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The model

• non-stationary isothermal saturated water flow in a deformable porous medium

• isotropic elastoplastic skeleton

• negligible inertial effects

• the assumption of small perturbations (small transformations, small displacements, small vari-
ations of the porosity and of the water mass density) + the assumption of small deformation
velocity

• continuum approach, continuity assumption

• compressive-positive pore pressures, tensile-positive stresses

• a summary from [Cou04] + the Eulerian approach based on [LS98] but extended from poroe-
lasticity by myself in the case of compressible solid matrix (Biot’s coefficient α < 1)

Notation
t — the time u — the displacement vector of the skeleton

id+ u — the deformation of the skeleton F = I + ∇u — the deformation gradient

ε ≡ 1

2

(
∇u+ (∇u)>

)
— the linear strain tensor εv ≡ tr ε = divu — the volumetric strain

J = det(I + ∇u) — the Jacobian of the deformation

(≈ 1 + εv under the assumption of small transformations)

n — the Eulerian porosity φ = Jn — the Lagrangian porosity

Balance equations

Water mass balance
The Eulerian form (in the current configuration):

Ds(ρwn)

Dt
+ ρwn div vs + div(ρwqrw) = 0 (1)

ρw — the water mass density

vs — the solid velocity vw — the water velocity

qrw ≡ n(vw − vs) — the water specific discharge relative to the solid

(or Darcy velocity or filtration vector)

Ds

Dt
=

∂

∂t
+ vs · ∇ — the total time derivative with respect to the solid

The Lagrangian form (in the initial configuration):

d(ρwφ)

dt
+ divM = 0 (2)

M ≡ JF−1(ρwqrw) — the Lagrangian relative flow vector of water mass
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Solid mass balance

The Eulerian form:

Ds(ρs(1− n))

Dt
+ ρs(1− n) div vs = 0 (3)

ρs — the solid mass density

The Lagrangian alternative:

ρs(1− n)J = ρs0(1− φ0) (4)

ρs0 — the initial solid mass density

φ0(= n0) — the initial Lagrangian (= initial Eulerian) porosity

Equilibrium equation

The Eulerian form:

divσ + (ρs(1− n) + ρwn)f = 0 (5)

σ — the Cauchy stress tensor f — a body force density

The Lagrangian counterpart:

div(FΠ) + (ρs0(1− φ0) + ρwφ)f = 0 (6)

Π ≡ JF−1σF−> — the Piola-Kirchhoff stress tensor

Constitutive relationships

Water density

dρw
ρw

=
dpw
Kw

(7)

pw — the water pressure Kw — the water bulk modulus

Considering Kw constant (over some range of pressures), one can integrate (7) into the form:

ρw = ρw0e
(pw−pw0)/Kw

ρw0, pw0 — initial values of the water density and pressure

Darcy’s law

qrw =
k

µw
(−∇pw + ρwf) (8)

k — the (intrinsic) permeability tensor of the porous medium

µw — the dynamic viscosity of water

Plastic strain and plastic porosity
Poroplasticity is the ability of porous materials to undergo permanent strains and permanent
changes in porosity. In the context of small transformations, the incremental strain dε and the in-
cremental Lagrangian porosity dφ can be decomposed into their reversible (elastic) and irreversible
(plastic) parts as follows:

dε = dεel + dεp dφ = dφel + dφp

dεel — the incremental elastic strain dφel — the incremental elastic Lagrangian porosity

dεp — the incremental plastic strain dφp — the incremental plastic Lagrangian porosity

2



Elastic and plastic strains and elastic and plastic Lagrangian porosities are defined as the integrals
of the increments from an initial reference state to the current one so that:

ε = εel + εp φ− φ0 = φel + φp

One can say that the poroplastic constitutive relationships for the skeleton are obtained from
the poroelastic ones by replacing the (total) strain ε with the reversible strain εel = ε − εp and
additionally also the porosity φ with the reversible part of porosity φ − φp in the Lagrangian
approach.

Stress tensor

dσ′ = dσ + dpwI = D(dε− dεp − dεpws ) (9)

σ′ ≡ σ + pwI — Terzaghi’s effective stress

D — a tangent elastic stiffness tensor of the solid skeleton

dεpws = − 1

3Ks
dpwI — the incremental strain of the solid matrix (grains) produced (10)

by an incremental water pressure dpw
Ks — the matrix bulk modulus

For an isotropic material

DI = 3KI K — the skeleton bulk modulus

and one obtains:

dσ + αdpwI = D(dε− dεp)

α = 1− K

Ks
— Biot’s coefficient (11)

Porosity
(for the Lagrangian approach solely)

dφ− dφp = α(dεv − dεpv) +
dpw
N

(12)

εpv — the volumetric plastic strain N — Biot’s modulus

Considering α and N constant (over some ranges of strains and pressures), one can integrate (12)
into the form:

φ− φp − φ0 = α(εv − εpv) +
pw − pw0

N
(13)

Moreover under the assumptions that K and Ks are constant as well and the variations of the
porosity are small, the equality in (11) can be recovered and

1

N
=
α− n0
Ks

(14)

Solid density
(for the Eulerian approach solely)
By assuming ρs = ρs(pw, trσ

′) one gets:

dρs
ρs

=
1

ρs

∂ρs
∂pw

dpw +
1

ρs

∂ρs
∂(trσ′)

d(trσ′)
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Employing

1

ρs

∂ρs
∂pw

=
1

Ks

1

ρs

∂ρs
∂(trσ′)

= − 1

3(1− n)Ks

d(trσ′)
(9)
= trD(dε− dεp − dεpws )

(10)
= 3K

(
dεv − dεpv +

dpw
Ks

)
(15)

and using the expression for α in (11), one arrives at:

dρs
ρs

=
1

1− n

(α− n
Ks

dpw − (1− α)(dεv − dεpv)
)

(16)

Complete equations

Lagrangian approach

When adopting the small perturbation assumption,

∂(ρwφ)

∂t
= ρw

∂φ

∂t
+ φ

∂ρw
∂t

(12),(7)
= ρw

(
α
(∂εv
∂t
− ∂εpv

∂t

)
+
∂φp

∂t
+

1

N

∂pw
∂t

)
+ φ

ρw
Kw

∂pw
∂t

≈ ρw0

(
1

N
+

φ0
Kw

)
∂pw
∂t

+ ρw0α

(
∂εv
∂t
− ∂εpv

∂t

)
+ ρw0

∂φp

∂t

divM ≈ div(ρwqrw)
(8)
= div

(
ρw

k

µw
(−∇pw + ρwf)

)
≈ div

(
ρw0

k

µw
(−∇pw + ρw0f)

)
and the Lagrangian water mass balance equation (2) leads to:

ρw0

(
1

N
+

φ0
Kw

)
∂pw
∂t

+ ρw0α

(
∂εv
∂t
− ∂εpv

∂t

)
+ ρw0

∂φp

∂t
= −div

(
ρw0

k

µw
(−∇pw + ρw0f)

)
(17)

Furthermore
div(FΠ) ≈ divσ ρwφ ≈ ρw0φ0

and the Lagrangian equilibrium equation (6) becomes:

divσ +
(
ρs0(1− φ0) + ρw0φ0

)
f = 0 (18)

Eulerian approach

When adopting the assumptions of small perturbations and small deformation velocity,

ρw ≈ ρw0 n ≈ n0 ρs ≈ ρs0
Ds

Dt
=

∂

∂t
+ vs · ∇ ≈

∂

∂t
div vs = div

Dsu

Dt
≈ div

∂u

∂t
=
∂εv
∂t

and the Eulerian mass balance equations (1) and (3) and the constitutive equation for ρs (16) can
be written as:

ρw0
∂n

∂t
+ n0

∂ρw
∂t

+ ρw0n0
∂εv
∂t

= −div(ρw0qrw) (19)

∂(1− n)

∂t
+

1− n0
ρs0

∂ρs
∂t

+ (1− n0)
∂εv
∂t

= 0 (20)

1− n0
ρs0

∂ρs
∂t

=
α− n0
Ks

∂pw
∂t
− (1− α)

(
∂εv
∂t
− ∂εpv

∂t

)
(21)
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Elimination of ∂ρs/∂t from (20) by (21) gives:

∂n

∂t
=
α− n0
Ks

∂pw
∂t

+ (α− n0)
∂εv
∂t

+ (1− α)
∂εpv
∂t

(22)

which inserted together with (7) and (8) into (19) yields:

ρw0

(
α− n0
Ks

+
n0
Kw

)
∂pw
∂t

+ ρw0α
∂εv
∂t

+ ρw0(1− α)
∂εpv
∂t

= − div

(
ρw0

k

µw
(−∇pw + ρw0f)

)
(23)

Further
ρs(1− n) ≈ ρs0(1− n0) ρwn ≈ ρw0n0

and the Eulerian equilibrium equation (5) leads to:

divσ + (ρs0(1− n0) + ρw0n0)f = 0 (24)

Additionally, taking α and Ks constant one can integrate (21) and (22) into:

ρs = ρs0

(
1 +

1

1− n0

(α− n0
Ks

(pw − pw0)− (1− α)(εv − εpv)
))

n = n0 +
α− n0
Ks

(pw − pw0) + (α− n0)εv + (1− α)εpv (25)

Remark. If Dep is the tangent elastoplastic tensor such that the constitutive equation for the
stress tensor (9) can be written as

dσ′ = Dep(dε− dεpws ) (26)

then one can proceed as previously and reformulate the state equations (16) and (22) for ρs and
n and the flow equation (23) in terms of Dep instead of Biot’s coefficient α including the skeleton
(elastic) bulk modulus K.
In particular, if one can take Kep such that (15) can be replaced by:

d(trσ′)
(26)
= trDep(dε− dεpws ) = 3Kep

(
dεv +

dpw
Ks

)
then the equations (16), (22) and (23) can be rewritten in the same form as for an isotropic elastic
skeleton with αep = 1−Kep/Ks instead of α:

dρs
ρs

=
1

1− n

(
αep − n
Ks

dpw − (1− αep)dεv
)

∂n

∂t
=
αep − n0
Ks

∂pw
∂t

+ (αep − n0)
∂εv
∂t

ρw0

(
αep − n0
Ks

+
n0
Kw

)
∂pw
∂t

+ ρw0α
ep ∂εv
∂t

= −div

(
ρw0

k

µw
(−∇pw + ρw0f)

)

Models of poroplasticity

An ideal poroplastic model
A poroelasticity domain CE — a domain in the loading space {σ × pw} such that the strain and
the change in porosity remain reversible along any loading path lying entirely within this domain.
It can be defined as:

CE = {(σ, pw) | f(σ, pw) < 0} f — a loading function
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A yield surface — the boundary of CE , where plastic evolutions may occur:

{(σ, pw) | f(σ, pw) = 0}

A set of plastically admissible loadings — the closure of CE :

{(σ, pw) | f(σ, pw) ≤ 0}

For an ideal poroplastic material, the poroelasticity domain CE is not altered by plastic evolutions.
A (plastic) flow rule — it specifies how the plastic evolutions occur:

dεp = dλhε(σ, pw) dφp = dλhφ(σ, pw)

(hε, hφ) — a couple of functions defining the directions of plastic increments

dλ — a plastic multiplier scaling the intensity of the plastic increments

The complementarity conditions:

dλ ≥ 0 f ≤ 0 dλ · f = 0 (27)

The consistency condition:
dλ · df = 0 (28)

Non-negativeness of dissipated energy (plastic work):

σ : dεp + pdφp ≥ 0

Owing to the non-negativeness of dλ, this inequality requires (hε, hφ) to satisfy:

σ : hε + phφ ≥ 0

A hardening poroplastic model
For a hardening poroplastic material, the poroelasticity domain CE is generally altered by plastic
evolutions:

CE = {(σ, pw) | f(σ, pw, ζ) < 0}

ζ = {ζJ}, ζJ = − ∂U

∂χJ
(χ) — evolutionary hardening forces accounting for the current

hardening state
U — a trapped energy

χ = {χJ} — a set of hardening state variables

The yield surface:
{(σ, pw) | f(σ, pw, ζ) = 0}

The set of plastically admissible loadings:

{(σ, pw) | f(σ, pw, ζ) ≤ 0}

Flow rule:

dεp = dλhε(σ, pw, ζ) dφp = dλhφ(σ, pw, ζ) dχJ = dλhJ(σ, pw, ζ)

The plastic multiplier dλ still obeys the complementarity conditions (27) and the consistency
condition (28).
Non-negativeness of dissipated energy:

σ : dεp + pdφp + ζJdχJ ≥ 0
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Owing to the non-negativeness of dλ, this inequality requires (hε, hφ, hJ) to satisfy:

σ : hε + phφ + ζJhJ ≥ 0

Standard material — the loading function f is a so-called associated potential:

hε =
∂f

∂σ
hφ =

∂f

∂pw
hJ =

∂f

∂ζJ

Non-standard material — there exists a non-associated potential g 6= f :

hε =
∂g

∂σ
hφ =

∂g

∂pw
hJ =

∂g

∂ζJ

Matrix plastic incompressibility
The observable macroscopic volumetric plastic strain εpv undergone by the skeleton is due to both
the plastic change in porosity and the volumetric plastic strain εpsv undergone by the solid matrix.
One can show that in the framework of small transformations:

εpv = (1− n0)εpsv + φp (29)

In soil and rock mechanics the plastic evolutions are caused by irreversible relative sliding of the
solid grains forming the matrix, whereas the volume change of the matrix due uniquely to plasticity
turns out to be negligible. This entails εpsv = 0 and (29) results in:

φp = εpv (30)

In the case of an associated flow rule, this further yields:

dλ
∂f

∂pw
= dφp = dεpv = dλ tr

∂f

∂σ

which requires the loading function f to depend only upon Terzaghi’s effective stress σ′ = σ+pwI
instead of an arbitrary couple (σ, pw). This holds even for Biot’s coefficient α < 1.

By extension, in the context of a non-associated flow rule both the loading function f and the
non-associated potential g are expressed as functions only of σ′ (and the set of hardening forces
ζ in the case of hardening). The elasticity and the plasticity criteria then read:

f(σ′) < 0, f(σ′) = 0
(
f(σ′, ζ) < 0, f(σ′, ζ) = 0

)
and the flow rule is written in the form:

dεp = dλ
∂g

∂σ′
dφp = dεpv

(
dχJ = dλ

∂g

∂ζJ

)
Isotropic hardening — the poroelasticity domain dilates (hardening) or contracts (softening)
in an isotropic way around the origin of the effective loading space {σ′}. A hardening scalar force
ζ is introduced to define this homothetical transformation.
Kinematic hardening — the poroelasticity domain moves in a rigid way in the effective loading
space {σ′}. A second-order tensor ζ is introduced to define this translation.
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Concluding remarks

The Lagrangian approach seems to be more general than the Eulerian one since it enables to
separate the plastic change in porosity from the volumetric plastic strain – recall the plastic strain
partition (29). In the case of matrix plastic incompressibility with (30) and the expressions for
α and 1/N from (11) and (14) (and with φ0 = n0 as the initial configuration coincides with the
current one at time t = 0):
• The Lagrangian system (17)&(18) reduces to the Eulerian one (23)&(24).

• The equation (13) for the Lagrangian porosity φ is related to the equation (25) for the Eulerian
porosity n by

φ = Jn ≈ (1 + εv)n

when εv, ε
p
v and pw − pw0 are small.

Further note that a plastic evolution appears in the Eulerian flow equation (23) only for Biot’s
coefficient α < 1 (an elastically compressible matrix).

References

[Cou04] O. Coussy. Poromechanics. John Wiley & Sons, 2004.

[LS98] R. W. Lewis and B. A. Schrefler. The Finite Element Method in the Static and Dynamic
Deformation and Consolidation of Porous Media. John Wiley, 2nd edition, 1998.

8


