∗(X
∗) 6 βL1(X

∗).
It is well known that L1 is isometric to a 1-complemented subspace of C[0, 1]∗ (see,

e.g., [1, p. 85]), which implies Step 2.

Step 3. βL1(X
∗) 6 α(

⊕∞
n=1 `

n
∞)`1

(X).
Let 0 < c < βL1(X

∗). Then there exist operators A : L1 → X∗, B : X∗ → L1 so that
BA = IL1 , ‖A‖ = 1 and ‖B‖ < 1/c. Let 0 < ε < 1 and εn = ε/22n+3 (n = 0, 1, . . .).

By [8, Lemma 3], we get (fn,i)(n,i)∈F in L∞ and (xn,i)(n,i)∈F in X satisfying

(1) ‖fn,i‖1 = 1 and fn,i > 0 everywhere for all (n, i) ∈ F ;
(2) For each n and i 6= j, fn,i(t) and fn,j(t) cannot be both non-zero for the same

t ∈ [0, 1];
(3)

〈Afn,i, xm,j〉 =

{
1, (n, i) > (m, j),
0, otherwise;

(4) max
06i62n−1

|ti| 6 ‖
2n−1∑
i=0

tixn,i‖ 6 (1+εn) ·c−1 max
06i62n−1

|ti| (n = 0, 1, · · · ; t0, . . . , t2n−1 ∈

R).

We may now define recursively a sequence (Wn,i)(n,i)∈F of non-empty weak*-closed
subsets of BX∗ as follows:
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• W0,0 = {x∗ ∈ BX∗ : |〈x∗, x0,0〉 − 1| 6 ε0},
• W1,0 = W0,0 ∩ {x∗ ∈ BX∗ : |〈x∗, x1,0〉 − 1| 6 ε1, |〈x∗, x1,1〉| 6 ε1},
• W1,1 = W0,0 ∩ {x∗ ∈ BX∗ : |〈x∗, x1,1〉 − 1| 6 ε1, |〈x∗, x1,0〉| 6 ε1},
• W2,0 = W1,0 ∩ {x∗ ∈ BX∗ : |〈x∗, x2,0〉 − 1| 6 ε2, |〈x∗, x2,j〉| 6 ε2, j = 1, 2, 3},
• W2,1 = W1,0 ∩ {x∗ ∈ BX∗ : |〈x∗, x2,1〉 − 1| 6 ε2, |〈x∗, x2,j〉| 6 ε2, j = 0, 2, 3},
• W2,2 = W1,1 ∩ {x∗ ∈ BX∗ : |〈x∗, x2,2〉 − 1| 6 ε2, |〈x∗, x2,j〉| 6 ε2, j = 0, 1, 3},
• W2,3 = W1,1 ∩ {x∗ ∈ BX∗ : |〈x∗, x2,3〉 − 1| 6 ε2, |〈x∗, x2,j〉| 6 ε2, j = 0, 1, 2},

and so on. By (3), each Wn,i is non-empty. By the choice of εn, the sets Wn,i,Wn,j are
disjoint as long as i 6= j. Let

K =
∞⋂
n=0

(
2n−1⋃
i=0

Wn,i) and Kn,i = Wn,i ∩K
(
(n, i) ∈ F

)
.

By (3), Afn,i ∈ Wm,j if (n, i) > (m, j), which implies that each Kn,i is non-empty. By
the construction of the sequence (Wn,i), we see that K0,0 = K,Kn+1,2i ∪Kn+1,2i+1 = Kn,i

and Kn,i ∩Kn,j = ∅ if i 6= j.
Let us define an operator T : X → C(K) by 〈Tx, x∗〉 = 〈x∗, x〉 (x ∈ X, x∗ ∈ K).

Then |〈Txn,i, x∗〉 − 1| 6 εn if x∗ ∈ Kn,i, and |〈Txn,i, x∗〉| 6 εn if x∗ ∈
⋃
j 6=iKn,j. Set

gn,i = 1Kn,i , which is continuous as Kn,i is clopen. Then ‖Txn,i − gn,i‖ 6 εn. Moreover,
[gn,i]

2n−1
i=0 ⊆ [gn+1,i]

2n+1−1
i=0 , (gn,i)

2n−1
i=0 is isometrically equivalent to the unit vector basis of

`2n

∞ for all n, and

[gn,i : (n, i) ∈ F ] =
∞⋃
n=0

[gn,i]
2n−1
i=0

is isometric to C(∆). Let Z be a subspace of C(∆) isometric to (
⊕∞

n=1 `
n
∞)`1 and

let (zn,j)
∞,n−1
n=1,j=0 be a basis of Z isometrically equivalent to the unit vector basis of

(
⊕∞

n=1 `
n
∞)`1 . Fix n > 1. Then there exist m > n and unit vecors hn,j ∈ [gm,i]

2m−1
i=0

so that ‖zn,j − hn,j‖ 6 ε/2n+3 (j = 0, 1, . . . , n − 1). We write hn,j =
∑2m−1

i=0 ai,jgm,i and
define yn,j =

∑2m−1
i=0 ai,jxm,i ∈ X.

Claim. For all (tn,j)
∞,n−1
n=1,j=0 ∈ (

⊕∞
n=1 `

n
∞)`1 we have

(1− ε

2
)
∞∑
n=1

max
06j6n−1

|tn,j| 6 ‖
∞∑
n=1

n−1∑
j=0

tn,jyn,j‖ 6
(1 + ε)2

c

∞∑
n=1

max
06j6n−1

|tn,j|.

Indeed, by (4) we get

‖
n−1∑
j=0

tn,jyn,j‖ = ‖
2m−1∑
i=0

(
n−1∑
j=0

ai,jtn,j)xm,i‖

6
1 + εm
c

max
06i62m−1

|
n−1∑
j=0

ai,jtn,j|
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=
1 + εm
c
‖
n−1∑
j=0

tn,jhn,j‖

6
1 + εm
c

(
‖
n−1∑
j=0

tn,jzn,j‖+
n−1∑
j=0

tn,j(hn,j − zn,j)‖
)

6
1 + εm
c

(
max

06j6n−1
|tn,j|+ nε/2n+3 max

06j6n−1
|tn,j|

)
6

(1 + ε)2

c
max

06j6n−1
|tn,j|.

Consequently,

‖
∞∑
n=1

n−1∑
j=0

tn,jyn,j‖ 6
∞∑
n=1

‖
n−1∑
j=0

tn,jyn,j‖ 6
(1 + ε)2

c

∞∑
n=1

max
06j6n−1

|tn,j|.

On the other hand, by the choice of m and hn,j, we arrive at

‖Tyn,j − zn,j‖ 6 ‖Tyn,j − hn,j‖+ ‖hn,j − zn,j‖

= ‖
2m−1∑
i=0

ai,j(Txm,i − gm,i)‖+ ε/2n+3

6 εm2m max
06i62m−1

|ai,j|+ ε/2n+3

6 ε/2n+3 + ε/2n+3 = ε/2n+2.

This implies

‖
∞∑
n=1

n−1∑
j=0

tn,jyn,j‖ > ‖
∞∑
n=1

n−1∑
j=0

tn,jTyn,j‖

> ‖
∞∑
n=1

n−1∑
j=0

tn,jzn,j‖ − ‖
∞∑
n=1

n−1∑
j=0

tn,j(Tyn,j − zn,j)‖

>
∞∑
n=1

max
06j6n−1

|tn,j| −
∞∑
n=1

n max
06j6n−1

|tn,j|
ε

2n+2

> (1− ε

2
)
∞∑
n=1

max
06j6n−1

|tn,j|.

Finally, by Claim, we get

α(
⊕∞
n=1 `

n
∞)`1

(X) > (1− ε

2
)

c

(1 + ε)2
.

Letting ε → 0 yields α(
⊕∞
n=1 `

n
∞)`1

(X) > c; since c was arbitrary the proof of Step 3 is
complete.

Step 4. θC(∆)(X) 6 βL1(X
∗).

This step follows from (1.1) together with Step 2. We are now ready to establish the
final step of the proof.
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Step 5. Suppose that X is separable. Then βL1(X
∗) 6 θC(∆)(X).

Let 0 < c < βL1(X
∗). Then there exist operators A : L1 → X∗, B : X∗ → L1 so that

BA = IL1 , ‖A‖ = 1, and ‖B‖ < 1/c.
Let (fn,i)(n,i)∈F be a family of functions in L∞, (xn,i)(n,i)∈F in X, and (Wn,i)(n,i)∈F

associated to εn = 1/22n+2 (n = 0, 1, . . .) as described in Step 3. Since X is separable, we
may assume that the d-diameter of Wn,i 6 2−n for each i, where d is a metric giving the
relative σ(X∗, X)-topology on BX∗ . Let

K =
∞⋂
n=0

(
2n−1⋃
i=0

Wn,i) and Kn,i = Wn,i ∩K
(
(n, i) ∈ F

)
.

Then K is a compact, totally disconnected metric space without isolated points, hence
homeomorphic to ∆. Moreover, K0,0 = K,Kn+1,2i∪Kn+1,2i+1 = Kn,i and Kn,i∩Kn,j = ∅
if i 6= j. Hence K =

⋃2n−1
i=0 Kn,i for all n. As seen in Step 3, the operator T : X → C(K),

defined by 〈Tx, x∗〉 = 〈x∗, x〉 (x ∈ X, x∗ ∈ K), satisfies ‖Txn,i − gn,i‖ 6 εn, where
gn,i = 1Kn,i ∈ C(K).

An argument analogous to Step 1 yields that, if W is a finite-dimensional Banach
space and S : W → C(K) is an operator, then, for every ε > 0, there exists an operator
Ŝ : W → X so that ‖Ŝ‖ 6 1+ε

c
‖S‖ and ‖S − T Ŝ‖ 6 ε.

Fix ε > 0. By an argument analogous to the one from Step 1, we get an operator
S : X∗ → C(K)∗ with ‖S‖ 6 (1+ε)2

c
so that ST ∗ = IC(K)∗ . This means that

θC(∆)(X) = θC(K)(X) >
c

(1 + ε)2
.

Letting ε→ 0, we get arrive at θC(∆)(X) > c. As c is arbitrary, the proof is complete. �
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