Photosynthetica, 2014 (vol. 52), issue 1

Photosynthetica 2014, 52(1):105-116 | DOI: 10.1007/s11099-014-0012-2

Response of photosynthesis and chlorophyll fluorescence to acute ozone stress in tomato (Solanum lycopersicum Mill.)

A. A. Thwe1,5,*, G. Vercambre2, H. Gautier2, F. Gay3, J. Phattaralerphong4, P. Kasemsap5
1 Department of Horticulture, Yezin Agricultural University, Nay Pyi Taw, Myanmar
2 INRA, UR 1115, Plantes et Systèmes de culture Horticoles, Avignon, Cedex 9, France
3 CIRAD, UMR111 Eco&Sols, Montpellier, France
4 Faculty of Natural Resources and Agro-Industry, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Bangkok, Thailand
5 Department of Horticulture, Tropical Agriculture, Kasetsart University, Bangkok, Thailand

The crop sensitivity to ozone (O3) is affected by the timing of the O3 exposure, by the O3 concentration, and by the crop age. To determine the physiological response to the acute ozone stress, tomato plants were exposed to O3 at two growth stages. In Experiment I (Exp. I), O3 (500 μg m-3) was applied to 30-d-old plants (PL30). In Experiment II (Exp. II), three O3 concentrations (200, 350, and 500 μg m-3) were applied to 51-d-old plants (PL51). The time of the treatment was 4 h (7:30-11:30 h). Photosynthesis and chlorophyll fluorescence measurements were done 4 times (before the exposure; 20 min, 20 h, and 2-3 weeks after the end of the treatment) using a LI-COR 6400 photosynthesis meter. The stomatal pore area and stomatal conductance were reduced as the O3 concentration increased. Ozone induced the decrease in the photosynthetic parameters of tomato regardless of the plant age. Both the photosystem (PS) II operating efficiency and the maximum quantum efficiency of PSII photochemistry declined under the ozone stress suggesting that the PSII activity was inhibited by O3. The impaired PSII contributed to the reduced photosynthetic rate. The greater decline of photosynthetic parameters was found in the PL30 compared with the PL51. It proved the age-dependent ozone sensitivity of tomato, where the younger plants were more vulnerable. Ozone caused the degradation of photosynthetic apparatus, which affected the photosynthesis of tomato plants depending on the growth stage and the O3 concentration.

Keywords: tomato; spinach; sweet corn; chlorophyll fluorescence; ozone; stomatal pore area; stomatal conductance; photosystem II; maximum quantum efficiency of PSII photochemistry; electron transport rate; maximum rate of carboxylation; light-saturated photosynthetic rate; net photosynthetic rate; photosynthetic photon flux density; photochemical quenching coefficient; dark-respiration rate; Rubisco; ribulose-1; 5-bisphosphate carboxylase, oxygenase; triose phosphate use; maximum carboxylation rate of Rubisco; initial slope of the light curve; curve convexity; quantum yield of carboxylation rate; effective quantum yield of photosystem II photochemistry; PN-Ci curves; light-response curve; exponential decay function; nonrectangular hyperbola

Received: August 30, 2012; Accepted: July 1, 2013; Published: March 1, 2014Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Thwe, A.A., Vercambre, G., Gautier, H., Gay, F., Phattaralerphong, J., & Kasemsap, P. (2014). Response of photosynthesis and chlorophyll fluorescence to acute ozone stress in tomato (Solanum lycopersicum Mill.). Photosynthetica52(1), 105-116. doi: 10.1007/s11099-014-0012-2.
Download citation

References

  1. Baker, N.R., Rosenqvist, E.: Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. - J. Exp. Bot. 55: 1607-1621, 2004. Go to original source...
  2. Bell, M.L., Peng, R.D., Dominici, F.: The exposure-response curve for ozone and risk of mortality and the adequacy of current ozone regulations. - Environ. Health Persp. 114: 532-536, 2006. Go to original source...
  3. Burkey, K.O., Wei, C., Eason, G. et al.: Antioxidant metabolite levels in ozone-sensitive and tolerant genotypes of snap bean. - Physiol. Plantarum 110: 195-200, 2000. Go to original source...
  4. Calatayud, A., Ramirez, J.W., Iglesias, D.J., Barreno, E.: Effects of ozone on photosynthetic CO2 exchange, chlorophyll a fluorescence and antioxidant systems in lettuce leaves. - Physiol. Plantarum 116: 308-316, 2002. Go to original source...
  5. Calatayud, A., Iglesias, D.J., Talón, M., Barreno, E.: Response of spinach leaves (Spinacia oleracea L.) to ozone measured by gas exchange, chlorophyll a fluorescence, antioxidant systems, and lipid peroxidation. - Photosynthetica 42: 23-29, 2004. Go to original source...
  6. Calatayud, A., Iglesias, D.J., Talón, M., Barreno, E.: Effects of longterm ozone exposure on citrus: Chlorophyll a fluorescence and gas exchange. - Photosynthetica 44: 548-554, 2006. Go to original source...
  7. Calatayud, V., García-Breijo, F.J., Cervero, J. et al.: Physiological, anatomical and biomass partitioning responses to ozone in the Mediterranean endemic plant Lamottea dianae. - Ecotox. Environ. Safe. 74: 1131-1138, 2011. Go to original source...
  8. Carrasco-Rodriguez, J.L., del Valle-Tascon, S.: Impact of elevated ozone on chlorophyll a fluorescence in field-grown oat (Avena sativa). - Environ. Exp. Bot. 45: 133-142, 2001. Go to original source...
  9. Chen, Z., Wang, X.K., Feng, Z.Z. et al.: Effects of elevated ozone on growth and yield of filed grown rice in Yangtze River Delta, China. - J. Environ. Sci.-China. 20: 320-325, 2008.
  10. Contran, N., Paoletti, E.: Visible foliar injury and physiological response to ozone in Italian Provenances of Fraxinus excelsior and F. ornus. - Sci. World J. 7: 90-97, 2007. Go to original source...
  11. Dann, M.S., Pell, E.J.: Decline of activity and quantity of ribulose bisphosphate carboxylase/oxygenase and net photosynthesis in ozone-treated potato foliage. - Plant Physiol. 91: 427-432, 1989. Go to original source...
  12. Degl'Innocenti, E., Guidi, L., Soldatini, G.F.: Characterisation of the photosynthetic response of tobacco leaves to ozone: CO2 assimilation and chlorophyll fluorescence. - J. Plant Physiol. 159: 845-853, 2002a. Go to original source...
  13. Degl'Innocenti, E., Guidi, L., Soldatini, G.F.: Effect of chronic O3 fumigation on the activity of some Calvin cycle enzymes in two poplar clones. - Photosynthetica 40: 121-126, 2002b. Go to original source...
  14. Evans, L.S., Albury, K., Jennings, N.: Relationships between anatomical characteristics and ozone sensitivity of leaves of several herbaceous dicotyledonous plant species at Great Smoky Mountains National Park. - Environ. Exp. Bot. 36: 413-420, 1996. Go to original source...
  15. Ferdinand, J.A., Fredericksen, T.S., Kouterick, K.B., Skelly, J.M.: Leaf morphology and ozone sensitivity of two open pollinated genotypes of black cherry (Prunus serotina) seedlings. - Environ. Pollut. 108: 297-302, 2000. Go to original source...
  16. Fredericksen, T.S., Joyce, B.J., Skelly, J.M. et al.: Physiology, morphology, and ozone uptake of leaves of black cherry seedlings, saplings, and canopy trees. - Environ. Pollut. 89: 273-283, 1995. Go to original source...
  17. Fredericksen, T.S., Skelly, J.M., Snyder, K.R. et al.: Predicting ozone uptake from meteorological and environmental variables. - J. Air Waste Manage. 46: 464-469, 1996. Go to original source...
  18. Glick, R.E., Schlagnhaufer, C.D., Arteca, R.N., Pell, E.J.: Ozoneinduced ethylene emission accelerates the loss of ribulose-1,5-bisphosphate carboxylase/oxygenase and nuclear-encoded mRNAs in senescing potato leaves. - Plant Physiol. 109: 891-898, 1995. Go to original source...
  19. Goumenaki, E., Taybi, T., Borland, A., Barnes, J.: Mechanisms underlying the impacts of ozone on photosynthetic performance. - Environ. Exp. Bot. 69: 259-266, 2010. Go to original source...
  20. Guidi, L., Nali, C., Ciompi, S. et al.: The use of chlorophyll fluorescence and leaf gas exchange as methods for studying the different response to ozone of two bean cultivars. - J. Exp. Bot. 48: 173-179, 1997. Go to original source...
  21. Hill, A.C., Littlefield, N.: Ozone. Effects on apparent photosynthesis, rate of transpiration and stomatal closure in plants. - Environ. Sci. Technol. 3: 52-56, 1969. Go to original source...
  22. Hill, A.C., Heggestad, H.E., Linzon, S.N.: Ozone. - In: Jacobson, J.S., Hill, A.C. (ed.): Recognition of Air Pollution Injury to Vegetation: A Pictorial Atlas. Air Pollut. Control Ass., Pittsburgh 1970.
  23. Iacono, F., Sommer, K.J.: Response of electron transport rate of water stress-affected grapevines: Influence of leaf age. - Vitis 39: 137-144, 2000.
  24. Iriti, M., Belli, L., Nali, C. et al.: Ozone sensitivity of currant tomato (Lycopersicon pimpinellifolium), a potential bioindicator species. - Environ. Pollut. 141: 275-282, 2006. Go to original source...
  25. Kasana, M.S.: Sensitivity of three leguminous crops to O3 as influenced by different stages of growth and development. - Environ. Pollut. 69: 131-149, 1991. Go to original source...
  26. Kharel, K., Amgain, L.P.: Assessing the impact of ambient ozone on growth and yield of crop at Ramput, Chitwan. - J. Agric. Environ. 11: 40-45, Technical Paper, 2010. Go to original source...
  27. Kolb, T.E., Fredericksen, T.S., Steiner, K.C., Skelly, J.M.: Issues in scaling tree size and age responses to ozone: A review. - Environ. Pollut. 98: 195-208, 1997. Go to original source...
  28. Laisk, A., Kull, O., Moldau, H.: Ozone concentration in leaf intercellular air spaces is close to zero. - Plant Physiol. 90: 1163-1167, 1989. Go to original source...
  29. Leipner, J, Oxborough, K, Baker, N.R.: Primary sites of ozoneinduced perturbations of photosynthesis in leaves: identification and characterization in Phaseolus vulgaris using high resolution chlorophyll fluorescence imaging. - J. Exp. Bot. 52: 1689-1696, 2001.
  30. LI-6400 / LI-6400XT.: Portable photosynthesis system. Version 6.1, LI COR Biosciences, Inc. Lincoln, Nebraska, 2008.
  31. Lyons, T.M., Barnes, J.D.: Influence of plant age on ozone resistance in Plantago major. - New Phytol. 138: 83-89, 1998. Go to original source...
  32. Lyons, T., Ollerenshaw, J.H., Barnes, J.D.: Impacts of ozone on Plantago major: apoplastic and symplastic antioxidant status. - New Phytol. 141: 253-263, 1999. Go to original source...
  33. McKee, I.F., Farage, P.K., Long, S.P.: The interactive effects of elevated CO2 and O3 concentration on photosynthesis in spring wheat. - Photosynth. Res. 45: 111-119, 1995. Go to original source...
  34. Mina, U., Kumar, P., Varshney, C.K.: Effects of ozone exposure on growth, yield and isoprene emission from tomato (Lycopersicon esculentum L.) plants. - Veget. Crop Res. Bull. 72: 35-48, 2010.
  35. Moore, R., Clark, W.D., Kingsley, R.S., Vodopich, D.: Electron transport in photosynthesis. - In: Moore, R. (ed.): Botany. William C. Brown Pub., Dubuque, Iowa 1995. Online book (http://hyperphysics.phy-astr.gsu.edu/hbase/biology/psetran.html#c1) (Accessed on 4 April 2012)
  36. Nighat, F., Mahmooduzzafar., Iqbal, M.: Stomatal conductance, photosynthetic rate, and pigment content in Ruellia tuberose leaves as affected by coal-smoke pollution. - Biol. Plantarum 43: 263-267, 2000. Go to original source...
  37. Ort, D.R., Baker, N.R.: A photoprotective role for O2 as an alternative electron sink in photosynthesis? - Curr. Opin. Plant Biol. 5: 193-198, 2002. Go to original source...
  38. Paoletti, E., Grulke, N.E.: Ozone exposure and stomatal sluggishness in different plant physiognomic classes. - Environ. Pollut. 158: 2664-2671, 2010. Go to original source...
  39. Pressman, E., Bar-Tal, A., Shaked, R., Rosenfeld, K.: The development of tomato root system in relation to the carbohydrate status of the whole plant. - Ann. Bot. 80: 533-538, 1997. Go to original source...
  40. Reich, P.B.: Quantifying plant response to ozone: a unifying theory. - Tree Physiol. 3: 63-91, 1987. Go to original source...
  41. Reinert, R.A., Henderson, W.R.: Foliar injury and growth of tomato cultivars as influenced by ozone dose and plant age. - J. Am. Soc. Hortic. Sci. 105: 322-324, 1980.
  42. Ritchie, R.J.: Fitting light saturation curves measured using modulated fluorometry. - Photosynth. Res. 96: 201-215, 2008. Go to original source...
  43. Robinson, M.F., Heath, J., Mansfield, T.A.: Disturbances in stomatal behaviour caused by air pollutants. - J. Exp. Bot. 49: 461-469, 1998. Go to original source...
  44. Sage, R.F., Reid, C.D.: Photosynthetic response mechanisms to environmental change in C3 plants. - In: Wilkinson, R.E. (ed.): Plant-Environment Interactions. Pp. 413-436. Marcel Dekker, New York - Basel - Hong Kong 1994.
  45. Saitanis, C.J., Karandinos, M.G.: Effects of ozone on tobacco (Nicotiana tabacum L.) varieties. - J. Agron. Crop Sci. 188: 51-58, 2002. Go to original source...
  46. SAS Institute: SAS STAT user's guide, version 9.2. SAS Institute Inc., Cary 2007.
  47. Sharkey, T.D., Bernacchi, C.J., Farquhar, G.D., Singsaas, E.L.: Fitting photosynthetic carbon dioxide response curves for C3 leaves. - Plant Cell Environ. 30: 1035-1040, 2007. Go to original source...
  48. Singh, E., Tiwari, S., Agrawal, M.: Effects of elevated ozone on photosynthesis and stomatal conductance of two soybean varieties: a case study to assess impacts of one component of predicted global climate change. - Plant Biol. 11: 101-108, 2009. Go to original source...
  49. Thornley, J.H.M.: Dynamic model of leaf photosynthesis with acclimation to light and nitrogen. - Ann. Bot. 81: 421-430, 1998. Go to original source...
  50. Thwe, A.A., Vercambre, G., Gautier, H. et al.: Dynamic shoot and root growth at different developmental stages of tomato (Solanum lycopersicum Mill.) under acute ozone stress. - Sci. Hortic. 150: 317-325, 2013. Go to original source...
  51. UNECE: Hemispheric Transport of Air Pollution: Part A: Ozone and Particulate Matter. Air Pollution Studies 17: 1-275, 2010 (http://www.htap.org/activities/2010_Final_Report/HTAP%202010%20Part%20A%20110407.pdf).
  52. Wellburn, F.A.M., Wellburn, A.R.: Variable patterns of antioxidant protection but similar ethene emission differences in several ozone-sensitive and ozone-tolerant plant selections. - Plant Cell Environ. 19: 754-760, 1996. Go to original source...
  53. Wieser, G., Tegischer, K., Tausz, M. et al.: Age effects on Norway spruce (Picea abies) susceptibility to ozone uptake: a novel approach relating stress avoidance to defense. - Tree Physiol. 22: 583-590, 2002. Go to original source...
  54. Yan, K., Chen, W., He, X.Y. Zhang, et al.: Responses of photosynthesis, lipid peroxidation and antioxidant system in leaves of Quercus mongolica to elevated ozone. - Environ. Exp. Bot. 69: 198-204, 2010. Go to original source...