Hereditarily bounded sets

Emil Jeřábek

jerabek@math.cas.cz
http://math.cas.cz/~jerabek/

Institute of Mathematics, Czech Academy of Sciences, Prague

Online International Workshop on Gödel's Incompleteness Theorems 20 August 2021

Essentially undecidable theories

T essentially undecidable

- \iff all consistent extensions of T are undecidable
- \iff no r.e. extension of T is complete and consistent

Typically: we verify T is ess. und. (Gödelian) by checking that it includes (or interprets) one of known ess. und. theories

Convenient weak ess. und. theories for the purpose:

- ► Robinson's arithmetic *Q*
- ► Robinson's theory *R*
- adjunctive set theory AS
- ► Vaught's set theory *VS*

Vaught's set theory

Weak set theory VS introduced in [Vau'67]

Language: ∈

Axioms:

$$(V_n) \qquad \forall x_0, \ldots, x_{n-1} \,\exists y \,\forall t \, \Big(t \in y \leftrightarrow \bigvee_{i < n} t = x_i \Big)$$

for each standard $n \in \omega$

NB: (V_n) implies (V_m) for $n \ge m > 0$

- ► VS is ess. und.
- finite fragments $VS_n = (V_0) + (V_n)$ not ess. und.
 - \triangleright VS_n interpretable in any theory with pairing

Theories with pairing

Assume $T \vdash \exists x \exists y \ x \neq y$

Pairing function in T: definable function p(x, y) s.t. T proves

$$p(x,y) = p(x',y') \to x = x' \land y = y'$$

Non-functional pairing: a formula $\pi(x, y, p)$ s.t. T proves

$$\forall x \,\forall y \,\exists p \,\pi(x,y,p)$$
$$\pi(x,y,p) \wedge \pi(x',y',p) \rightarrow x = x' \wedge y = y'$$

Example: VS_2 has non-functional pairing $\{\{x\}, \{x, y\}\}$

See [Vis'08] for more background

Decidable theories with pairing

Theories with variable-length sequence encoding (sequential theories [Pud'85]) interpret $Q \implies$ ess. und.

In contrast: there are decidable theories with pairing

- [Mal'61,'62] theories of locally free algebras (≈ term algebras, also with "commutativity" constraints) incl. acyclic pairing functions: ⟨N, 2*3"⟩
- ► [Ten'72] p.f. acyclic up to a few exceptions e.g.: $2^{x}(2y+1) 1$, $\max\{x^2, y^2 + x\} + y$, $\binom{x+y+1}{2} + x$

Even with more arithmetical structure:

- ► [Sem'83] $\langle \mathbb{N}, +, 2^x \rangle$ (has p.f. $2^x + 2^{x+y}$ [CR'99])
- ightharpoonup [CR'01] $\langle \mathbb{N}, S, \binom{x+y+1}{2} + x \rangle$

Pairing and k-sets

Let $\langle x, y \rangle$ be a pairing function, $k \geq 2$

- encode k-tuples by pairs: $\langle x_0, \dots, x_{k-1} \rangle = \langle \dots \langle \langle x_0, x_1 \rangle, x_2 \rangle, \dots, x_{k-1} \rangle$
- encode k-element sets by k-tuples:

$$x \in y \iff \exists x_0, \dots, x_{k-1} \left(y = \langle x_0, \dots, x_{k-1} \rangle \land \bigvee_{i < k} x = x_i \right)$$

Satisfies VS_k if $\langle x, y \rangle$ non-surjective (easily fixable)

Also works for non-functional pairing

Lemma

Any theory with pairing interprets VS_k for each k

Decidable extensions of VS_k

Corollary

For any k, VS_k has a decidable completion

The extensions of VS_k we get from theories of pairing are quite unnatural as theories of sets

Extensionality fails: $\langle x, y \rangle$ and $\langle y, x \rangle$ represent the same set

Problem (informal)

Find a natural decidable extension of VS_k with a transparent meaning

Hereditarily finite sets

Work in ZF(C)

The set H_{ω} of hereditarily finite sets:

- ▶ The smallest set s.t. $\forall x (x \subseteq H_{\omega} \land x \text{ finite } \Longrightarrow x \in H_{\omega})$
- ► The unique set s.t. $\forall x (x \subseteq H_{\omega} \land x \text{ finite} \iff x \in H_{\omega})$
- $ightharpoonup x \in H_{\omega} \iff \operatorname{tc}(x) \text{ finite } \iff \forall y \in \operatorname{tc}(\{x\}) y \text{ finite}$
- $lackbox{H}_{\omega}=V_{\omega}=igcup_{n\in\omega}V_n$, where $V_0=\varnothing$, $V_{n+1}=\mathcal{P}(V_n)\supseteq V_n$

Transitive closure tc(x): smallest transitive set that includes x $tc(x) = \bigcup_n tc_n(x)$, where $tc_0(x) = x$, $tc_{n+1}(x) = tc_n(x) \cup \bigcup_{y \in tc_n(x)} y$

$$\mathbf{H}_{\omega} = \langle H_{\omega}, \in \rangle$$
 is bi-interpretable with $\langle \mathbb{N}, +, \cdot \rangle$

Hereditarily bounded sets

The set H_k of sets hereditarily of size $\leq k$:

- ▶ The smallest set s.t. $\forall x (x \subseteq H_k \land |x| \le k \implies x \in H_k)$
- ▶ The unique set s.t. $\forall x (x \subseteq H_k \land |x| \le k \iff x \in H_k)$
- $\triangleright x \in H_k \iff \forall y \in \operatorname{tc}(\{x\}) |y| \le k$
- $ightharpoonup H_k = \bigcup_n V_{n, \leq k}$, where $V_{0, \leq k} = \emptyset$, $V_{n+1, \leq k} = [V_{n, \leq k}]^{\leq k}$

NB: $H_{\omega} = \bigcup_{k \in \omega} H_k$

 $\mathbf{H}_k = \langle H_k, \in
angle$ is a natural model of VS_k

Minimality: \mathbf{H}_k embeds (transitively) in any model of VS_k

Problem

What is $Th(\mathbf{H}_k)$? Is it decidable?

Easy cases

- k = 0: \mathbf{H}_0 is a one-element structure
- $k = 1: H_1 = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\{\{\emptyset\}\}\}, \dots\}$ $\Longrightarrow \mathbf{H}_1 \simeq \langle \mathbb{N}, S(x) = y \rangle$
 - decidable, PSPACE-complete
 - ightharpoonup quantifier elimination in language $\langle \varnothing, \{x\} \rangle$
 - strongly minimal, uncountably categorical, . . .

Not really easy, but already known:

- ▶ k = 2: \mathbf{H}_2 is definitionally equivalent to $\langle H_2, \varnothing, \{x, y\} \rangle$ $\{x, y\}$ free commutative operation [Mal'62]
 - decidable, some form of quantifier elimination, stable

NB: For $k \ge 3$, Malcev's results do not apply $\{x, x, y\} = \{x, y, y\}$

The general case

The rest of this talk:

- ▶ an explicit axiomatization S_k for Th(\mathbf{H}_k)
- characterization of elementary equivalence of tuples
- \triangleright S_k is decidable, with iterated exponential complexity
- quantifier elimination

The theory S_k

S_k is axiomatized by:

- \blacktriangleright the axioms (V_0) and (V_k) of VS_k
- extensionality

(E)
$$\forall x, y \ (\forall t \ (t \in x \leftrightarrow t \in y) \rightarrow x = y)$$

▶ boundedness (all sets have < k elements)

$$(\mathsf{B}_k) \qquad \forall x, u_0, \dots, u_k \left(\bigwedge_{i \leq k} u_i \in x \to \bigvee_{i < j \leq k} u_i = u_j \right)$$

ightharpoonup acyclicity: for each $n \in \omega$,

$$(C_n)$$
 $\forall x_0, \ldots, x_n \neg \left(\bigwedge_{i < n} x_i \in x_{i+1} \land x_n \in x_0 \right)$

Basic strategy

Main goal: prove S_k is complete

$$\implies S_k = \text{Th}(\mathbf{H}_k)$$

 $\implies S_k$ is decidable

We use an Ehrenfeucht-Fraïssé argument:

- ▶ combinatorial description of $\mathbf{A}, \overline{a} \equiv \mathbf{B}, \overline{b}$ for $\mathbf{A}, \mathbf{B} \models S_k$
- ▶ for empty \overline{a} , \overline{b} , it gives $\mathbf{A} \equiv \mathbf{B}$

Bounded elementary equivalence

Quantifier rank:

$$\begin{aligned} \operatorname{rk}(\varphi) &= 0 & \varphi \text{ atomic} \\ \operatorname{rk}(c(\varphi_0,\varphi_1,\dots)) &= \max\{\operatorname{rk}(\varphi_0),\operatorname{rk}(\varphi_1),\dots\} & c \text{ connective} \\ \operatorname{rk}(Qx\,\varphi) &= \operatorname{rk}(\varphi) + 1 & Q \in \{\exists,\forall\} \end{aligned}$$

$$\mathbf{A} = \langle A, \in^{\mathbf{A}} \rangle, \ \mathbf{B} = \langle B, \in^{\mathbf{B}} \rangle, \ \overline{a} \in A, \ \overline{b} \in B \colon$$

$$\mathbf{A}, \overline{a} \equiv \mathbf{B}, \overline{b} \iff \forall \varphi \ (\mathbf{A} \vDash \varphi(\overline{a}) \iff \mathbf{B} \vDash \varphi(\overline{b}))$$

$$\mathbf{A}, \overline{a} \equiv_{n} \mathbf{B}, \overline{b} \iff \text{the same for } \varphi \text{ s.t. } \operatorname{rk}(\varphi) < n$$

Ehrenfeucht-Fraïssé games

$\mathrm{EF}_n(\mathbf{A};\mathbf{B})$:

- players Spoiler, Duplicator
- ▶ *n* rounds, in round *i*:
 - ► S chooses an element of one of A, B
 - D responds by an element of the other one
 - $\blacktriangleright \implies \alpha_i \in A, \ \beta_i \in B$
- ▶ D wins iff $\alpha_i \mapsto \beta_i$ is a partial isomorphism (= preserves atomic predicates both ways)

$\mathrm{EF}_{n}(\mathbf{A}, \overline{a}; \mathbf{B}, \overline{b})$:

▶ D wins iff $\alpha_i \mapsto \beta_i$, $a_i \mapsto b_i$ is a partial isomorphism

EF games vs. elementary equivalence

Theorem (Fraïssé, Ehrenfeucht)

 $\mathbf{A}, \overline{a} \equiv_n \mathbf{B}, \overline{b}$ iff D has a winning strategy in $\mathrm{EF}_n(\mathbf{A}, \overline{a}; \mathbf{B}, \overline{b})$

Graded back-and-forth system for A, B: relations E_n s.t.

- $ightharpoonup \overline{a} E_n \overline{b} \implies a_i \mapsto b_i$ is a partial isomorphism
- ▶ $\overline{a} E_{n+1} \overline{b} \implies \forall c \in A \exists d \in B (\overline{a}, c E_n \overline{b}, d)$ and v.v.

Corollary

If $\{E_n : n < \omega\}$ is a graded back-and-forth system, then

$$\overline{a} E_n \overline{b} \implies \mathbf{A}, \overline{a} \equiv_n \mathbf{B}, \overline{b}$$

Transitive closures

$$\mathbf{A} \vDash S_k, \ \overline{a} \in A, \ l = \mathsf{lh}(\overline{a}): \ \mathsf{define} \ \mathsf{tc}_n^{\mathbf{A}}(\overline{a}) \subseteq A$$

$$\mathsf{tc}_0^{\mathbf{A}}(\overline{a}) = \{a_i : i < l\}$$

$$\mathsf{tc}_{n+1}^{\mathbf{A}}(\overline{a}) = \mathsf{tc}_n^{\mathbf{A}}(\overline{a}) \cup \bigcup_{u \in \mathsf{tc}_n^{\mathbf{A}}(\overline{a})} \{v \in A : v \in^{\mathbf{A}} u\}$$

$$\mathsf{tc}^{\mathbf{A}}(\overline{a}) = \bigcup_{u \in \mathsf{tc}_n^{\mathbf{A}}(\overline{a})} \mathsf{tc}_n^{\mathbf{A}}(\overline{a})$$

NB: $tc_n^{\mathbf{A}}(\overline{a})$ finite

$$|\mathsf{tc}_n^{\mathsf{A}}(\overline{a})| \leq I \cdot k^{\leq n}, \qquad k^{\leq n} = \sum_{i=1}^n k^i = \frac{k^{n+1} - 1}{k - 1} \qquad (k \neq 1)$$

Similarity relations

When considered as structures:

$$\mathbf{tc}_n^{\mathbf{A}}(\overline{a}) = \langle \mathsf{tc}_n^{\mathbf{A}}(\overline{a}), \in^{\mathbf{A}}, \overline{a} \rangle, \qquad \mathbf{tc}^{\mathbf{A}}(\overline{a}) = \langle \mathsf{tc}^{\mathbf{A}}(\overline{a}), \in^{\mathbf{A}}, \overline{a} \rangle$$

We define

$$egin{aligned} \mathbf{A}, \overline{a} \sim & \mathbf{B}, \overline{b} \iff \mathbf{tc^A}(\overline{a}) \simeq \mathbf{tc^B}(\overline{b}) \ \mathbf{A}, \overline{a} \sim_n \mathbf{B}, \overline{b} \iff \mathbf{tc^A}_n(\overline{a}) \simeq \mathbf{tc^B}_n(\overline{b}) \end{aligned}$$

NB: Using the finiteness of tc_n , Kőnig's lemma implies

$$\mathbf{A}, \overline{a} \sim \mathbf{B}, \overline{b} \iff \forall n (\mathbf{A}, \overline{a} \sim_n \mathbf{B}, \overline{b})$$

Definability of tc_n

The finiteness of tc_n easily implies:

Lemma

$$\mathbf{A} \models S_k, \ \overline{a} \in A, \ l = lh(\overline{a}), \ n < \omega$$

 $\implies \exists \text{ formula } \varphi_{\overline{a},n}(\overline{x}) \text{ s.t. } \forall \mathbf{B} \models S_k, \ \overline{b} \in B$:

$$\mathbf{B} \vDash \varphi_{\overline{a},n}(\overline{b}) \iff \mathbf{A}, \overline{a} \sim_n \mathbf{B}, \overline{b}$$

We may take $\varphi_{n,\bar{a}}$ as a Boolean combination of bounded existential formulas of rank $I(k^{\leq n}-1)$

Bounded quantifiers: $\exists y \in x \varphi \equiv \exists y (y \in x \land \varphi)$

Elementary equivalence implies similarity

Corollary

If
$$\mathbf{A}, \mathbf{B} \models S_k$$
, $\overline{a} \in A$, $\overline{b} \in B$, $I = \mathsf{lh}(\overline{a}) = \mathsf{lh}(\overline{b})$, $n < \omega$:
$$\mathbf{A}, \overline{a} \equiv \mathbf{B}, \overline{b} \implies \mathbf{A}, \overline{a} \sim \mathbf{B}, \overline{b}$$

$$\mathbf{A}, \overline{a} \equiv_{I(k \leq n-1)} \mathbf{B}, \overline{b} \implies \mathbf{A}, \overline{a} \sim_n \mathbf{B}, \overline{b}$$

The converse is more difficult, and will require an Ehrenfeucht–Fraïssé argument

Extending tc_n isomorphisms

The crux of the argument:

Lemma

Let
$$\mathbf{A}, \mathbf{B} \models S_k$$
, $\overline{a} \in A$, $\overline{b} \in B$, $l = \mathsf{lh}(\overline{a}) = \mathsf{lh}(\overline{b})$, $n > 0$.

lf

$$\mathbf{A}, \overline{a} \sim_{k \leq n+n} \mathbf{B}, \overline{b}$$

then

$$\forall c \in A \quad \exists d \in B \quad \mathbf{A}, \overline{a}, c \sim_{n-1} \mathbf{B}, \overline{b}, d$$

This gives a graded back-and-forth system ...

Characterization of elementary equivalence

Theorem

Let $A, B \models S_k$, $\overline{a} \in A$, $\overline{b} \in B$, $I = Ih(\overline{a}) = Ih(\overline{b})$, $n < \omega$. Then

$$\mathbf{A}, \overline{a} \equiv \mathbf{B}, \overline{b} \iff \mathbf{A}, \overline{a} \sim \mathbf{B}, \overline{b}.$$

More precisely, for all $n \in \omega$,

$$\begin{array}{ccccc} \mathbf{A}, \overline{a} \equiv_{l(k \leq n-1)} \mathbf{B}, \overline{b} & \Longrightarrow & \mathbf{A}, \overline{a} \sim_n \mathbf{B}, \overline{b}, \\ \mathbf{A}, \overline{a} \sim_{t_k(n)} \mathbf{B}, \overline{b} & \Longrightarrow & \mathbf{A}, \overline{a} \equiv_n \mathbf{B}, \overline{b}, \end{array}$$

where
$$t_k(0) = 0$$
, $t_k(n+1) = k^{\leq t_k(n)+1} + t_k(n) + 1$.

Completeness and decidability

Since $\mathsf{tc}^{\mathbf{A}}(\langle \rangle) = \emptyset$, we have $\mathbf{A}, \langle \rangle \sim \mathbf{B}, \langle \rangle$ for any $\mathbf{A}, \mathbf{B} \models S_k$:

Corollary

 S_k is a complete theory, thus $S_k = \mathsf{Th}(\mathbf{H}_k)$

Any recursively axiomatizable complete theory is decidable:

Corollary

 $S_k = \mathsf{Th}(\mathbf{H}_k)$ is decidable

In particular, S_k is a decidable extension of VS_k

Quantifier elimination

Corollary

In S_k , any formula is equivalent to a Boolean combination of bounded existential formulas.

If we expand the language with the predicates $y = \emptyset$ and $y = \{x_0, \dots, x_{k-1}\}$, every formula is equivalent to a bounded existential and a bounded universal formula.

NB: $y = \emptyset$ and $y = \{x_0, \dots, x_{k-1}\}$ have bounded universal definitions in the original language

Further properties

Proposition

 S_k is a stable theory

Proposition

 $k \geq 1 \implies S_k$ is not finitely axiomatizable

Problem (A. Visser)

Is there a consistent finitely axiomatized decidable theory with pairing?

Complexity: lower bound

Superexponential function: $2_0^x = x$, $2_{n+1}^x = 2_n^{2_n^x}$

Theorem [FR'79]

T consistent theory with pairing $\implies \exists \gamma > 0$ s.t. any decision procedure for T has complexity $\geq 2^0_{\gamma n}$

- complexity measure: take your pick
- ▶ theories of [Mal'62], [Ten'72] meet the bound

Corollary

 $\exists \gamma > 0$ s.t. any decision procedure for a consistent extension of VS_2 has complexity $\geq 2^0_{\gamma n}$

Complexity: upper bound

 $t_k(n) \leq 2_n^{c_k}$ for some constant c_k

Turning the Ehrenfeucht-Fraïssé argument into an algorithm:

Theorem

 S_k is decidable in time $2_{n/4}^{c_k}$

- ▶ matches the [FR'79] lower bound for $k \ge 2$
- ▶ S_1 is PSPACE-complete, S_0 is NC¹-complete
- overestimates the complexity for formulas with a small number of quantifier alternations

Improved algorithm

Handle blocks of quantifiers in one go:

Theorem

Given a sentence φ with

- $\varphi \in \exists_r$
- ▶ *n*: number of symbols
- q: max length of quantifier blocks

we can decide whether $S_k \vdash \varphi$ in

$$\begin{cases} \mathsf{NTIME}(n^{O(1)}) & r = 1 \\ \mathsf{NTIME}\big((kq)^{O(kq)}n^{O(1)}\big) & r = 2 \\ \mathsf{NTIME}\big(2^{O(qk\log k)}_{r-1}n^{O(1)}\big) & r \geq 3 \end{cases}$$

Summary

We identified $Th(\mathbf{H}_k)$ as a natural extension of VS_k :

- decidable (of lowest possible complexity)
- transparent explicit axiomatization
- combinatorial characterization of elementary equivalence
- quantifier elimination

References (1)

- P. Cégielski, D. Richard: On arithmetical first-order theories allowing encoding and decoding of lists, Theoret. Comput. Sci. 222 (1999), 55–75
- P. Cégielski, D. Richard: Decidability of the theory of the natural integers with the Cantor pairing function and the successor, Theoret. Comput. Sci. 257 (2001), 51–77
- J. Ferrante, C. W. Rackoff: The computational complexity of logical theories, Springer-Verlag, 1979
- ► E. J.: The theory of hereditarily bounded sets, 2021, arXiv:2104.06932 [math.LO]
- A. I. Mal'cev: On the elementary theories of locally free universal algebras, Dokl. Akad. Nauk SSSR 138:5 (1961), 1009–1012, English transl.: Soviet Math. Dokl. 2:3 (1961), 768–771
- A. I. Mal'cev: Axiomatizable classes of locally free algebras of several types, Sibirsk. Mat. Zh. 3:5 (1962), 729–743

References (2)

- P. Pudlák: Cuts, consistency statements and interpretations,
 J. Symb. Log. 50:2 (1985), 423–441
- A. L. Semënov: Logical theories of one-place functions on the set of natural numbers, Izv. Akad. Nauk SSSR Ser. Mat. 47:3 (1983), 623–658, English transl.: Math. USSR Izv. 22:3 (1984), 587–618
- A. Tarski, A. Mostowski, R. M. Robinson: Undecidable theories, North-Holland, Amsterdam, 1953
- R. L. Tenney: Decidable pairing functions, Ph.D. thesis, Cornell Univ., 1972
- R. L. Vaught: Axiomatizability by a schema, J. Symb. Log. 32:4 (1967), 473–479
- ► A. Visser: Pairs, sets and sequences in first-order theories, Arch. Math. Logic 47:4 (2008), 299–326
- ▶ https://uyghurtribunal.com