Photosynthetica 2020, 58(SI):518-528 | DOI: 10.32615/ps.2019.169

Special issue in honour of Prof. Reto J. Strasser – JIP-test as a tool to identify salinity tolerance in sweet sorghum genotypes

A. RASTOGI1, M. KOVAR2, X. HE3, M. ZIVCAK2, S. KATARIA5, H.M. KALAJI6, M. SKALICKY7, U.F. IBRAHIMOVA, S. HUSSAIN††, S. MBARKI†††, M. BRESTIC2 ,7
1 Laboratory of Bioclimatology, Department of Ecology and Environment Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland
2 Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic
3 Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, China
5 School of Biochemistry, Devi Ahilya University, Khandwa Road, 452001 Indore, India
6 Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences WULS-SGGW, 159 Nowoursynowska Str., 02-776 Warsaw, Poland
7 Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Avenue 2A, Baku, Az 1073, Azerbaijan Republic

The effect of salinity on primary photochemical reactions (using JIP-test) in six sweet sorghum genotypes was tested. An increase in salt concentrations induced significantly the accumulation of proline and caused a decline in leaf osmotic potential. Except for 100 mM NaCl concentration, salinity significantly decreased chlorophyll content and photosynthetic efficiency of plants. Increasing salinity led to a higher accumulation of QB-nonreducing PSII reaction centers. K-step in OJIP fluorescence transient was observed for the most sensitive genotypes under the high NaCl concentration. The studied sorghum genotypes responded differently to salinity stress. Thus, the study helps understand the plant tolerance mechanisms of different sweet sorghum genotypes to increasing salinity stress. The study also confirmed that the use of JIP-test is suitable for the identification of sorghum genotypes according to their growth under salinity stress.

Additional key words: abiotic stress; chlorophyll fluorescence; photosynthesis.

Received: November 1, 2019; Revised: December 3, 2019; Accepted: December 13, 2019; Prepublished online: March 6, 2020; Published: May 28, 2020Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
RASTOGI, A., KOVAR, M., HE, X., ZIVCAK, M., KATARIA, S., KALAJI, H.M., ... BRESTIC, M. (2020). Special issue in honour of Prof. Reto J. Strasser – JIP-test as a tool to identify salinity tolerance in sweet sorghum genotypes. Photosynthetica58(SPECIAL ISSUE), 518-528. doi: 10.32615/ps.2019.169
Download citation

References

  1. Al-Karaki G.N., Al-Karaki R.B., Al-Karaki C.Y.: Phosphorus nutrition and water stress effects on proline accumulation in sorghum and bean. - J. Plant Physiol. 148: 745-751, 1996. Go to original source...
  2. Allen S.E., Grimshaw H.M., Rowland A.P.: Chemical analysis. -In: Moore P.D., Chapman S.B. (ed.): Methods in Plant Ecology. Pp. 285-344. Blackwell Scientific Publications, Oxford 1986.
  3. Arif M.R., Islam M.T., Robin A.H.K.: Salinity stress alters root morphology and root hair traits in Brassica napus. - Plants 8: 192, 2019. Go to original source...
  4. Azhar F.M., McNeilly T.: Variability for salt tolerance in Sorghum bicolor (L.) Moench under hydroponic condition. - J. Agron. Crop Sci. 159: 269-277, 1987. Go to original source...
  5. Azhar F.M., McNeilly T.: The response of four sorghum acces-sions/cultivars to salinity during plant development. - J. Agron. Crop Sci. 161: 33-43, 1989. Go to original source...
  6. Baker N.R., Rosenqvist E.: Applications of chlorophyll fluo- rescence can improve crop production strategies: an exami-nation of future possibilities. - J. Exp. Bot. 55: 1607-1621, 2004. Go to original source...
  7. Bates L., Waldren R.P., Teare I.D.: Rapid determination of free proline for water-stress studies. - Plant Soil 39: 205-207, 1973. Go to original source...
  8. Bayat L., Arab M., Aliniaeifard S. et al.: Effects of growth under different light spectra on the subsequent high light tolerance in rose plants. - AoB Plants 10: ply052, 2018. Go to original source...
  9. Bernstein N., Laüchli A., Silk W.K.: Kinematics and dynamics of sorghum (Sorghum bicolor L.) leaf development at various Na/Ca salinities: I. Elongation growth. - Plant Physiol. 103: 1107-1114, 1993. Go to original source...
  10. Betzen B.M., Smart C.M., Maricle K.L., Maricle B.R.: Effects of increasing salinity on photosynthesis and plant water potential in kansas salt marsh species. - Trans. Kans. Acad. Sci. 122: 29-58, 2019. Go to original source...
  11. Bussotti F., Desotgiu R., Cascio C. et al.: Ozone stress in woody plants assessed with chlorophyll a fluorescence. A critical reassessment of existing data. - Environ. Exp. Bot. 73: 19-30, 2011. Go to original source...
  12. Esechie H.A.: Interaction of salinity and temperature on the germination of sorghum. - J. Agron. Crop Sci. 172: 194-199, 1994. Go to original source...
  13. Franco J.A., Bañón S., Vicente M.J. et al.: Root development in horticultural plants grown under abiotic stress conditions - a review. - J. Hortic. Sci. Biotech. 86: 543-556, 2011. Go to original source...
  14. Hayat S., Hayat Q., Alyemeni M.N. et al.: Role of proline under changing environments: a review. - Plant Signal. Behav. 7: 1456-1466, 2012. Go to original source...
  15. Hmidi D., Abdelly C., Athar H.U. et al.: Effect of salinity on osmotic adjustment, proline accumulation and possible role of ornithine-δ-aminotransferase in proline biosynthesis in Cakile maritima. - Physiol. Mol. Biol. Pla. 24: 1017-1033, 2018. Go to original source...
  16. Igartua E., Gracia M.P., Lasa J.M.: Characterization and genetic control of germination-emergence responses of grain sorghum to salinity. - Euphytica 76: 185-193, 1994. Go to original source...
  17. Iqbal N., Umar S., Khan N.A., Khan M.I.R.: A new perspective of phytohormones in salinity tolerance: Regulation of proline metabolism. - Environ. Exp. Bot. 100: 34-42, 2014. Go to original source...
  18. Isayenkov S.V., Maathuis F.J.M.: Plant salinity stress: Many unanswered questions remain. - Front. Plant Sci. 10: 80, 2019. Go to original source...
  19. Jain M., Chourey P.S., Boote K.J., Allen Jr. L.H.: Short-term high temperature growth conditions during vegetative-to-reproductive phase transition irreversibly compromise cell wall invertase-mediated sucrose catalysis and microspore meiosis in grain sorghum (Sorghum bicolor). - J. Plant Physiol. 167: 578-582, 2010. Go to original source...
  20. Kabeel A.E., El-Said E.M.S.: Water production for irrigation and drinking needs in remote arid communities using closed-system greenhouse: A review. - Eng. Sci. Technol. Int. J. 18: 294-301, 2015. Go to original source...
  21. Kader M.A., Jutzi S.C.: Effects of thermal and salt treatments during imbibition on germination and seedling growth of sorghum at 42/19°C. - J. Agron. Crop Sci. 190: 35-38, 2004. Go to original source...
  22. Kalaji H.M., Goltsev V.N., Żuk-Gołaszewska K. et al.: Chloro-phyll Fluorescence: Understanding Crop Performance - Basics and Applications. Pp. 222. CRC Press, Boca Raton 2017. Go to original source...
  23. Kalaji H.M., Guo P.: Chlorophyll fluorescence: a useful tool in barley plant breeding programs. - In: Sánchez A., Gutiérrez S.J. (ed.): Photochemistry Research Progress. Pp. 439-463. Nova Science Publishers, Inc., New York 2008.
  24. Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. - Acta Physiol. Plant. 38: 102, 2016. Go to original source...
  25. Kalaji H.M., Pietkiewicz S.: Some physiological indices to be exploited as a crucial tool in plant breeding. - Plant Breed. Seed Sci. 49: 19-39, 2004.
  26. Kalaji H.M., Rastogi A., Zivcak M. et al.: Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. -Photosynthetica 56: 953-961, 2018. Go to original source...
  27. Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. - Photosynth. Res. 122: 121-158, 2014. Go to original source...
  28. Kim D.-W., Shibato J., Agrawal G.K. et al.: Gene transcription in the leaves of rice undergoing salt-induced morphological changes (Oryza sativa L.). - Mol. Cells 24: 45-59, 2007.
  29. Knox S.H., Sturtevant C., Matthes J.H. et al.: Agricultural peatland restoration: Effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta. - Glob. Change Biol. 21: 750-764, 2015. Go to original source...
  30. Kumar D., Al Hassan M., Naranjo M.A. et al.: Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). - PLoS ONE 12: e0185017, 2017. Go to original source...
  31. Maas E.V., Hoffman G.J.: Crop salt tolerance - current assessment. - J. Irr. Drain. Div.-ASCE 103: 115-134, 1977. Go to original source...
  32. Machado R.M.A., Serralheiro R.P.: Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. - Horticulturae 3: 30, 2017. Go to original source...
  33. Maiti R.K., de la Rosa-Ibarra M., Sandoval N.D.: Genotypic variability in glossy sorghum lines for resistance to drought, salinity and temperature stress at the seedling stage. - J. Plant Physiol. 143: 241-244, 1994. Go to original source...
  34. Marambe B., Ando T.: Physiological basis of salinity tolerance of sorghum seeds during germination. - J. Agron. Crop Sci. 174: 291-296, 1995. Go to original source...
  35. Maxwell K., Johnson G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  36. Mbarki S., Sytar O., Cerda A. et al.: Strategies to mitigate the salt stress effects on photosynthetic apparatus and productivity of crop plants. - In: Kumar V., Wani S.H., Suprasanna P., Tran L.S.P. (ed.): Salinity Responses and Tolerance in Plants. Pp. 85-136. Springer, Cham 2018. Go to original source...
  37. Munns R., Tester M.: Mechanisms of salinity tolerance. - Annu. Rev. Plant Biol.. 59: 651-681, 2008. Go to original source...
  38. Netondo G.W., Onyango J.C., Beck E.: Sorghum and salinity: I. Response of growth, water relations and ion accumulation to NaCl salinity. - Crop Sci. 44: 797-805, 2004a. Go to original source...
  39. Netondo G.W., Onyango J.C., Beck E.: Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. - Crop Sci. 44: 806-811, 2004b. Go to original source...
  40. Oukarroum A., El Madidi S., Schansker G., Strasser R.J.: Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. - Environ. Exp. Bot. 60: 438-446, 2007. Go to original source...
  41. Pennisi E.: How sorghum withstands heat and drought. - Science 323: 573, 2009. Go to original source...
  42. Prasad P.V.V., Pisipati S.R., Mutava R., Tuinstra M.R.: Sensiti-vity of grain sorghum to high temperature stress during reproductive development. - Crop Sci. 48: 1911-1917, 2008. Go to original source...
  43. Rastogi A., Stróżecki M., Kalaji H.M. et al.: Impact of warming and reduced precipitation on photosynthetic and remote sensing properties of peatland vegetation. - Environ. Exp. Bot. 160: 71-80, 2019b. Go to original source...
  44. Rastogi A., Zivcak M., Tripathi D.K. et al.: Phytotoxic effect of silver nanoparticles in Triticum aestivum: Improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast. - Photosynthetica 57: 209-216, 2019a. Go to original source...
  45. Srivastava B., Guisse H., Greppin, Strasser R.J.: Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. - BBA-Bioenergetics 1320: 95-106, 1997. Go to original source...
  46. Strasser R.J.: The grouping model of plant photosynthesis. -In: Akoyunoglou G., Argyroudi-Akoyunoglou J. (ed.): Chlo-roplast Development. Pp. 513-524. Elsevier/North-Holland Biomedical, Amsterdam 1978.
  47. Strasser R.J.: The grouping model of plant photosynthesis: Heterogeneity of photosynthetic units in thylakoids. - In: Akoyonoglou G. (ed.): Photosynthesis III. Structure and Molecular Organisation of Photosynthetic Apparatus. Pp. 727-737. Balaban International Science Service, Philadel-phia 1981.
  48. Strasser R.J., Tsimilli-Michael M., Qiang S., Goltsev V.: Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. - BBA-Bioenergetics 1797: 1313-1326, 2010. Go to original source...
  49. Sudhir P., Murthy S.D.S.: Effects of salt stress on basic processes of photosynthesis. - Photosynthetica 42: 481-486, 2004. Go to original source...
  50. Wungrampha S., Joshi R., Singla-Pareek S.L., Pareek A.: Photosynthesis and salinity: are these mutually exclusive? - Photosynthetica 56: 366-381, 2018. Go to original source...
  51. Yamaura Y., Narita A., Kusumoto Y. et al.: Genomic reconstruction of 100 000-year grassland history in a forested country: population dynamics of specialist forbs. - Biol. Lett.-UK 15: 20180577, 2019. Go to original source...
  52. Zivcak M., Brestic M., Olsovska K., Slamka P.: Performance index as a sensitive indicator of water stress in Triticum aestivum. - Plant Soil Environ. 54: 133-139, 2008. Go to original source...